organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o87-o88

Ethyl 2-(4-hy­dr­oxy-3-meth­­oxy­phen­yl)-1-[3-(2-oxopyrrolidin-1-yl)prop­yl]-1H-benzimidazole-5-carboxyl­ate monohydrate

aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 30 November 2011; accepted 5 December 2011; online 10 December 2011)

In the title compound, C24H27N3O5·H2O, the essentially planar benzimidazole ring system [maximum deviation = 0.020 (1) Å] forms dihedral angles of 54.10 (11) and 67.79 (6)°, respectively, with the mean plane of pyrrolidin-2-one ring and the benzene ring. The pyrrolidin-2-one ring adopts an envelope conformation with one of the methylene C atoms at the flap. An intra­molecular C—H⋯π inter­action is observed. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds link the two components into a double-tape structure along the a axis. The crystal packing is further stabilized by weak ππ stacking [centroid–centroid distance = 3.6632 (9) Å] and C—H⋯O inter­actions.

Related literature

For the biological activity of benzimidazole derivatives, see: Rao et al. (2002[Rao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Farmaco, 57, 819-823.]); Thakurdesai et al. (2007[Thakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacol. Online, 1, 314-329.]); Dubey & Sanyal (2010[Dubey, A. K. & Sanyal, P. K. (2010). Vet Scan, 5, 63.]). For related structures, see: Yoon et al. (2011[Yoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.]). For the ring conformation, see: Cremer & Pople (1975)[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.].

[Scheme 1]

Experimental

Crystal data
  • C24H27N3O5·H2O

  • Mr = 455.50

  • Triclinic, [P \overline 1]

  • a = 9.7460 (8) Å

  • b = 10.0436 (8) Å

  • c = 12.6072 (10) Å

  • α = 85.737 (1)°

  • β = 89.684 (2)°

  • γ = 70.238 (1)°

  • V = 1157.91 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.43 × 0.32 × 0.16 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.985

  • 18195 measured reflections

  • 6686 independent reflections

  • 4485 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.185

  • S = 1.07

  • 6686 reflections

  • 312 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O2i 0.85 (3) 2.06 (3) 2.879 (2) 164 (2)
O1W—H1W1⋯N1ii 0.95 (3) 1.90 (3) 2.8416 (19) 176 (2)
O4—H1O4⋯O1W 0.88 (3) 1.80 (3) 2.675 (2) 169 (3)
C16—H16A⋯O5iii 0.96 2.44 3.380 (3) 166
C20—H20BCg4 0.97 2.86 3.750 (3) 153
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole derivatives are of wide interest because of their diverse biological activities and various clinical applications. This ring system is present in numerous anti-HIV (Rao et al., 2002), anti-inflammatory (Thakurdesai et al., 2007) and anthelmintics (Dubey and Sanyal, 2010) drugs. As part of our ongoing structural studies of benzimidazole derivatives (Yoon et al., 2011), we now report the structure of the title compound.

In the title compound, Fig. 1, the benzimidazole (N1/N2/C1–C7) ring system is essentially planar with a maximum deviation of 0.020 (1) Å for atom N2. Dihedral angles of benzimidazole, (N1/N2/C1–C7) ring with the mean plane of pyrrolidin-2-one ring (N3/C20–C23) and the 2-methoxyphenol (C8–C13) ring are 54.10 (11) and 67.79 (6)°, respectively. The pyrrolidin-2-one ring adopts an envelope conformation with puckering parameters of Q = 0.148 (3) Å and ϕ = 78.5 (10)° (Cremer & Pople, 1975) with atom C21 at the flap, deviating by 0.095 (3) Å. In the crystal packing (Fig. 2), intermolecular O1W—H2W1···O2, O4—H1O4···O1W and O1W—H1W1···N1 hydrogen bonds link the molecules into a double-tape structure running along the a axis. There is a ππ stacking interaction between the benzene (C1–C6; centroid Cg3) rings with a Cg3···Cg3iv distance of 3.6632 (9) Å [symmetry code: (iv) -x, -y, -z + 1]. The crystal packing is further stabilized by a C16—H16A···O5 hydrogen bond and a weak C20—H20B···Cg4 interaction (Table 1), where Cg4 is the centroid of the benzene (C8–C13) ring.

Related literature top

For the biological activity of benzimidazole derivatives, see: Rao et al. (2002); Thakurdesai et al. (2007); Dubey & Sanyal (2010). For related structures, see: Yoon et al. (2011). For the ring conformation, see: Cremer & Pople (1975).

Experimental top

Ethyl 3-amino-4-(3(2-oxopyrrolidin-1yl)propylamino)benzoate (0.84 mmol) and sodium metabisulfite adduct of 4-hydroxy-3-metoxybenzaldehyde (1.68 mmol) were dissolved in DMF. The reaction mixture was reflux at 130 °C for 2 hrs. After completion, the reaction mixture was diluted in ethyl acetate (20 mL) and washed with water (20 mL). The organic layer was collected, dried over Na2SO4 and the evaporated in vacuo to yield the product. The product was recrystallized from ethyl acetate.

Refinement top

The O-bound H atom was located in a difference Fourier map and refined freely [O—H = 0.88 (3), 0.85 (3) and 0.95 (3) Å]. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å. The Uiso(H) values were constrained to be 1.5Ueq (methyl-H atom) and 1.2Ueq (other H atoms). The rotating model group was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing, viewed along the a-axis. Hydrogen bonds are shown as dashed lines.
Ethyl 2-(4-hydroxy-3-methoxyphenyl)-1-[3-(2-oxopyrrolidin-1-yl)propyl]- 1H-benzimidazole-5-carboxylate monohydrate top
Crystal data top
C24H27N3O5·H2OZ = 2
Mr = 455.50F(000) = 484
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7460 (8) ÅCell parameters from 4470 reflections
b = 10.0436 (8) Åθ = 2.5–29.5°
c = 12.6072 (10) ŵ = 0.10 mm1
α = 85.737 (1)°T = 296 K
β = 89.684 (2)°Block, brown
γ = 70.238 (1)°0.43 × 0.32 × 0.16 mm
V = 1157.91 (16) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6686 independent reflections
Radiation source: fine-focus sealed tube4485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.960, Tmax = 0.985k = 1414
18195 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0974P)2 + 0.1068P]
where P = (Fo2 + 2Fc2)/3
6686 reflections(Δ/σ)max < 0.001
312 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C24H27N3O5·H2Oγ = 70.238 (1)°
Mr = 455.50V = 1157.91 (16) Å3
Triclinic, P1Z = 2
a = 9.7460 (8) ÅMo Kα radiation
b = 10.0436 (8) ŵ = 0.10 mm1
c = 12.6072 (10) ÅT = 296 K
α = 85.737 (1)°0.43 × 0.32 × 0.16 mm
β = 89.684 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4485 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.029
18195 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.185H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.30 e Å3
6686 reflectionsΔρmin = 0.26 e Å3
312 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17090 (17)0.13373 (19)0.18216 (12)0.0762 (4)
O20.35072 (14)0.11827 (17)0.28604 (13)0.0702 (4)
O30.1298 (3)0.2186 (2)1.00505 (19)0.1183 (8)
O40.64165 (13)0.40228 (14)0.73582 (10)0.0538 (3)
O50.64019 (13)0.14280 (12)0.76404 (10)0.0552 (3)
N10.17611 (13)0.25473 (14)0.43596 (10)0.0416 (3)
N20.09463 (13)0.23337 (13)0.60105 (10)0.0401 (3)
N30.12756 (16)0.41105 (17)0.89776 (11)0.0529 (4)
C10.04959 (15)0.21973 (15)0.43129 (12)0.0379 (3)
C20.02368 (16)0.19669 (16)0.34357 (13)0.0412 (3)
H2A0.01000.20350.27490.049*
C30.14954 (15)0.16306 (15)0.36302 (13)0.0421 (3)
C40.20115 (16)0.15385 (17)0.46613 (14)0.0456 (4)
H4A0.28630.13250.47590.055*
C50.12959 (16)0.17542 (17)0.55325 (13)0.0443 (3)
H5A0.16360.16860.62180.053*
C60.00288 (15)0.20810 (15)0.53349 (12)0.0378 (3)
C70.19826 (15)0.26220 (15)0.53799 (12)0.0386 (3)
C80.31855 (15)0.29914 (16)0.58469 (12)0.0391 (3)
C90.42362 (16)0.19835 (15)0.65042 (12)0.0419 (3)
H9A0.42060.10680.66160.050*
C100.53227 (15)0.23334 (15)0.69912 (12)0.0397 (3)
C110.53539 (16)0.37285 (16)0.68324 (12)0.0399 (3)
C120.43197 (17)0.47134 (16)0.61670 (13)0.0436 (3)
H12A0.43460.56300.60510.052*
C130.32404 (17)0.43507 (16)0.56685 (13)0.0437 (3)
H13A0.25570.50190.52160.052*
C140.23434 (18)0.13642 (17)0.27471 (15)0.0492 (4)
C150.2499 (4)0.1148 (4)0.0897 (2)0.1125 (11)
H15A0.24170.01590.08930.135*
H15B0.35240.17070.09420.135*
C160.1953 (5)0.1561 (5)0.0036 (3)0.1330 (14)
H16A0.24530.13800.06330.199*
H16B0.09300.10340.00680.199*
H16C0.20950.25560.00550.199*
C170.07375 (17)0.25520 (17)0.71444 (12)0.0440 (3)
H17A0.16790.22340.75100.053*
H17B0.01740.19900.74470.053*
C180.00473 (18)0.41025 (18)0.73095 (13)0.0489 (4)
H18A0.10240.43880.70030.059*
H18B0.04620.46690.69360.059*
C190.01470 (19)0.4404 (2)0.84774 (15)0.0574 (4)
H19A0.07250.53930.85370.069*
H19B0.06440.38280.88530.069*
C200.2172 (3)0.4956 (3)0.86944 (19)0.0786 (7)
H20A0.16550.59510.87830.094*
H20B0.24850.48510.79640.094*
C210.3479 (3)0.4349 (4)0.9482 (2)0.0957 (9)
H21A0.43900.41910.91130.115*
H21B0.34200.49961.00280.115*
C220.3385 (3)0.2990 (3)0.9957 (2)0.0910 (8)
H22A0.35410.29091.07210.109*
H22B0.41120.21940.96590.109*
C230.1884 (3)0.3012 (2)0.96930 (17)0.0675 (5)
C240.6452 (2)0.0001 (2)0.7783 (2)0.0696 (6)
H24A0.73010.05500.82040.104*
H24B0.64970.03810.71020.104*
H24C0.55930.00410.81410.104*
O1W0.63716 (17)0.67068 (15)0.71300 (12)0.0565 (3)
H2W10.556 (3)0.736 (3)0.7004 (18)0.073 (7)*
H1W10.703 (3)0.695 (2)0.6663 (19)0.076 (7)*
H1O40.630 (3)0.493 (3)0.7238 (18)0.075 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0729 (9)0.1176 (13)0.0612 (9)0.0609 (9)0.0102 (7)0.0141 (8)
O20.0485 (7)0.0835 (10)0.0904 (10)0.0369 (7)0.0121 (7)0.0103 (8)
O30.1466 (19)0.0967 (14)0.1279 (17)0.0717 (14)0.0518 (14)0.0407 (12)
O40.0477 (6)0.0476 (7)0.0739 (8)0.0271 (5)0.0160 (6)0.0001 (6)
O50.0519 (6)0.0420 (6)0.0730 (8)0.0197 (5)0.0242 (6)0.0066 (5)
N10.0363 (6)0.0502 (7)0.0435 (7)0.0221 (5)0.0036 (5)0.0006 (5)
N20.0382 (6)0.0431 (7)0.0430 (7)0.0192 (5)0.0022 (5)0.0026 (5)
N30.0548 (8)0.0617 (9)0.0458 (8)0.0234 (7)0.0013 (6)0.0086 (6)
C10.0316 (6)0.0379 (7)0.0462 (8)0.0151 (6)0.0041 (5)0.0001 (6)
C20.0367 (7)0.0432 (8)0.0460 (8)0.0171 (6)0.0052 (6)0.0011 (6)
C30.0338 (7)0.0362 (7)0.0577 (9)0.0139 (6)0.0086 (6)0.0017 (6)
C40.0337 (7)0.0423 (8)0.0641 (10)0.0177 (6)0.0005 (7)0.0005 (7)
C50.0383 (7)0.0458 (8)0.0514 (9)0.0186 (6)0.0033 (6)0.0004 (6)
C60.0337 (6)0.0348 (7)0.0457 (8)0.0131 (5)0.0038 (5)0.0002 (5)
C70.0346 (7)0.0388 (7)0.0443 (8)0.0155 (6)0.0037 (6)0.0003 (6)
C80.0364 (7)0.0419 (7)0.0423 (8)0.0180 (6)0.0025 (6)0.0020 (6)
C90.0419 (7)0.0351 (7)0.0528 (9)0.0189 (6)0.0077 (6)0.0008 (6)
C100.0365 (7)0.0366 (7)0.0473 (8)0.0145 (6)0.0073 (6)0.0006 (6)
C110.0360 (7)0.0406 (7)0.0478 (8)0.0191 (6)0.0000 (6)0.0047 (6)
C120.0432 (8)0.0378 (7)0.0545 (9)0.0208 (6)0.0018 (6)0.0015 (6)
C130.0417 (7)0.0418 (8)0.0491 (8)0.0176 (6)0.0066 (6)0.0039 (6)
C140.0426 (8)0.0444 (8)0.0645 (11)0.0203 (7)0.0120 (7)0.0002 (7)
C150.124 (2)0.192 (3)0.0685 (16)0.112 (3)0.0155 (15)0.0232 (18)
C160.184 (4)0.162 (3)0.088 (2)0.108 (3)0.050 (2)0.003 (2)
C170.0454 (8)0.0480 (8)0.0404 (8)0.0189 (7)0.0021 (6)0.0004 (6)
C180.0408 (8)0.0543 (9)0.0485 (9)0.0118 (7)0.0045 (6)0.0056 (7)
C190.0480 (9)0.0665 (11)0.0564 (10)0.0157 (8)0.0059 (8)0.0154 (8)
C200.0812 (14)0.1101 (19)0.0640 (12)0.0598 (14)0.0060 (11)0.0033 (12)
C210.0717 (15)0.157 (3)0.0758 (15)0.0603 (18)0.0095 (12)0.0113 (16)
C220.0764 (15)0.103 (2)0.0856 (17)0.0190 (15)0.0253 (13)0.0107 (14)
C230.0776 (13)0.0626 (12)0.0628 (12)0.0239 (11)0.0135 (10)0.0052 (9)
C240.0683 (12)0.0404 (9)0.0982 (16)0.0193 (9)0.0323 (11)0.0140 (9)
O1W0.0552 (7)0.0477 (7)0.0723 (9)0.0254 (6)0.0088 (6)0.0028 (6)
Geometric parameters (Å, º) top
O1—C141.315 (2)C11—C121.382 (2)
O1—C151.460 (2)C12—C131.391 (2)
O2—C141.214 (2)C12—H12A0.9300
O3—C231.216 (3)C13—H13A0.9300
O4—C111.3575 (17)C15—C161.382 (5)
O4—H1O40.88 (3)C15—H15A0.9700
O5—C101.3621 (18)C15—H15B0.9700
O5—C241.418 (2)C16—H16A0.9600
N1—C71.317 (2)C16—H16B0.9600
N1—C11.3944 (17)C16—H16C0.9600
N2—C71.3750 (19)C17—C181.515 (2)
N2—C61.3774 (18)C17—H17A0.9700
N2—C171.465 (2)C17—H17B0.9700
N3—C231.341 (3)C18—C191.521 (2)
N3—C201.437 (3)C18—H18A0.9700
N3—C191.453 (2)C18—H18B0.9700
C1—C21.395 (2)C19—H19A0.9700
C1—C61.395 (2)C19—H19B0.9700
C2—C31.394 (2)C20—C211.542 (3)
C2—H2A0.9300C20—H20A0.9700
C3—C41.399 (2)C20—H20B0.9700
C3—C141.483 (2)C21—C221.481 (4)
C4—C51.373 (2)C21—H21A0.9700
C4—H4A0.9300C21—H21B0.9700
C5—C61.398 (2)C22—C231.494 (3)
C5—H5A0.9300C22—H22A0.9700
C7—C81.4808 (19)C22—H22B0.9700
C8—C131.386 (2)C24—H24A0.9600
C8—C91.394 (2)C24—H24B0.9600
C9—C101.3830 (19)C24—H24C0.9600
C9—H9A0.9300O1W—H2W10.85 (3)
C10—C111.411 (2)O1W—H1W10.95 (3)
C14—O1—C15117.16 (17)C16—C15—H15B109.4
C11—O4—H1O4109.2 (16)O1—C15—H15B109.4
C10—O5—C24117.13 (13)H15A—C15—H15B108.0
C7—N1—C1104.76 (12)C15—C16—H16A109.5
C7—N2—C6106.56 (12)C15—C16—H16B109.5
C7—N2—C17126.45 (12)H16A—C16—H16B109.5
C6—N2—C17125.80 (13)C15—C16—H16C109.5
C23—N3—C20114.78 (18)H16A—C16—H16C109.5
C23—N3—C19123.57 (18)H16B—C16—H16C109.5
C20—N3—C19121.59 (17)N2—C17—C18110.95 (13)
N1—C1—C2129.84 (14)N2—C17—H17A109.4
N1—C1—C6109.94 (12)C18—C17—H17A109.4
C2—C1—C6120.21 (13)N2—C17—H17B109.4
C3—C2—C1117.26 (15)C18—C17—H17B109.4
C3—C2—H2A121.4H17A—C17—H17B108.0
C1—C2—H2A121.4C17—C18—C19112.78 (15)
C2—C3—C4121.49 (14)C17—C18—H18A109.0
C2—C3—C14121.05 (15)C19—C18—H18A109.0
C4—C3—C14117.46 (14)C17—C18—H18B109.0
C5—C4—C3121.84 (14)C19—C18—H18B109.0
C5—C4—H4A119.1H18A—C18—H18B107.8
C3—C4—H4A119.1N3—C19—C18112.58 (14)
C4—C5—C6116.48 (15)N3—C19—H19A109.1
C4—C5—H5A121.8C18—C19—H19A109.1
C6—C5—H5A121.8N3—C19—H19B109.1
N2—C6—C1105.75 (12)C18—C19—H19B109.1
N2—C6—C5131.54 (14)H19A—C19—H19B107.8
C1—C6—C5122.71 (13)N3—C20—C21103.2 (2)
N1—C7—N2112.96 (12)N3—C20—H20A111.1
N1—C7—C8125.86 (13)C21—C20—H20A111.1
N2—C7—C8121.17 (13)N3—C20—H20B111.1
C13—C8—C9119.76 (13)C21—C20—H20B111.1
C13—C8—C7120.35 (13)H20A—C20—H20B109.1
C9—C8—C7119.84 (13)C22—C21—C20105.7 (2)
C10—C9—C8120.56 (13)C22—C21—H21A110.6
C10—C9—H9A119.7C20—C21—H21A110.6
C8—C9—H9A119.7C22—C21—H21B110.6
O5—C10—C9125.15 (13)C20—C21—H21B110.6
O5—C10—C11115.23 (12)H21A—C21—H21B108.7
C9—C10—C11119.62 (13)C21—C22—C23106.0 (2)
O4—C11—C12123.67 (13)C21—C22—H22A110.5
O4—C11—C10117.02 (13)C23—C22—H22A110.5
C12—C11—C10119.31 (13)C21—C22—H22B110.5
C11—C12—C13120.81 (13)C23—C22—H22B110.5
C11—C12—H12A119.6H22A—C22—H22B108.7
C13—C12—H12A119.6O3—C23—N3125.0 (2)
C8—C13—C12119.90 (14)O3—C23—C22126.9 (2)
C8—C13—H13A120.1N3—C23—C22108.1 (2)
C12—C13—H13A120.1O5—C24—H24A109.5
O2—C14—O1122.90 (16)O5—C24—H24B109.5
O2—C14—C3123.72 (18)H24A—C24—H24B109.5
O1—C14—C3113.38 (14)O5—C24—H24C109.5
C16—C15—O1111.0 (2)H24A—C24—H24C109.5
C16—C15—H15A109.4H24B—C24—H24C109.5
O1—C15—H15A109.4H2W1—O1W—H1W1105 (2)
C7—N1—C1—C2179.26 (15)C8—C9—C10—C110.9 (2)
C7—N1—C1—C60.55 (16)O5—C10—C11—O41.7 (2)
N1—C1—C2—C3179.84 (15)C9—C10—C11—O4177.88 (14)
C6—C1—C2—C30.4 (2)O5—C10—C11—C12178.61 (14)
C1—C2—C3—C40.5 (2)C9—C10—C11—C121.8 (2)
C1—C2—C3—C14179.84 (13)O4—C11—C12—C13178.67 (15)
C2—C3—C4—C50.9 (2)C10—C11—C12—C131.0 (2)
C14—C3—C4—C5179.39 (14)C9—C8—C13—C121.7 (2)
C3—C4—C5—C60.4 (2)C7—C8—C13—C12175.77 (14)
C7—N2—C6—C11.43 (15)C11—C12—C13—C80.7 (2)
C17—N2—C6—C1169.57 (13)C15—O1—C14—O23.1 (3)
C7—N2—C6—C5179.21 (16)C15—O1—C14—C3177.2 (2)
C17—N2—C6—C511.1 (3)C2—C3—C14—O2173.74 (17)
N1—C1—C6—N21.25 (16)C4—C3—C14—O25.9 (2)
C2—C1—C6—N2178.58 (13)C2—C3—C14—O16.5 (2)
N1—C1—C6—C5179.31 (14)C4—C3—C14—O1173.82 (15)
C2—C1—C6—C50.9 (2)C14—O1—C15—C16161.8 (3)
C4—C5—C6—N2178.83 (15)C7—N2—C17—C1877.86 (19)
C4—C5—C6—C10.4 (2)C6—N2—C17—C1887.97 (18)
C1—N1—C7—N20.40 (17)N2—C17—C18—C19173.95 (13)
C1—N1—C7—C8178.76 (14)C23—N3—C19—C18108.7 (2)
C6—N2—C7—N11.19 (17)C20—N3—C19—C1868.2 (2)
C17—N2—C7—N1169.23 (14)C17—C18—C19—N363.3 (2)
C6—N2—C7—C8178.01 (13)C23—N3—C20—C217.6 (3)
C17—N2—C7—C810.0 (2)C19—N3—C20—C21175.20 (18)
N1—C7—C8—C1367.7 (2)N3—C20—C21—C2213.8 (3)
N2—C7—C8—C13111.44 (17)C20—C21—C22—C2315.0 (3)
N1—C7—C8—C9114.92 (18)C20—N3—C23—O3178.6 (3)
N2—C7—C8—C965.99 (19)C19—N3—C23—O34.3 (3)
C13—C8—C9—C100.8 (2)C20—N3—C23—C221.7 (3)
C7—C8—C9—C10176.60 (14)C19—N3—C23—C22175.38 (18)
C24—O5—C10—C93.3 (3)C21—C22—C23—O3169.5 (3)
C24—O5—C10—C11177.18 (17)C21—C22—C23—N310.8 (3)
C8—C9—C10—O5179.58 (15)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.85 (3)2.06 (3)2.879 (2)164 (2)
O1W—H1W1···N1ii0.95 (3)1.90 (3)2.8416 (19)176 (2)
O4—H1O4···O1W0.88 (3)1.80 (3)2.675 (2)169 (3)
C16—H16A···O5iii0.962.443.380 (3)166
C20—H20B···Cg40.972.863.750 (3)153
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC24H27N3O5·H2O
Mr455.50
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.7460 (8), 10.0436 (8), 12.6072 (10)
α, β, γ (°)85.737 (1), 89.684 (2), 70.238 (1)
V3)1157.91 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.32 × 0.16
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
18195, 6686, 4485
Rint0.029
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.185, 1.07
No. of reflections6686
No. of parameters312
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C8–C13 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O2i0.85 (3)2.06 (3)2.879 (2)164 (2)
O1W—H1W1···N1ii0.95 (3)1.90 (3)2.8416 (19)176 (2)
O4—H1O4···O1W0.88 (3)1.80 (3)2.675 (2)169 (3)
C16—H16A···O5iii0.962.443.380 (3)165.7
C20—H20B···Cg40.972.863.750 (3)153
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012. The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Mol­ecular Medicine, Universiti of Sains Malaysia.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDubey, A. K. & Sanyal, P. K. (2010). Vet Scan, 5, 63.  Google Scholar
First citationRao, A., Chimirri, A., Clercq, E. D., Monforte, A. M., Monforte, P., Pannecouque, C. & Zappala, M. (2002). Farmaco, 57, 819–823.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThakurdesai, P. A., Wadodkar, S. G. & Chopade, C. T. (2007). Pharmacol. Online, 1, 314–329.  Google Scholar
First citationYoon, Y. K., Ali, M. A., Wei, A. C., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, o2405.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o87-o88
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds