organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[3-Hy­dr­oxy-4-(2-hy­dr­oxy­eth­­oxy)phen­yl]-4,4,5,5-tetra­methyl-2-imidazoline-1-oxyl 3-oxide

aDepartment of Pharmacy, Lanzhou General Hospital of PLA, Key Laboratory of the Prevention and Cure for the Plateau Environment Damage, PLA 730050, Lanzhou Gansu, People's Republic of China
*Correspondence e-mail: zhengping_jia@yahoo.cn

(Received 12 December 2011; accepted 15 December 2011; online 23 December 2011)

In the title compound, C15H21N2O5, the imidazoline ring displays a twisted conformation. The mean plane of the imidazoline ring makes a dihedral angle of 22.55 (5)° with the benzene ring. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a layer parallel to the bc plane.

Related literature

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007[Soule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632-1650.]); Blasig et al. (2002[Blasig, I. E., Mertsch, K. & Haseloff, R. F. (2002). Neuropharmacology, 43, 1006-1014.]); Qin et al. (2009[Qin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511-514.]); Tanaka et al. (2007[Tanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021-2026.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For pseudorotation parameters, see: Rao et al. (1981[Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421-425.]). For related structures, see: Jing, Ma, Fan et al. (2011[Jing, L.-L., Ma, H.-P., Fan, X.-F., He, L. & Jia, Z.-P. (2011). Acta Cryst. E67, o3348.]); Jing, Ma, He et al. (2011[Jing, L.-L., Ma, H.-P., He, L., Fan, P.-C. & Jia, Z.-P. (2011). Acta Cryst. E67, o3503.]).

[Scheme 1]

Experimental

Crystal data
  • C15H21N2O5

  • Mr = 309.34

  • Monoclinic, P 21 /c

  • a = 9.787 (4) Å

  • b = 9.302 (3) Å

  • c = 16.657 (6) Å

  • β = 93.525 (3)°

  • V = 1513.5 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.979

  • 7023 measured reflections

  • 2784 independent reflections

  • 2172 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.01

  • 2784 reflections

  • 206 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.82 1.91 2.678 (2) 156
O5—H5A⋯O3ii 0.82 2.34 2.993 (2) 137
O5—H5A⋯O4ii 0.82 2.46 3.111 (2) 137
C12—H12A⋯O5iii 0.96 2.57 3.410 (3) 146
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+2, -z+2; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitronyl nitroxides, which can react with free radicals such as OH, H2O2, and O2 (Blasig et al., 2002) to protect cells from the attack of free radicals have lots of biological properities as anticancer, antiradiation and antioxidation (Qin et al., 2009; Tanaka et al., 2007; Soule et al., 2007).

The molecular structure of the title compound is shown in Fig. 1. The nitronyl nitroxide ring and the phenyl rings are twisted with respect to each other making a dihedral angle of 22.55 (5)°. The puckering parameters of the nitronyl nitroxide ring are Q(2) = 0.2645 (17) Å and ϕ = 121.9 (4)° (Cremer & Pople, 1975). The pseudorotation parameters (Rao et al., 1981) for the nitronyl nitroxide ring are P = 283.2 (2)° and τ(M) = 27.1 (1)° for the C7—N1 reference bond with the closest puckering descriptor being twisted on C8—C9. The crystal structure is stabilized by O—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For the biological activity of nitronyl nitroxides, see: Soule et al. (2007); Blasig et al. (2002); Qin et al. (2009); Tanaka et al. (2007). For puckering parameters, see: Cremer & Pople (1975). For pseudorotation parameters, see: Rao et al. (1981). For related structures, see: Jing, Ma, Fan et al. (2011); Jing, Ma, He et al. (2011).

Experimental top

To a solution of 3-hydroxy-4-(2-hydroxyethoxy)benzaldehyde (0.91 g, 5 mmol) in methanol (20 ml), 2,3-dimethyl-2,3-bis(hydroxylamino) butane (0.74 g, 5.0 mmol) was added. The mixture was stirring for 24 h at room temperature then filtered. The resulting white powder was suspended in the solution of dichloromethane (20.0 ml). An aqueous solution of NaIO4 (20 ml) was added to the reaction mixture and stirred for 15 min in an ice bath. The aqueous phase was extracted with CH2Cl2 and the combined organic layers were washed with brine (20 ml) and dried over Na2SO4. the solvent was removed to obtain a dark blue residue which was purified by flash column chromatography with the elution of dichloromethane/ methanol (10:1) to yield 0.70 g (45%) of the title compound as a dark blue powder. Single crystals of the title compound suitable for X-ray diffraction was recrystallized from hexane/dichloromethane (1:2).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—Hmethyl = 0.96 Å, C—Hmethylene = 0.97 Å, C—Haryl = 0.93 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-[3-Hydroxy-4-(2-hydroxyethoxy)phenyl]-4,4,5,5-tetramethyl-2-imidazoline-1-oxyl 3-oxide top
Crystal data top
C15H21N2O5F(000) = 660
Mr = 309.34Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2979 reflections
a = 9.787 (4) Åθ = 2.5–27.7°
b = 9.302 (3) ŵ = 0.10 mm1
c = 16.657 (6) ÅT = 296 K
β = 93.525 (3)°Block, blue
V = 1513.5 (10) Å30.25 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2784 independent reflections
Radiation source: fine-focus sealed tube2172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 118
Tmin = 0.975, Tmax = 0.979k = 1110
7023 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.519P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2784 reflectionsΔρmax = 0.21 e Å3
206 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0167 (18)
Crystal data top
C15H21N2O5V = 1513.5 (10) Å3
Mr = 309.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.787 (4) ŵ = 0.10 mm1
b = 9.302 (3) ÅT = 296 K
c = 16.657 (6) Å0.25 × 0.23 × 0.21 mm
β = 93.525 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2784 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2172 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.979Rint = 0.023
7023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
2784 reflectionsΔρmin = 0.14 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.84569 (17)0.65658 (17)0.96445 (9)0.0307 (4)
C20.90504 (16)0.61269 (17)0.89405 (9)0.0291 (4)
C30.86536 (16)0.48613 (17)0.85697 (9)0.0294 (4)
H30.90520.45770.81030.035*
C40.76514 (16)0.39970 (17)0.88925 (9)0.0287 (4)
C50.70732 (19)0.44374 (19)0.95909 (10)0.0399 (4)
H50.64090.38700.98120.048*
C60.74747 (19)0.57120 (19)0.99621 (10)0.0403 (5)
H60.70780.59951.04300.048*
C70.71796 (16)0.26786 (17)0.84938 (9)0.0276 (4)
C80.69965 (17)0.06957 (17)0.76020 (10)0.0330 (4)
C90.58253 (17)0.06193 (17)0.81818 (10)0.0330 (4)
C100.7809 (2)0.0678 (2)0.75295 (14)0.0548 (6)
H10A0.85280.05260.71720.082*
H10B0.72140.14280.73200.082*
H10C0.81990.09520.80500.082*
C110.6547 (2)0.1276 (2)0.67686 (11)0.0498 (5)
H11A0.60490.21560.68240.075*
H11B0.59720.05820.64870.075*
H11C0.73400.14560.64710.075*
C120.6080 (2)0.0420 (2)0.88796 (12)0.0538 (5)
H12A0.69640.02350.91410.081*
H12B0.60500.13890.86810.081*
H12C0.53870.02940.92570.081*
C130.44130 (18)0.0385 (2)0.77753 (12)0.0476 (5)
H13A0.37530.03080.81760.071*
H13B0.44110.04840.74640.071*
H13C0.41810.11830.74280.071*
C140.8384 (2)0.83103 (19)1.06967 (10)0.0397 (4)
H14A0.86550.76401.11230.048*
H14B0.73920.83471.06440.048*
C150.8949 (2)0.9769 (2)1.08947 (11)0.0419 (5)
H15A0.88170.99931.14530.050*
H15B0.99240.97841.08190.050*
N10.78767 (13)0.18428 (14)0.80059 (8)0.0290 (3)
N20.59145 (14)0.20965 (14)0.85370 (8)0.0328 (3)
O10.91259 (12)0.20380 (13)0.78261 (7)0.0408 (3)
O20.49072 (13)0.26599 (15)0.88724 (9)0.0549 (4)
O31.00204 (13)0.70239 (14)0.86708 (8)0.0450 (4)
H3A1.02050.67810.82170.067*
O40.89083 (12)0.78448 (12)0.99533 (7)0.0377 (3)
O50.82812 (16)1.08039 (14)1.03935 (10)0.0603 (4)
H5A0.87531.15321.03850.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (9)0.0251 (8)0.0311 (8)0.0062 (7)0.0024 (7)0.0044 (7)
C20.0272 (8)0.0273 (8)0.0335 (8)0.0041 (7)0.0065 (7)0.0005 (7)
C30.0293 (9)0.0290 (9)0.0306 (8)0.0009 (7)0.0069 (7)0.0044 (7)
C40.0304 (9)0.0261 (8)0.0297 (8)0.0029 (7)0.0026 (7)0.0020 (6)
C50.0500 (11)0.0345 (10)0.0366 (9)0.0179 (8)0.0149 (8)0.0064 (8)
C60.0525 (12)0.0372 (10)0.0330 (9)0.0155 (9)0.0182 (8)0.0096 (7)
C70.0282 (9)0.0256 (8)0.0294 (8)0.0014 (7)0.0039 (7)0.0020 (6)
C80.0319 (9)0.0275 (9)0.0393 (9)0.0010 (7)0.0008 (7)0.0103 (7)
C90.0349 (9)0.0257 (9)0.0383 (9)0.0058 (7)0.0001 (7)0.0077 (7)
C100.0427 (12)0.0354 (11)0.0864 (16)0.0029 (9)0.0069 (11)0.0212 (10)
C110.0516 (12)0.0604 (13)0.0370 (10)0.0061 (10)0.0010 (9)0.0106 (9)
C120.0684 (15)0.0405 (11)0.0520 (12)0.0144 (10)0.0018 (10)0.0039 (9)
C130.0332 (10)0.0472 (11)0.0619 (12)0.0073 (9)0.0003 (9)0.0173 (10)
C140.0469 (11)0.0383 (10)0.0350 (9)0.0117 (8)0.0114 (8)0.0096 (7)
C150.0455 (11)0.0407 (11)0.0397 (9)0.0105 (9)0.0048 (8)0.0124 (8)
N10.0261 (7)0.0283 (7)0.0329 (7)0.0013 (6)0.0037 (6)0.0048 (6)
N20.0287 (8)0.0308 (8)0.0397 (8)0.0041 (6)0.0086 (6)0.0106 (6)
O10.0285 (7)0.0448 (8)0.0504 (7)0.0046 (5)0.0128 (5)0.0120 (6)
O20.0346 (7)0.0536 (9)0.0789 (10)0.0084 (6)0.0227 (7)0.0303 (7)
O30.0498 (8)0.0398 (7)0.0478 (8)0.0199 (6)0.0229 (6)0.0127 (6)
O40.0459 (7)0.0306 (6)0.0380 (7)0.0130 (5)0.0142 (5)0.0105 (5)
O50.0572 (9)0.0358 (8)0.0862 (11)0.0076 (7)0.0097 (8)0.0098 (7)
Geometric parameters (Å, º) top
C1—O41.3591 (19)C10—H10B0.9600
C1—C61.377 (2)C10—H10C0.9600
C1—C21.401 (2)C11—H11A0.9600
C2—O31.3607 (19)C11—H11B0.9600
C2—C31.374 (2)C11—H11C0.9600
C3—C41.401 (2)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.387 (2)C12—H12C0.9600
C4—C71.456 (2)C13—H13A0.9600
C5—C61.383 (2)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—H60.9300C14—O41.436 (2)
C7—N11.341 (2)C14—C151.494 (2)
C7—N21.357 (2)C14—H14A0.9700
C8—N11.504 (2)C14—H14B0.9700
C8—C101.514 (2)C15—O51.408 (2)
C8—C111.529 (3)C15—H15A0.9700
C8—C91.545 (2)C15—H15B0.9700
C9—N21.496 (2)N1—O11.2893 (17)
C9—C131.517 (2)N2—O21.2753 (18)
C9—C121.521 (3)O3—H3A0.8200
C10—H10A0.9600O5—H5A0.8200
O4—C1—C6125.29 (15)C8—C11—H11A109.5
O4—C1—C2115.46 (14)C8—C11—H11B109.5
C6—C1—C2119.24 (14)H11A—C11—H11B109.5
O3—C2—C3124.08 (14)C8—C11—H11C109.5
O3—C2—C1115.55 (14)H11A—C11—H11C109.5
C3—C2—C1120.37 (14)H11B—C11—H11C109.5
C2—C3—C4120.29 (14)C9—C12—H12A109.5
C2—C3—H3119.9C9—C12—H12B109.5
C4—C3—H3119.9H12A—C12—H12B109.5
C5—C4—C3118.94 (15)C9—C12—H12C109.5
C5—C4—C7119.81 (14)H12A—C12—H12C109.5
C3—C4—C7121.21 (14)H12B—C12—H12C109.5
C6—C5—C4120.59 (15)C9—C13—H13A109.5
C6—C5—H5119.7C9—C13—H13B109.5
C4—C5—H5119.7H13A—C13—H13B109.5
C1—C6—C5120.57 (15)C9—C13—H13C109.5
C1—C6—H6119.7H13A—C13—H13C109.5
C5—C6—H6119.7H13B—C13—H13C109.5
N1—C7—N2107.49 (13)O4—C14—C15108.50 (14)
N1—C7—C4127.28 (14)O4—C14—H14A110.0
N2—C7—C4125.20 (14)C15—C14—H14A110.0
N1—C8—C10110.22 (14)O4—C14—H14B110.0
N1—C8—C11106.28 (14)C15—C14—H14B110.0
C10—C8—C11110.42 (16)H14A—C14—H14B108.4
N1—C8—C9100.34 (12)O5—C15—C14109.76 (15)
C10—C8—C9115.11 (15)O5—C15—H15A109.7
C11—C8—C9113.64 (15)C14—C15—H15A109.7
N2—C9—C13109.74 (14)O5—C15—H15B109.7
N2—C9—C12106.19 (14)C14—C15—H15B109.7
C13—C9—C12110.61 (16)H15A—C15—H15B108.2
N2—C9—C8100.22 (12)O1—N1—C7125.74 (13)
C13—C9—C8114.72 (14)O1—N1—C8121.41 (12)
C12—C9—C8114.44 (15)C7—N1—C8112.56 (13)
C8—C10—H10A109.5O2—N2—C7126.26 (14)
C8—C10—H10B109.5O2—N2—C9121.51 (13)
H10A—C10—H10B109.5C7—N2—C9112.12 (13)
C8—C10—H10C109.5C2—O3—H3A109.5
H10A—C10—H10C109.5C1—O4—C14117.73 (12)
H10B—C10—H10C109.5C15—O5—H5A109.5
O4—C1—C2—O31.4 (2)C11—C8—C9—C12158.75 (15)
C6—C1—C2—O3179.41 (16)O4—C14—C15—O574.74 (19)
O4—C1—C2—C3178.96 (15)N2—C7—N1—O1178.94 (14)
C6—C1—C2—C30.2 (3)C4—C7—N1—O12.8 (3)
O3—C2—C3—C4179.57 (16)N2—C7—N1—C87.18 (18)
C1—C2—C3—C40.0 (2)C4—C7—N1—C8171.10 (15)
C2—C3—C4—C50.2 (2)C10—C8—N1—O142.6 (2)
C2—C3—C4—C7177.74 (15)C11—C8—N1—O177.09 (18)
C3—C4—C5—C60.2 (3)C9—C8—N1—O1164.37 (14)
C7—C4—C5—C6177.73 (16)C10—C8—N1—C7143.25 (16)
O4—C1—C6—C5178.91 (17)C11—C8—N1—C797.09 (16)
C2—C1—C6—C50.2 (3)C9—C8—N1—C721.46 (17)
C4—C5—C6—C10.1 (3)N1—C7—N2—O2172.08 (16)
C5—C4—C7—N1155.39 (17)C4—C7—N2—O26.2 (3)
C3—C4—C7—N126.7 (2)N1—C7—N2—C911.58 (18)
C5—C4—C7—N226.6 (3)C4—C7—N2—C9170.10 (15)
C3—C4—C7—N2151.31 (16)C13—C9—N2—O238.3 (2)
N1—C8—C9—N224.92 (14)C12—C9—N2—O281.3 (2)
C10—C8—C9—N2143.18 (15)C8—C9—N2—O2159.39 (15)
C11—C8—C9—N288.10 (16)C13—C9—N2—C7145.15 (15)
N1—C8—C9—C13142.35 (15)C12—C9—N2—C795.28 (17)
C10—C8—C9—C1399.39 (19)C8—C9—N2—C724.07 (16)
C11—C8—C9—C1329.3 (2)C6—C1—O4—C144.0 (3)
N1—C8—C9—C1288.24 (16)C2—C1—O4—C14176.92 (15)
C10—C8—C9—C1230.0 (2)C15—C14—O4—C1176.62 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.912.678 (2)156
O5—H5A···O3ii0.822.342.993 (2)137
O5—H5A···O4ii0.822.463.111 (2)137
C12—H12A···O5iii0.962.573.410 (3)146
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+2, z+2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H21N2O5
Mr309.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.787 (4), 9.302 (3), 16.657 (6)
β (°) 93.525 (3)
V3)1513.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.975, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7023, 2784, 2172
Rint0.023
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.01
No. of reflections2784
No. of parameters206
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.821.912.678 (2)156
O5—H5A···O3ii0.822.342.993 (2)137
O5—H5A···O4ii0.822.463.111 (2)137
C12—H12A···O5iii0.962.573.410 (3)146
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+2, y+2, z+2; (iii) x, y1, z.
 

Acknowledgements

We thank the Natural Science Foundation of Gansu (grant No. 1107RJZA100) for financial support.

References

First citationBlasig, I. E., Mertsch, K. & Haseloff, R. F. (2002). Neuropharmacology, 43, 1006–1014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJing, L.-L., Ma, H.-P., Fan, X.-F., He, L. & Jia, Z.-P. (2011). Acta Cryst. E67, o3348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJing, L.-L., Ma, H.-P., He, L., Fan, P.-C. & Jia, Z.-P. (2011). Acta Cryst. E67, o3503.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, X. Y., Ding, G. R. & Sun, X. L. (2009). J. Chem. Res. pp. 511–514.  Web of Science CrossRef CAS Google Scholar
First citationRao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoule, B. P., Hyodo, F., Matsumoto, K., Simone, N. L., Cook, J. A., Krishna, M. C. & Mitchell, J. B. (2007). Free Radic. Biol. Med. 42, 1632–1650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, K., Furuichi, K., Kozaki, M., Suzuki, S., Shiomi, D., Sato, K., Takui, T. & Okada, K. (2007). Polyhedron, 26, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds