metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m77-m78

(2,2′-Bi­pyridine-4,4′-dicarb­­oxy­lic acid-κ2N,N′)chlorido(2,2′:6′,2′′-terpyridyl-κ3N,N′,N′′)ruthenium(II) perchlorate ethanol monosolvate monohydrate

aUniversity of Southern Denmark, Department of Physics and Chemistry, Campusvej 55, 5230 Odense, Denmark
*Correspondence e-mail: adb@chem.sdu.dk

(Received 12 December 2011; accepted 16 December 2011; online 23 December 2011)

In the title compound, [RuCl(C15H11N3)(C12H8N2O4)]ClO4·C2H5OH·H2O, the geometry of the ClN5 coordination set around the RuII atom is close to octa­hedral, but distorted on account of the limited bite angles of the polypyridyl ligands. The complexes are linked by O—H⋯O hydrogen bonds between the carboxyl groups and the crystal lattice water mol­ecules into chains along [110]. Face-to-face stacking inter­actions are formed between terpyridine ligands, with inter­planar separations of 3.66 (1) and 3.42 (1) Å, and between bipyridine-4,4′-dicarb­oxy­lic acid ligands, with inter­planar separations of 3.65 (1) and 3.72 (1) Å. Three O atoms of the perchlorate ion are each disordered equally over two positions. The hy­droxy group of the ethanol mol­ecule is also disordered over two sites with refined occupancies of 0.794 (9) and 0.206 (9).

Related literature

For background literature concerning RuII complexes containing polypyridyl ligands, see: Kalyanasundaram (1982[Kalyanasundaram, K. (1982). Coord. Chem. Rev. 46, 159-244.]); Juris et al. (1988[Juris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85-277.]); Concepcion et al. (2008[Concepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. (2008). J. Am. Chem. Soc. 130, 16462-16463.]). For some other RuII complexes containing the 2,2′-bipyridine-4,4′-dicarb­oxy­lic acid-N,N′ ligand, see: Caspar et al. (2004[Caspar, R., Musatkina, L., Tatosyan, A., Amouri, H., Gruselle, M., Guyard-Duhayon, C., Duval, R. & Cordier, C. (2004). Inorg. Chem. 43, 7986-7993.]); Eskelinen et al. (2000[Eskelinen, E., Luukkanen, S., Haukka, M., Ahlgren, M. & Pakkanen, T. A. (2000). J. Chem. Soc. Dalton Trans. pp. 2745-2752.]); Fujihara et al. (2004[Fujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172-m1174.]); Pearson et al. (2008[Pearson, P., Bond, A. M., Deacon, G. B., Forsyth, C. & Spiccia, L. (2008). Inorg. Chim. Acta, 361, 601-612.]); Philippopoulos et al. (2007[Philippopoulos, A. I., Terzis, A., Raptopoulou, C. P., Catalano, V. J. & Falaras, P. (2007). Eur. J. Inorg. Chem. pp. 5633-5644.]). Synthesis details for the precursor RuCl3(terpy) are given in Takeuchi et al. (1984[Takeuchi, K. J., Thompson, M. S., Pipes, D. W. & Meyer, T. J. (1984). Inorg. Chem. 19, 1404-1407.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C15H11N3)(C12H8N2O4)]ClO4·C2H6O·H2O

  • Mr = 777.53

  • Triclinic, [P \overline 1]

  • a = 8.7132 (5) Å

  • b = 11.9207 (7) Å

  • c = 15.9015 (8) Å

  • α = 90.913 (2)°

  • β = 104.110 (2)°

  • γ = 97.677 (2)°

  • V = 1585.44 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 180 K

  • 0.20 × 0.12 × 0.10 mm

Data collection
  • Bruker–Nonius X8 APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.792, Tmax = 0.931

  • 22443 measured reflections

  • 5961 independent reflections

  • 4978 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.112

  • S = 1.08

  • 5961 reflections

  • 462 parameters

  • 73 restraints

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1S 0.85 1.75 2.601 (5) 179
O2—H2⋯O1T 0.85 1.93 2.545 (18) 129
O4—H4⋯O1Wi 0.85 1.72 2.569 (4) 179
O1W—H1W⋯O1ii 0.85 1.87 2.720 (4) 179
O1W—H2W⋯O2Ciii 0.85 1.95 2.795 (12) 178
O1S—H1S⋯O2Aiv 0.85 2.14 2.986 (8) 180
O1T—H1T⋯O2Dv 0.85 1.84 2.69 (3) 180
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x-1, y+1, z; (iv) -x+2, -y+1, -z+1; (v) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker–Nonius, 2004)[Bruker-Nonius (2004). APEX2. Bruker-Nonius BV, Delft, The Netherlands.]; cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Complexes of RuII with polypyridyl ligands are of interest on account of their photophysical and photochemical properties (Kalyanasundaram, 1982; Juris et al., 1988). Recent work in the area of the catalysis of water oxidation has indicated the utility of single-site Ru complexes (Concepcion et al., 2008). The next step towards realising artificial photosynthesis is to anchor these systems chemically to electrode materials. The title complex is intended to embody both required aspects: hydrolysis will result in replacement of the chloride ligand by hydroxide (the substrate of reaction), while the decorating carboxylate groups can be used as functionalities for linking the complex to surfaces.

Related literature top

For background literature concerning RuII complexes containing polypyridyl ligands, see: Kalyanasundaram (1982); Juris et al. (1988); Concepcion et al. (2008). For some other RuII complexes containing the 2,2'-bipyridine-4,4'-dicarboxylic acid-N,N' ligand, see: Caspar et al. (2004); Eskelinen et al. (2000); Fujihara et al. (2004); Pearson et al. (2008); Philippopoulos et al. (2007). Synthesis details for the precursor RuCl3(terpy) are given in Takeuchi et al. (1984).

Experimental top

The precursor RuCl3(terpy) was synthesized according to Takeuchi et al. (1984). RuCl3(terpy) (345 mg, 0.08 mmol), H2(bipy-dca)H (bipy-dca = 2,2'-bipyridine-4,4'-dicarboxylic acid, 191 mg, 0.8 mmol) and triethylamine (380 ml, 2.7 mmol) were mixed in ethanol (30 ml) and water (10 ml) and heated under reflux overnight. The reaction mixture was cooled to room temperature and a small amount of black precipitate was removed by filtration. The filtrate was adjusted to pH 2 with perchloric acid (70% aqueous solution) and orange crystals were deposited over 24 h.

Refinement top

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.95 (aromatic), 0.98 (methyl) or 0.99 (methylene) Å, and with Uiso(H) = 1.2 (aromatic, methylene) or 1.5 (methyl) Ueq(C). H atoms bound to O atoms were positioned along the vector to the nearest hydrogen-bond acceptor with O—H = 0.85 Å, then allowed to ride with Uiso(H) = 1.5 Ueq(O). The perchlorate anion is modelled as disordered over two orientations with site occupancy 0.5. Atom O2A is common to both orientations. The Cl—O distances were restrained to a single refined value (1.395 Å), and O···O distances restrained to be 1.633 times that value, with standard uncertainty 0.01 Å for all restraints. All atoms were refined with anisotropic displacement parameters, with the disordered O atoms restrained to approximate isotropic behaviour. The ethanol molecule is modelled as disordered over two orientations, both in suitable positions to form hydrogen bonds to a neighbouring perchlorate anion. Atoms C1S/C1T in the two orientations were constrained to lie at the same coordinates with the same displacement parameters. All non-H atoms were refined anisotropically but restrained to approximate isotropic behaviour. The site occupancy factors for the two parts were constrained to sum to unity; the refined values are 0.794 (9):0.206 (9). The largest peak in the difference density lies close to the disordered ethanol molecule.

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids shown at 50% probability for non-H atoms.
[Figure 2] Fig. 2. Hydrogen-bonded chains running along [110]. Only one orientaton is shown for the disordered ethanol molecule and perchlorate anion.
(2,2'-Bipyridine-4,4'-dicarboxylic acid-κ2N,N')chlorido(2,2':6',2''-terpyridyl- κ3N,N',N'')ruthenium(II) perchlorate ethanol monosolvate monohydrate top
Crystal data top
[RuCl(C15H11N3)(C12H8N2O4)]ClO4·C2H6O·H2OZ = 2
Mr = 777.53F(000) = 788
Triclinic, P1Dx = 1.629 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7132 (5) ÅCell parameters from 8777 reflections
b = 11.9207 (7) Åθ = 2.5–25.5°
c = 15.9015 (8) ŵ = 0.73 mm1
α = 90.913 (2)°T = 180 K
β = 104.110 (2)°Block, brown
γ = 97.677 (2)°0.20 × 0.12 × 0.10 mm
V = 1585.44 (15) Å3
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
5961 independent reflections
Radiation source: fine-focus sealed tube4978 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
thin–slice ω and ϕ scansθmax = 25.7°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.792, Tmax = 0.931k = 1414
22443 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0608P)2 + 1.3719P]
where P = (Fo2 + 2Fc2)/3
5961 reflections(Δ/σ)max = 0.001
462 parametersΔρmax = 0.91 e Å3
73 restraintsΔρmin = 0.74 e Å3
Crystal data top
[RuCl(C15H11N3)(C12H8N2O4)]ClO4·C2H6O·H2Oγ = 97.677 (2)°
Mr = 777.53V = 1585.44 (15) Å3
Triclinic, P1Z = 2
a = 8.7132 (5) ÅMo Kα radiation
b = 11.9207 (7) ŵ = 0.73 mm1
c = 15.9015 (8) ÅT = 180 K
α = 90.913 (2)°0.20 × 0.12 × 0.10 mm
β = 104.110 (2)°
Data collection top
Bruker–Nonius X8 APEXII CCD
diffractometer
5961 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4978 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.931Rint = 0.031
22443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04073 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.91 e Å3
5961 reflectionsΔρmin = 0.74 e Å3
462 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.30449 (3)0.52232 (3)0.229857 (17)0.03172 (12)
Cl10.38277 (11)0.64610 (8)0.12517 (6)0.0394 (2)
O10.6470 (4)0.9485 (3)0.5612 (2)0.0648 (9)
O20.5089 (4)0.8261 (3)0.6277 (2)0.0655 (9)
H20.55780.86270.67510.098*
O30.0613 (4)0.3562 (3)0.59862 (19)0.0588 (9)
O40.0105 (4)0.1927 (3)0.5215 (2)0.0648 (9)
H40.04930.16920.56320.097*
N10.3926 (3)0.6406 (3)0.33304 (19)0.0334 (7)
N20.2417 (3)0.4362 (3)0.32745 (19)0.0329 (7)
N30.5009 (4)0.4411 (3)0.23588 (19)0.0348 (7)
N40.2151 (4)0.4007 (3)0.14012 (18)0.0345 (7)
N50.0728 (4)0.5593 (3)0.18561 (19)0.0361 (7)
C10.4864 (5)0.7410 (3)0.3332 (2)0.0404 (9)
H1A0.51560.76230.28130.048*
C20.5406 (5)0.8132 (3)0.4058 (3)0.0409 (9)
H2A0.60780.88230.40400.049*
C30.4968 (5)0.7846 (3)0.4814 (2)0.0374 (9)
C40.4015 (4)0.6820 (3)0.4819 (2)0.0365 (8)
H4A0.36990.66030.53310.044*
C50.3525 (4)0.6115 (3)0.4079 (2)0.0316 (8)
C60.5576 (5)0.8626 (4)0.5610 (3)0.0463 (10)
C70.2617 (4)0.4974 (3)0.4037 (2)0.0317 (8)
C80.2015 (4)0.4523 (3)0.4706 (2)0.0329 (8)
H8A0.21240.49750.52200.039*
C90.1257 (4)0.3418 (3)0.4633 (2)0.0347 (8)
C100.1133 (4)0.2776 (3)0.3876 (2)0.0370 (8)
H10A0.06540.20060.38140.044*
C110.1712 (4)0.3272 (3)0.3219 (2)0.0376 (9)
H11A0.16130.28270.27020.045*
C120.0563 (5)0.2980 (3)0.5357 (2)0.0395 (9)
C130.6499 (4)0.4691 (3)0.2879 (2)0.0384 (9)
H13A0.67130.53520.32540.046*
C140.7705 (5)0.4068 (4)0.2889 (3)0.0450 (10)
H14A0.87340.42900.32650.054*
C150.7406 (5)0.3105 (4)0.2340 (3)0.0480 (10)
H15A0.82190.26460.23450.058*
C160.5917 (5)0.2826 (4)0.1791 (3)0.0448 (10)
H16A0.57040.21840.13970.054*
C170.4732 (5)0.3474 (3)0.1807 (2)0.0374 (8)
C180.3086 (5)0.3238 (3)0.1254 (2)0.0388 (9)
C190.2449 (5)0.2350 (4)0.0640 (3)0.0482 (10)
H19A0.30950.18130.05260.058*
C200.0859 (5)0.2262 (4)0.0198 (3)0.0540 (11)
H20A0.04050.16500.02160.065*
C210.0074 (5)0.3047 (4)0.0351 (3)0.0467 (10)
H21A0.11660.29820.00440.056*
C220.0595 (4)0.3930 (3)0.0957 (2)0.0380 (9)
C230.0195 (4)0.4848 (3)0.1210 (2)0.0370 (9)
C240.1768 (5)0.4973 (4)0.0825 (3)0.0464 (10)
H24A0.23960.44510.03750.056*
C250.2408 (5)0.5863 (4)0.1104 (3)0.0516 (11)
H25A0.34830.59620.08460.062*
C260.1489 (5)0.6602 (4)0.1753 (3)0.0495 (11)
H26A0.19240.72140.19530.059*
C270.0078 (5)0.6455 (3)0.2118 (2)0.0402 (9)
H27A0.07130.69760.25670.048*
Cl20.8935 (2)0.01878 (13)0.17808 (11)0.0846 (4)
O2A1.0065 (6)0.1063 (4)0.2176 (3)0.1302 (19)
O2B0.8067 (15)0.0204 (11)0.0971 (6)0.166 (5)0.50
O2C0.9907 (13)0.0746 (7)0.1832 (8)0.135 (4)0.50
O2D0.8001 (17)0.0137 (14)0.2390 (9)0.233 (12)0.50
O2E0.8421 (13)0.0554 (9)0.2330 (7)0.116 (4)0.50
O2F0.9463 (14)0.0316 (9)0.1130 (7)0.143 (4)0.50
O2G0.7602 (10)0.0775 (8)0.1339 (7)0.120 (4)0.50
O1W0.1323 (4)0.8776 (3)0.3538 (2)0.0649 (9)
H1W0.20190.93170.38040.097*
H2W0.08820.89060.30170.097*
O1S0.6600 (6)0.9364 (4)0.7731 (3)0.0729 (18)0.794 (9)
H1S0.75500.92430.77570.109*0.794 (9)
C1S0.6167 (16)1.0330 (11)0.8050 (8)0.181 (5)0.794 (9)
H2S0.50031.02990.78020.217*0.794 (9)
H3S0.66941.09810.77960.217*0.794 (9)
O1T0.485 (3)0.9761 (15)0.7379 (11)0.087 (9)0.206 (9)
H1T0.39540.98770.74530.131*0.206 (9)
C1T0.6167 (16)1.0330 (11)0.8050 (8)0.181 (5)0.206 (9)
H2T0.64211.10710.78050.217*0.206 (9)
H3T0.70590.99090.80190.217*0.206 (9)
C2S0.6458 (13)1.0616 (8)0.8968 (6)0.156 (4)
H4S0.60631.13320.90490.233*
H5S0.76091.06960.92360.233*
H6S0.59001.00130.92410.233*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02898 (18)0.0418 (2)0.02243 (17)0.00185 (12)0.00673 (11)0.00504 (12)
Cl10.0347 (5)0.0531 (6)0.0295 (5)0.0012 (4)0.0101 (4)0.0001 (4)
O10.091 (3)0.0474 (18)0.0447 (18)0.0189 (18)0.0104 (17)0.0117 (14)
O20.097 (3)0.0547 (19)0.0401 (18)0.0176 (18)0.0235 (17)0.0175 (14)
O30.078 (2)0.0578 (19)0.0398 (17)0.0216 (16)0.0298 (16)0.0117 (14)
O40.093 (3)0.0508 (19)0.0516 (19)0.0214 (17)0.0374 (18)0.0060 (14)
N10.0284 (15)0.0400 (17)0.0299 (16)0.0002 (13)0.0063 (12)0.0012 (13)
N20.0285 (16)0.0404 (17)0.0283 (15)0.0014 (13)0.0067 (12)0.0052 (13)
N30.0321 (16)0.0452 (18)0.0262 (15)0.0002 (14)0.0086 (13)0.0022 (13)
N40.0328 (16)0.0453 (18)0.0241 (15)0.0017 (14)0.0089 (12)0.0052 (13)
N50.0349 (17)0.0479 (19)0.0252 (15)0.0008 (14)0.0106 (13)0.0001 (13)
C10.041 (2)0.044 (2)0.033 (2)0.0052 (18)0.0091 (17)0.0013 (17)
C20.039 (2)0.038 (2)0.040 (2)0.0062 (17)0.0068 (17)0.0034 (17)
C30.040 (2)0.037 (2)0.033 (2)0.0024 (17)0.0058 (16)0.0048 (16)
C40.041 (2)0.039 (2)0.0299 (19)0.0023 (17)0.0100 (16)0.0026 (15)
C50.0281 (18)0.0376 (19)0.0283 (18)0.0016 (15)0.0073 (14)0.0015 (15)
C60.058 (3)0.041 (2)0.036 (2)0.002 (2)0.0069 (19)0.0059 (17)
C70.0280 (18)0.040 (2)0.0242 (17)0.0028 (15)0.0021 (14)0.0053 (15)
C80.0331 (19)0.039 (2)0.0242 (17)0.0001 (16)0.0053 (14)0.0048 (14)
C90.0340 (19)0.043 (2)0.0250 (18)0.0026 (16)0.0052 (15)0.0005 (15)
C100.039 (2)0.034 (2)0.036 (2)0.0003 (16)0.0081 (16)0.0031 (16)
C110.039 (2)0.041 (2)0.033 (2)0.0010 (17)0.0109 (16)0.0075 (16)
C120.039 (2)0.045 (2)0.032 (2)0.0023 (17)0.0079 (16)0.0006 (17)
C130.037 (2)0.047 (2)0.0283 (19)0.0020 (17)0.0062 (16)0.0014 (16)
C140.034 (2)0.058 (3)0.040 (2)0.0058 (19)0.0040 (17)0.0020 (19)
C150.042 (2)0.055 (3)0.049 (2)0.010 (2)0.0122 (19)0.000 (2)
C160.045 (2)0.049 (2)0.040 (2)0.0041 (19)0.0134 (18)0.0054 (18)
C170.040 (2)0.042 (2)0.0299 (19)0.0008 (17)0.0109 (16)0.0029 (16)
C180.039 (2)0.047 (2)0.0296 (19)0.0006 (17)0.0102 (16)0.0048 (16)
C190.053 (3)0.050 (2)0.040 (2)0.002 (2)0.012 (2)0.0126 (19)
C200.054 (3)0.058 (3)0.041 (2)0.005 (2)0.002 (2)0.016 (2)
C210.042 (2)0.057 (3)0.033 (2)0.007 (2)0.0036 (17)0.0053 (18)
C220.033 (2)0.052 (2)0.0259 (19)0.0044 (17)0.0073 (15)0.0001 (16)
C230.033 (2)0.052 (2)0.0246 (18)0.0035 (17)0.0100 (15)0.0006 (16)
C240.034 (2)0.072 (3)0.032 (2)0.002 (2)0.0100 (17)0.0024 (19)
C250.034 (2)0.084 (3)0.041 (2)0.013 (2)0.0152 (19)0.009 (2)
C260.044 (2)0.067 (3)0.042 (2)0.014 (2)0.018 (2)0.002 (2)
C270.040 (2)0.052 (2)0.032 (2)0.0059 (18)0.0151 (17)0.0007 (17)
Cl20.1002 (12)0.0709 (9)0.0767 (10)0.0131 (8)0.0115 (9)0.0187 (8)
O2A0.132 (4)0.099 (3)0.133 (4)0.013 (3)0.002 (3)0.039 (3)
O2B0.162 (9)0.191 (10)0.115 (8)0.046 (8)0.030 (7)0.002 (7)
O2C0.172 (8)0.108 (6)0.114 (7)0.063 (6)0.008 (6)0.021 (6)
O2D0.238 (15)0.264 (15)0.222 (14)0.041 (10)0.102 (10)0.045 (10)
O2E0.107 (7)0.117 (7)0.123 (7)0.006 (6)0.031 (6)0.044 (6)
O2F0.192 (9)0.122 (7)0.130 (8)0.062 (7)0.049 (7)0.053 (6)
O2G0.112 (7)0.122 (7)0.129 (7)0.068 (6)0.012 (6)0.000 (6)
O1W0.084 (2)0.060 (2)0.0427 (17)0.0258 (17)0.0212 (16)0.0058 (15)
O1S0.090 (4)0.064 (3)0.055 (3)0.007 (2)0.002 (2)0.023 (2)
C1S0.207 (9)0.176 (8)0.162 (8)0.027 (7)0.049 (7)0.059 (7)
O1T0.13 (2)0.062 (12)0.055 (11)0.032 (11)0.017 (11)0.030 (9)
C1T0.207 (9)0.176 (8)0.162 (8)0.027 (7)0.049 (7)0.059 (7)
C2S0.207 (8)0.136 (6)0.107 (6)0.059 (6)0.008 (5)0.060 (5)
Geometric parameters (Å, º) top
Ru1—N12.072 (3)C14—C151.387 (6)
Ru1—N22.019 (3)C14—H14A0.950
Ru1—N32.060 (3)C15—C161.371 (6)
Ru1—N41.959 (3)C15—H15A0.950
Ru1—N52.079 (3)C16—C171.374 (6)
Ru1—Cl12.4035 (9)C16—H16A0.950
O1—C61.201 (5)C17—C181.476 (5)
O2—C61.297 (5)C18—C191.388 (5)
O2—H20.850C19—C201.381 (6)
O3—C121.197 (5)C19—H19A0.950
O4—C121.303 (5)C20—C211.374 (6)
O4—H40.850C20—H20A0.950
N1—C11.356 (5)C21—C221.382 (6)
N1—C51.357 (4)C21—H21A0.950
N2—C111.353 (5)C22—C231.467 (6)
N2—C71.367 (4)C23—C241.386 (5)
N3—C131.354 (5)C24—C251.378 (6)
N3—C171.367 (5)C24—H24A0.950
N4—C221.357 (5)C25—C261.364 (6)
N4—C181.358 (5)C25—H25A0.950
N5—C271.343 (5)C26—C271.384 (6)
N5—C231.368 (5)C26—H26A0.950
C1—C21.374 (5)C27—H27A0.950
C1—H1A0.950Cl2—O2A1.362 (4)
C2—C31.382 (5)Cl2—O2B1.327 (7)
C2—H2A0.950Cl2—O2C1.478 (7)
C3—C41.384 (5)Cl2—O2D1.436 (8)
C3—C61.501 (5)Cl2—O2E1.362 (7)
C4—C51.379 (5)Cl2—O2F1.389 (7)
C4—H4A0.950Cl2—O2G1.472 (6)
C5—C71.471 (5)O1W—H1W0.850
C7—C81.383 (5)O1W—H2W0.850
C8—C91.381 (5)O1S—C1S1.384 (14)
C8—H8A0.950O1S—H1S0.850
C9—C101.389 (5)C1S—C2S1.447 (13)
C9—C121.497 (5)C1S—H2S0.990
C10—C111.376 (5)C1S—H3S0.990
C10—H10A0.950O1T—H1T0.850
C11—H11A0.950C2S—H4S0.980
C13—C141.363 (5)C2S—H5S0.980
C13—H13A0.950C2S—H6S0.980
N4—Ru1—N295.74 (12)C14—C13—H13A118.5
N4—Ru1—N379.16 (12)C13—C14—C15119.0 (4)
N2—Ru1—N393.30 (12)C13—C14—H14A120.5
N4—Ru1—N1174.59 (12)C15—C14—H14A120.5
N2—Ru1—N178.86 (12)C16—C15—C14118.9 (4)
N3—Ru1—N1100.75 (11)C16—C15—H15A120.6
N4—Ru1—N579.40 (12)C14—C15—H15A120.6
N2—Ru1—N590.51 (11)C15—C16—C17120.2 (4)
N3—Ru1—N5158.49 (12)C15—C16—H16A119.9
N1—Ru1—N5100.76 (12)C17—C16—H16A119.9
N4—Ru1—Cl191.15 (9)N3—C17—C16121.2 (4)
N2—Ru1—Cl1172.75 (9)N3—C17—C18114.3 (3)
N3—Ru1—Cl190.22 (9)C16—C17—C18124.5 (4)
N1—Ru1—Cl194.26 (9)N4—C18—C19119.8 (4)
N5—Ru1—Cl188.52 (8)N4—C18—C17112.6 (3)
C6—O2—H2113.7C19—C18—C17127.6 (4)
C12—O4—H4111.5C20—C19—C18118.8 (4)
C1—N1—C5117.9 (3)C20—C19—H19A120.6
C1—N1—Ru1126.9 (2)C18—C19—H19A120.6
C5—N1—Ru1115.2 (2)C21—C20—C19120.8 (4)
C11—N2—C7117.8 (3)C21—C20—H20A119.6
C11—N2—Ru1126.0 (2)C19—C20—H20A119.6
C7—N2—Ru1116.1 (2)C20—C21—C22119.2 (4)
C13—N3—C17117.8 (3)C20—C21—H21A120.4
C13—N3—Ru1127.7 (3)C22—C21—H21A120.4
C17—N3—Ru1114.5 (2)N4—C22—C21120.0 (4)
C22—N4—C18121.4 (3)N4—C22—C23112.7 (3)
C22—N4—Ru1119.3 (3)C21—C22—C23127.4 (4)
C18—N4—Ru1119.3 (2)N5—C23—C24121.2 (4)
C27—N5—C23118.6 (3)N5—C23—C22115.5 (3)
C27—N5—Ru1128.3 (3)C24—C23—C22123.3 (4)
C23—N5—Ru1113.1 (2)C25—C24—C23119.2 (4)
N1—C1—C2122.4 (4)C25—C24—H24A120.4
N1—C1—H1A118.8C23—C24—H24A120.4
C2—C1—H1A118.8C26—C25—C24119.6 (4)
C1—C2—C3119.6 (4)C26—C25—H25A120.2
C1—C2—H2A120.2C24—C25—H25A120.2
C3—C2—H2A120.2C25—C26—C27119.7 (4)
C2—C3—C4118.4 (3)C25—C26—H26A120.2
C2—C3—C6119.6 (4)C27—C26—H26A120.2
C4—C3—C6121.9 (3)N5—C27—C26121.8 (4)
C5—C4—C3119.8 (3)N5—C27—H27A119.1
C5—C4—H4A120.1C26—C27—H27A119.1
C3—C4—H4A120.1O2B—Cl2—O2E119.5 (8)
N1—C5—C4121.8 (3)O2B—Cl2—O2A123.0 (6)
N1—C5—C7114.2 (3)O2E—Cl2—O2A114.9 (5)
C4—C5—C7123.9 (3)O2E—Cl2—O2F114.3 (6)
O1—C6—O2124.8 (4)O2A—Cl2—O2F108.7 (5)
O1—C6—C3121.4 (4)O2B—Cl2—O2D113.6 (7)
O2—C6—C3113.8 (4)O2A—Cl2—O2D106.4 (6)
N2—C7—C8121.2 (3)O2E—Cl2—O2G109.1 (6)
N2—C7—C5114.6 (3)O2A—Cl2—O2G102.5 (4)
C8—C7—C5124.2 (3)O2F—Cl2—O2G106.3 (6)
C9—C8—C7120.5 (3)O2B—Cl2—O2C108.5 (6)
C9—C8—H8A119.8O2A—Cl2—O2C101.1 (5)
C7—C8—H8A119.8O2D—Cl2—O2C101.5 (6)
C8—C9—C10118.3 (3)H1W—O1W—H2W113.9
C8—C9—C12118.7 (3)C1S—O1S—H1S125.9
C10—C9—C12123.0 (3)O1S—C1S—C2S122.9 (9)
C11—C10—C9119.1 (3)O1S—C1S—H2S106.6
C11—C10—H10A120.4C2S—C1S—H2S106.6
C9—C10—H10A120.4O1S—C1S—H3S106.6
N2—C11—C10123.0 (3)C2S—C1S—H3S106.6
N2—C11—H11A118.5H2S—C1S—H3S106.6
C10—C11—H11A118.5C1S—C2S—H4S109.5
O3—C12—O4125.1 (4)C1S—C2S—H5S109.5
O3—C12—C9122.1 (4)H4S—C2S—H5S109.5
O4—C12—C9112.8 (3)C1S—C2S—H6S109.5
N3—C13—C14122.9 (4)H4S—C2S—H6S109.5
N3—C13—H13A118.5H5S—C2S—H6S109.5
N4—Ru1—N1—C1169.1 (11)C4—C3—C6—O21.8 (6)
N2—Ru1—N1—C1171.8 (3)C11—N2—C7—C84.7 (5)
N3—Ru1—N1—C180.5 (3)Ru1—N2—C7—C8170.4 (3)
N5—Ru1—N1—C199.8 (3)C11—N2—C7—C5174.5 (3)
Cl1—Ru1—N1—C110.5 (3)Ru1—N2—C7—C510.4 (4)
N4—Ru1—N1—C59.8 (14)N1—C5—C7—N24.2 (4)
N2—Ru1—N1—C57.1 (2)C4—C5—C7—N2172.5 (3)
N3—Ru1—N1—C598.4 (3)N1—C5—C7—C8176.6 (3)
N5—Ru1—N1—C581.3 (3)C4—C5—C7—C86.7 (6)
Cl1—Ru1—N1—C5170.6 (2)N2—C7—C8—C93.0 (5)
N4—Ru1—N2—C113.9 (3)C5—C7—C8—C9176.2 (3)
N3—Ru1—N2—C1175.5 (3)C7—C8—C9—C100.7 (5)
N1—Ru1—N2—C11175.8 (3)C7—C8—C9—C12177.5 (3)
N5—Ru1—N2—C1183.3 (3)C8—C9—C10—C112.4 (5)
Cl1—Ru1—N2—C11165.6 (5)C12—C9—C10—C11175.7 (3)
N4—Ru1—N2—C7170.7 (3)C7—N2—C11—C103.0 (5)
N3—Ru1—N2—C7109.8 (3)Ru1—N2—C11—C10171.6 (3)
N1—Ru1—N2—C79.5 (2)C9—C10—C11—N20.6 (6)
N5—Ru1—N2—C791.3 (3)C8—C9—C12—O31.8 (6)
Cl1—Ru1—N2—C79.1 (8)C10—C9—C12—O3176.3 (4)
N4—Ru1—N3—C13178.9 (3)C8—C9—C12—O4179.4 (4)
N2—Ru1—N3—C1385.9 (3)C10—C9—C12—O42.6 (5)
N1—Ru1—N3—C136.6 (3)C17—N3—C13—C141.7 (6)
N5—Ru1—N3—C13174.3 (3)Ru1—N3—C13—C14177.5 (3)
Cl1—Ru1—N3—C1387.7 (3)N3—C13—C14—C150.3 (6)
N4—Ru1—N3—C171.9 (2)C13—C14—C15—C161.6 (6)
N2—Ru1—N3—C1793.3 (3)C14—C15—C16—C172.1 (6)
N1—Ru1—N3—C17172.6 (2)C13—N3—C17—C161.1 (5)
N5—Ru1—N3—C176.5 (5)Ru1—N3—C17—C16178.2 (3)
Cl1—Ru1—N3—C1793.0 (2)C13—N3—C17—C18179.1 (3)
N2—Ru1—N4—C2287.8 (3)Ru1—N3—C17—C181.6 (4)
N3—Ru1—N4—C22179.9 (3)C15—C16—C17—N30.7 (6)
N1—Ru1—N4—C2290.5 (13)C15—C16—C17—C18179.0 (4)
N5—Ru1—N4—C221.6 (3)C22—N4—C18—C190.3 (6)
Cl1—Ru1—N4—C2289.9 (3)Ru1—N4—C18—C19177.8 (3)
N2—Ru1—N4—C1890.3 (3)C22—N4—C18—C17179.8 (3)
N3—Ru1—N4—C182.0 (3)Ru1—N4—C18—C171.7 (4)
N1—Ru1—N4—C1887.6 (13)N3—C17—C18—N40.0 (5)
N5—Ru1—N4—C18179.7 (3)C16—C17—C18—N4179.7 (4)
Cl1—Ru1—N4—C1892.0 (3)N3—C17—C18—C19179.5 (4)
N4—Ru1—N5—C27178.7 (3)C16—C17—C18—C190.3 (7)
N2—Ru1—N5—C2785.5 (3)N4—C18—C19—C200.8 (6)
N3—Ru1—N5—C27174.1 (3)C17—C18—C19—C20178.6 (4)
N1—Ru1—N5—C276.8 (3)C18—C19—C20—C211.1 (7)
Cl1—Ru1—N5—C2787.3 (3)C19—C20—C21—C220.2 (7)
N4—Ru1—N5—C230.4 (2)C18—N4—C22—C211.1 (5)
N2—Ru1—N5—C2395.3 (2)Ru1—N4—C22—C21177.0 (3)
N3—Ru1—N5—C235.0 (5)C18—N4—C22—C23179.5 (3)
N1—Ru1—N5—C23174.1 (2)Ru1—N4—C22—C232.4 (4)
Cl1—Ru1—N5—C2391.8 (2)C20—C21—C22—N40.8 (6)
C5—N1—C1—C20.2 (6)C20—C21—C22—C23179.9 (4)
Ru1—N1—C1—C2179.1 (3)C27—N5—C23—C240.3 (5)
N1—C1—C2—C31.2 (6)Ru1—N5—C23—C24178.9 (3)
C1—C2—C3—C41.3 (6)C27—N5—C23—C22179.9 (3)
C1—C2—C3—C6179.2 (4)Ru1—N5—C23—C220.7 (4)
C2—C3—C4—C50.1 (6)N4—C22—C23—N52.0 (5)
C6—C3—C4—C5178.0 (4)C21—C22—C23—N5177.4 (4)
C1—N1—C5—C41.5 (5)N4—C22—C23—C24177.7 (3)
Ru1—N1—C5—C4179.5 (3)C21—C22—C23—C243.0 (6)
C1—N1—C5—C7175.3 (3)N5—C23—C24—C250.3 (6)
Ru1—N1—C5—C73.7 (4)C22—C23—C24—C25179.9 (4)
C3—C4—C5—N11.3 (6)C23—C24—C25—C260.2 (6)
C3—C4—C5—C7175.1 (3)C24—C25—C26—C270.6 (6)
C2—C3—C6—O11.8 (6)C23—N5—C27—C260.1 (5)
C4—C3—C6—O1176.0 (4)Ru1—N5—C27—C26179.2 (3)
C2—C3—C6—O2179.6 (4)C25—C26—C27—N50.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1S0.851.752.601 (5)179
O2—H2···O1T0.851.932.545 (18)129
O4—H4···O1Wi0.851.722.569 (4)179
O1W—H1W···O1ii0.851.872.720 (4)179
O1W—H2W···O2Ciii0.851.952.795 (12)178
O1S—H1S···O2Aiv0.852.142.986 (8)180
O1T—H1T···O2Dv0.851.842.69 (3)180
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x1, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[RuCl(C15H11N3)(C12H8N2O4)]ClO4·C2H6O·H2O
Mr777.53
Crystal system, space groupTriclinic, P1
Temperature (K)180
a, b, c (Å)8.7132 (5), 11.9207 (7), 15.9015 (8)
α, β, γ (°)90.913 (2), 104.110 (2), 97.677 (2)
V3)1585.44 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.20 × 0.12 × 0.10
Data collection
DiffractometerBruker–Nonius X8 APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.792, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
22443, 5961, 4978
Rint0.031
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.08
No. of reflections5961
No. of parameters462
No. of restraints73
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 0.74

Computer programs: APEX2 (Bruker–Nonius, 2004), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1S0.851.752.601 (5)179.2
O2—H2···O1T0.851.932.545 (18)128.6
O4—H4···O1Wi0.851.722.569 (4)178.6
O1W—H1W···O1ii0.851.872.720 (4)179.3
O1W—H2W···O2Ciii0.851.952.795 (12)178.2
O1S—H1S···O2Aiv0.852.142.986 (8)180.0
O1T—H1T···O2Dv0.851.842.69 (3)179.7
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x1, y+1, z; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

We are grateful to the Danish Natural Sciences Research Council and the Carlsberg Foundation for provision of the X-ray equipment.

References

First citationBruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2004). APEX2. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationCaspar, R., Musatkina, L., Tatosyan, A., Amouri, H., Gruselle, M., Guyard-Duhayon, C., Duval, R. & Cordier, C. (2004). Inorg. Chem. 43, 7986–7993.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationConcepcion, J. J., Jurss, J. W., Templeton, J. L. & Meyer, T. J. (2008). J. Am. Chem. Soc. 130, 16462–16463.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEskelinen, E., Luukkanen, S., Haukka, M., Ahlgren, M. & Pakkanen, T. A. (2000). J. Chem. Soc. Dalton Trans. pp. 2745–2752.  Web of Science CSD CrossRef Google Scholar
First citationFujihara, T., Kobayashi, A., Iwai, M. & Nagasawa, A. (2004). Acta Cryst. E60, m1172–m1174.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJuris, A., Balzani, V., Barigelletti, F., Campagna, S., Belser, P. & von Zelewsky, A. (1988). Coord. Chem. Rev. 84, 85–277.  CrossRef CAS Web of Science Google Scholar
First citationKalyanasundaram, K. (1982). Coord. Chem. Rev. 46, 159–244.  CrossRef CAS Web of Science Google Scholar
First citationPearson, P., Bond, A. M., Deacon, G. B., Forsyth, C. & Spiccia, L. (2008). Inorg. Chim. Acta, 361, 601–612.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhilippopoulos, A. I., Terzis, A., Raptopoulou, C. P., Catalano, V. J. & Falaras, P. (2007). Eur. J. Inorg. Chem. pp. 5633–5644.  CrossRef Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, K. J., Thompson, M. S., Pipes, D. W. & Meyer, T. J. (1984). Inorg. Chem. 19, 1404–1407.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m77-m78
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds