organic compounds
5,6-Dimethylpyrazine-2,3-dicarboxylic acid
aBasis Department, Jilin Business and Technology College, Hao Yue Road No. 1606, Changchun, Jilin, People's Republic of China
*Correspondence e-mail: liufuhong123@gmail.com
The 8H8N2O4, consists of one complete molecule and a second molecule generated by the application of twofold axis. The mean planes of the two carboxyl groups attached to the pyrazine ring at neighboring positions are twisted by 10.8 (1) and 87.9 (1)° in the complete molecule and 43.0 (1)° in the symmetry-generated molecule. The crystal packing features O—H⋯N hydrogen bonds, which link the molecules into layers along [101].
of the title compound, CRelated literature
For the synthesis of the title compound, see Tsuda & Fujishima (1981). For the structure of the hydrate of the title compound, see Vishweshwar et al. (2001, 2004). For a related compound containing pyrazine-2,3-dicarboxylic acid, see: Alborés & Rentschler (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811052366/jj2111sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811052366/jj2111Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811052366/jj2111Isup3.cml
The compound was synthesized by a reported reaction (Tsuda & Fujishima, 1981) and crystallized by a solvent-thermal reaction as follows: 196.16 mg (1 mmol) C8H8N2O4 and 10 mlN, N-dimethylformamide (DMF) was added to a 20 ml Teflon vessel. The vessel was sealed and placed inside a stainless steel autoclave, which was kept at 130°C for 72 h. Crystals suitable for single-crystal analysis were formed upon standing.
H atoms bonded to O atom were located in a Fourier difference map and refined with distance restraints of O—H = 0.820 Å, and with Uiso(H) = 1.5Ueq(O). The remaining H atoms were positioned geometrically and refined using the riding model, with C—H = 0.960 Å and with Uiso(H) = 1.5 times Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).C8H8N2O4 | F(000) = 1224 |
Mr = 196.16 | Dx = 1.547 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 10631 reflections |
a = 15.873 (3) Å | θ = 3.4–27.8° |
b = 14.057 (3) Å | µ = 0.13 mm−1 |
c = 11.991 (2) Å | T = 293 K |
β = 109.21 (3)° | Block, colourless |
V = 2526.6 (9) Å3 | 0.30 × 0.25 × 0.20 mm |
Z = 12 |
Rigaku SCX-mini diffractometer | 1937 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.043 |
Graphite monochromator | θmax = 25.0°, θmin = 3.4° |
ω scans | h = −18→18 |
10832 measured reflections | k = −16→16 |
2230 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0617P)2 + 3.0039P] where P = (Fo2 + 2Fc2)/3 |
2230 reflections | (Δ/σ)max < 0.001 |
196 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C8H8N2O4 | V = 2526.6 (9) Å3 |
Mr = 196.16 | Z = 12 |
Monoclinic, C2/c | Mo Kα radiation |
a = 15.873 (3) Å | µ = 0.13 mm−1 |
b = 14.057 (3) Å | T = 293 K |
c = 11.991 (2) Å | 0.30 × 0.25 × 0.20 mm |
β = 109.21 (3)° |
Rigaku SCX-mini diffractometer | 1937 reflections with I > 2σ(I) |
10832 measured reflections | Rint = 0.043 |
2230 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.63 e Å−3 |
2230 reflections | Δρmin = −0.39 e Å−3 |
196 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.28005 (14) | 0.38972 (11) | 0.78999 (16) | 0.0595 (6) | |
H1 | 0.2587 | 0.3468 | 0.7428 | 0.089* | |
O2 | 0.17345 (15) | 0.47314 (13) | 0.66739 (18) | 0.0745 (7) | |
O3 | 0.20112 (11) | 0.67092 (14) | 0.57803 (14) | 0.0482 (5) | |
H3 | 0.1591 | 0.6847 | 0.5190 | 0.072* | |
O4 | 0.09881 (12) | 0.67291 (15) | 0.66709 (16) | 0.0567 (5) | |
O5 | 0.40546 (13) | 0.35937 (12) | 0.02848 (13) | 0.0474 (5) | |
H5 | 0.3815 | 0.4101 | 0.0026 | 0.071* | |
O6 | 0.40159 (11) | 0.41517 (11) | 0.20060 (15) | 0.0439 (4) | |
N1 | 0.34098 (12) | 0.54156 (12) | 0.92729 (14) | 0.0318 (4) | |
N2 | 0.28289 (12) | 0.72021 (12) | 0.84036 (15) | 0.0325 (4) | |
N3 | 0.43566 (12) | 0.18493 (12) | 0.14017 (14) | 0.0311 (4) | |
C1 | 0.23855 (16) | 0.46795 (15) | 0.75119 (19) | 0.0362 (5) | |
C2 | 0.27656 (14) | 0.55308 (14) | 0.82342 (17) | 0.0291 (5) | |
C3 | 0.37616 (14) | 0.61868 (15) | 0.98780 (18) | 0.0325 (5) | |
C4 | 0.44770 (18) | 0.60708 (18) | 1.1037 (2) | 0.0491 (7) | |
H4A | 0.4231 | 0.6160 | 1.1662 | 0.074* | |
H4B | 0.4936 | 0.6534 | 1.1110 | 0.074* | |
H4C | 0.4726 | 0.5444 | 1.1090 | 0.074* | |
C5 | 0.17291 (15) | 0.66150 (14) | 0.66717 (19) | 0.0324 (5) | |
C6 | 0.24752 (13) | 0.64193 (14) | 0.78045 (17) | 0.0276 (5) | |
C7 | 0.34688 (14) | 0.70945 (15) | 0.94401 (18) | 0.0315 (5) | |
C8 | 0.38542 (18) | 0.79617 (17) | 1.0119 (2) | 0.0489 (7) | |
H8A | 0.4458 | 0.8040 | 1.0132 | 0.073* | |
H8B | 0.3846 | 0.7900 | 1.0913 | 0.073* | |
H8C | 0.3508 | 0.8506 | 0.9752 | 0.073* | |
C9 | 0.42126 (14) | 0.35590 (15) | 0.14246 (18) | 0.0316 (5) | |
C10 | 0.46645 (14) | 0.26613 (14) | 0.19620 (17) | 0.0286 (5) | |
C11 | 0.46841 (15) | 0.10400 (15) | 0.19300 (18) | 0.0315 (5) | |
C12 | 0.43794 (18) | 0.01403 (16) | 0.1277 (2) | 0.0462 (6) | |
H12A | 0.3870 | 0.0264 | 0.0593 | 0.069* | |
H12B | 0.4220 | −0.0306 | 0.1780 | 0.069* | |
H12C | 0.4851 | −0.0120 | 0.1036 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0717 (13) | 0.0232 (8) | 0.0508 (11) | 0.0069 (8) | −0.0244 (9) | −0.0016 (7) |
O2 | 0.0871 (15) | 0.0368 (10) | 0.0546 (12) | 0.0090 (10) | −0.0375 (11) | −0.0110 (9) |
O3 | 0.0448 (10) | 0.0646 (12) | 0.0236 (8) | 0.0094 (9) | −0.0042 (7) | 0.0075 (8) |
O4 | 0.0354 (10) | 0.0753 (14) | 0.0467 (11) | 0.0054 (9) | −0.0037 (8) | 0.0138 (9) |
O5 | 0.0688 (12) | 0.0361 (9) | 0.0240 (8) | 0.0145 (9) | −0.0028 (8) | 0.0065 (7) |
O6 | 0.0525 (11) | 0.0343 (9) | 0.0447 (10) | 0.0100 (8) | 0.0157 (8) | 0.0008 (7) |
N1 | 0.0353 (10) | 0.0277 (9) | 0.0221 (9) | −0.0014 (8) | −0.0044 (8) | 0.0045 (7) |
N2 | 0.0346 (10) | 0.0269 (9) | 0.0257 (9) | −0.0005 (8) | −0.0040 (8) | 0.0010 (7) |
N3 | 0.0375 (10) | 0.0278 (9) | 0.0201 (9) | −0.0013 (8) | −0.0014 (7) | −0.0005 (7) |
C1 | 0.0447 (13) | 0.0259 (11) | 0.0258 (11) | −0.0001 (10) | −0.0049 (10) | 0.0017 (9) |
C2 | 0.0313 (11) | 0.0263 (11) | 0.0223 (10) | −0.0008 (9) | −0.0011 (8) | 0.0021 (8) |
C3 | 0.0344 (12) | 0.0310 (11) | 0.0232 (11) | −0.0061 (9) | −0.0027 (9) | 0.0032 (8) |
C4 | 0.0528 (16) | 0.0414 (13) | 0.0319 (13) | −0.0110 (12) | −0.0148 (11) | 0.0073 (10) |
C5 | 0.0341 (13) | 0.0226 (11) | 0.0295 (12) | 0.0000 (9) | −0.0042 (9) | 0.0024 (8) |
C6 | 0.0291 (11) | 0.0241 (10) | 0.0226 (10) | −0.0021 (9) | −0.0011 (8) | −0.0004 (8) |
C7 | 0.0340 (12) | 0.0298 (11) | 0.0229 (11) | −0.0052 (9) | −0.0012 (9) | 0.0002 (8) |
C8 | 0.0577 (16) | 0.0324 (13) | 0.0369 (14) | −0.0090 (11) | −0.0111 (12) | −0.0027 (10) |
C9 | 0.0312 (11) | 0.0287 (11) | 0.0275 (11) | −0.0012 (9) | −0.0006 (9) | 0.0019 (9) |
C10 | 0.0339 (11) | 0.0263 (11) | 0.0210 (10) | −0.0003 (9) | 0.0026 (8) | −0.0011 (8) |
C11 | 0.0392 (12) | 0.0260 (11) | 0.0239 (11) | −0.0021 (9) | 0.0027 (9) | −0.0010 (8) |
C12 | 0.0618 (16) | 0.0295 (12) | 0.0338 (13) | −0.0040 (11) | −0.0025 (11) | −0.0054 (10) |
O1—C1 | 1.288 (3) | C3—C7 | 1.400 (3) |
O1—H1 | 0.8200 | C3—C4 | 1.487 (3) |
O2—C1 | 1.183 (3) | C4—H4A | 0.9600 |
O3—C5 | 1.294 (3) | C4—H4B | 0.9600 |
O3—H3 | 0.8200 | C4—H4C | 0.9600 |
O4—C5 | 1.187 (3) | C5—C6 | 1.505 (3) |
O5—C9 | 1.307 (3) | C7—C8 | 1.482 (3) |
O5—H5 | 0.8200 | C8—H8A | 0.9600 |
O6—C9 | 1.192 (3) | C8—H8B | 0.9600 |
N1—C3 | 1.322 (3) | C8—H8C | 0.9600 |
N1—C2 | 1.336 (3) | C9—C10 | 1.489 (3) |
N2—C7 | 1.330 (3) | C10—C10i | 1.377 (4) |
N2—C6 | 1.333 (3) | C11—C11i | 1.405 (4) |
N3—C11 | 1.323 (3) | C11—C12 | 1.482 (3) |
N3—C10 | 1.333 (3) | C12—H12A | 0.9600 |
C1—C2 | 1.484 (3) | C12—H12B | 0.9600 |
C2—C6 | 1.372 (3) | C12—H12C | 0.9600 |
C1—O1—H1 | 109.5 | C2—C6—C5 | 124.95 (18) |
C5—O3—H3 | 109.5 | N2—C7—C3 | 120.76 (18) |
C9—O5—H5 | 109.5 | N2—C7—C8 | 118.06 (19) |
C3—N1—C2 | 117.91 (17) | C3—C7—C8 | 121.17 (19) |
C7—N2—C6 | 117.82 (18) | C7—C8—H8A | 109.5 |
C11—N3—C10 | 118.29 (17) | C7—C8—H8B | 109.5 |
O2—C1—O1 | 124.0 (2) | H8A—C8—H8B | 109.5 |
O2—C1—C2 | 121.3 (2) | C7—C8—H8C | 109.5 |
O1—C1—C2 | 114.60 (18) | H8A—C8—H8C | 109.5 |
N1—C2—C6 | 121.33 (18) | H8B—C8—H8C | 109.5 |
N1—C2—C1 | 119.07 (18) | O6—C9—O5 | 126.0 (2) |
C6—C2—C1 | 119.54 (18) | O6—C9—C10 | 121.38 (19) |
N1—C3—C7 | 120.89 (18) | O5—C9—C10 | 112.56 (19) |
N1—C3—C4 | 118.57 (19) | N3—C10—C10i | 120.98 (11) |
C7—C3—C4 | 120.54 (19) | N3—C10—C9 | 117.57 (18) |
C3—C4—H4A | 109.5 | C10i—C10—C9 | 121.30 (11) |
C3—C4—H4B | 109.5 | N3—C11—C11i | 120.57 (11) |
H4A—C4—H4B | 109.5 | N3—C11—C12 | 118.19 (19) |
C3—C4—H4C | 109.5 | C11i—C11—C12 | 121.23 (13) |
H4A—C4—H4C | 109.5 | C11—C12—H12A | 109.5 |
H4B—C4—H4C | 109.5 | C11—C12—H12B | 109.5 |
O4—C5—O3 | 126.7 (2) | H12A—C12—H12B | 109.5 |
O4—C5—C6 | 120.7 (2) | C11—C12—H12C | 109.5 |
O3—C5—C6 | 112.4 (2) | H12A—C12—H12C | 109.5 |
N2—C6—C2 | 121.28 (18) | H12B—C12—H12C | 109.5 |
N2—C6—C5 | 113.73 (17) | ||
C3—N1—C2—C6 | 0.0 (3) | O4—C5—C6—C2 | 93.3 (3) |
C3—N1—C2—C1 | 177.4 (2) | O3—C5—C6—C2 | −91.5 (3) |
O2—C1—C2—N1 | 169.2 (3) | C6—N2—C7—C3 | 0.4 (3) |
O1—C1—C2—N1 | −8.3 (3) | C6—N2—C7—C8 | −179.0 (2) |
O2—C1—C2—C6 | −13.3 (4) | N1—C3—C7—N2 | 0.0 (3) |
O1—C1—C2—C6 | 169.1 (2) | C4—C3—C7—N2 | −180.0 (2) |
C2—N1—C3—C7 | −0.2 (3) | N1—C3—C7—C8 | 179.4 (2) |
C2—N1—C3—C4 | 179.8 (2) | C4—C3—C7—C8 | −0.6 (4) |
C7—N2—C6—C2 | −0.6 (3) | C11—N3—C10—C10i | 3.0 (4) |
C7—N2—C6—C5 | 177.3 (2) | C11—N3—C10—C9 | −172.7 (2) |
N1—C2—C6—N2 | 0.5 (3) | O6—C9—C10—N3 | 134.4 (2) |
C1—C2—C6—N2 | −177.0 (2) | O5—C9—C10—N3 | −44.4 (3) |
N1—C2—C6—C5 | −177.3 (2) | O6—C9—C10—C10i | −41.3 (4) |
C1—C2—C6—C5 | 5.3 (3) | O5—C9—C10—C10i | 140.0 (3) |
O4—C5—C6—N2 | −84.5 (3) | C10—N3—C11—C11i | 2.3 (4) |
O3—C5—C6—N2 | 90.6 (2) | C10—N3—C11—C12 | −176.5 (2) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2ii | 0.82 (1) | 2.04 | 2.845 (2) | 167 |
O3—H3···N3iii | 0.82 (1) | 2.00 | 2.803 (2) | 165 |
O5—H5···N1iv | 0.82 (1) | 2.06 | 2.874 (2) | 169 |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C8H8N2O4 |
Mr | 196.16 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 15.873 (3), 14.057 (3), 11.991 (2) |
β (°) | 109.21 (3) |
V (Å3) | 2526.6 (9) |
Z | 12 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCX-mini diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10832, 2230, 1937 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.133, 1.07 |
No. of reflections | 2230 |
No. of parameters | 196 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.39 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N2i | 0.820 (0) | 2.040 | 2.845 (2) | 167.00 |
O3—H3···N3ii | 0.820 (0) | 2.000 | 2.803 (2) | 165.00 |
O5—H5···N1iii | 0.820 (0) | 2.060 | 2.874 (2) | 169.00 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+1/2; (iii) x, y, z−1. |
Acknowledgements
The author thanks the Jilin Business and Technology College for financial support.
References
Alborés, P. & Rentschler, E. (2009). Angew. Chem. Int. Ed. 48, 9366–9370. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsuda, T. & Fujishima, K. (1981). Agric. Biol. Chem. 45, 2129–2130. CrossRef CAS Google Scholar
Vishweshwar, P., Jagadeesh Babu, N., Nangia, A., Mason, S. A., Puschmann, H., Mondal, R. & Howard, J. A. K. (2004). J. Phys. Chem. A, 43, 9406–9416. Web of Science CSD CrossRef Google Scholar
Vishweshwar, P., Nangia, A. & Lynch, V. M. (2001). Chem. Commun. pp. 179–180. Web of Science CSD CrossRef Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2,3-dicarboxypyrazine-based ligands are well suited for the building of large clusters. With two carboxyl groups available for binding and a non-binding site opposite, selective interactions with metal ions are common. For example, a Co36 cluster using a pyrazine-2,3-dicarboxylic acid ligand similar to the title compound has been reported (Alborés & Rentschler, 2009) Similarly, the crystal structure of the title compound containing one water molecule in the unit cell has also been reported (Vishweshwar et al., 2001; Vishweshwar et al., 2004), In view of the importance of compounds containing this ligand we report herin the crystal structure of the title compound, (I).
The asymmetric unit of the title compound, C8H8N2O4, consists of one molecule and a second complete molecule generated by the application of a centre of inversion (Fig. 1). For each molecule, the mean planes of the two carboxyl groups attached to the pyrazine ring at neighboring positionsare twisted by 10.8 (1)° and 87.9 (3)°. Crystal packing is stabilized by O—H···N hydrogen bonds which link the molecules into layers along [101] (Fig. 2).