metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N-[1-(1H-Benzimidazol-2-yl)ethyl­­idene-κN3]-3-(1H-imidazol-1-yl)propan-1-amine-κN}di­bromidomercury(II)

aEducation Ministry Key Laboratory of Marine Chemistry and Technology, Ocean University of China, Qingdao, People's Republic of China
*Correspondence e-mail: crystalshuai@yahoo.com.cn

(Received 10 October 2011; accepted 28 November 2011; online 14 December 2011)

In the title compound, [HgBr2(C15H17N5)], the HgII ion is tetra­hedrally coordinated by two N atoms of the N-[1-(1H-benzimidazol-2-yl)ethyl­idene-κN]-3-(1H-imidazol-1-yl)propan-1-amine ligand, and two bromide anions. Inter­molecular benzimidazole–imidazole N—H⋯N hydrogen bonds link the mol­ecules into helical chains along the b-axis direction and C—H⋯Br hydrogen bonds link these chains into layers parallel to the bc plane.

Related literature

For general background to the design and synthesis of coordination polymers, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]); Li et al. (2007[Li, X. P., Zhang, J. Y., Liu, Y., Pan, M., Zheng, S. R., Kang, B. S. & Su, C. Y. (2007). Inorg. Chim. Acta, 360, 2990-2996.]); Zheng et al. (2011[Zheng, S. R., Cai, S. L., Pan, M., Xiao, T. T., Fan, J. & Zhang, W. G. (2011). CrystEngComm, 13, 883-888.]). For complexes with ligands containing benzimidazole or imidazole, see: Pan et al. (2010[Pan, M., Lan, M. H., Jiang, J. J., Yang, Q. Y. & Su, C. Y. (2010). J. Mol. Struct. 980, 193-200.]); Chen et al. (2007[Chen, C. L., Zhang, J. Y. & Su, C. Y. (2007). Eur. J. Inorg. Chem. pp. 2997-3010.]); Zhuang et al. (2009[Zhuang, C. F., Zhang, J. Y., Wang, Q., Chu, Z. H., Fenske, D. & Su, C. Y. (2009). Chem. Eur. J. 15, 7578-7585.]); Wang et al. (2009[Wang, Q., Zhang, J. Y., Zhuang, C. F., Tang, Y. & Su, C. Y. (2009). Inorg. Chem. 48, 287-295.]).

[Scheme 1]

Experimental

Crystal data
  • [HgBr2(C15H17N5)]

  • Mr = 627.75

  • Monoclinic, P 21 /c

  • a = 10.3054 (4) Å

  • b = 10.6680 (4) Å

  • c = 16.6030 (5) Å

  • β = 100.844 (3)°

  • V = 1792.71 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.05 mm−1

  • T = 298 K

  • 0.37 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.086, Tmax = 0.111

  • 9489 measured reflections

  • 3891 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.041

  • S = 0.93

  • 3891 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—N1 2.274 (4)
Hg1—N3 2.403 (4)
Hg1—Br2 2.4996 (7)
Hg1—Br1 2.5472 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N5i 0.86 1.90 2.722 (7) 160
C15—H15A⋯Br1ii 0.93 2.85 3.778 (6) 177
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+3, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The rational design and synthesis of coordination polymers have received extensive attention over the past decades (Moulton & Zaworotko, 2001; Roesky & Andruh, 2003). The choice of suitable ligands is an important factor that greatly affects the structure and stabilisation of the coordination architecture (Zheng et al., 2011). The ligands containing benzimidazole or imidazole groups are often employed to prepare coordination polymers with diverse structure topologies and properties (Pan, et al., 2010; Zhuang, et al., 2009; Chen, et al., 2007). However, incorporation both two functional groups into one ligand are still less explored. Herein we report a HgII complex with a new ligand containing both benzimidazole and imidazole donor groups, N-(1-(1H-benzimidazol-2-yl)ethylidene)-3-(1H-imidazol-1-yl)propan-1-amine.

The molecule of the title complex is a discrete neutral monomer, in which the asymmetric unit contains one HgII ion, two Br¯ anions and one ligand (Fig. 1 and Table 1). The HgII ion has a slightly distorted tetrahedral geometry involving the two nitrogen atoms from the ligand and two Br¯ anions. The bond angles around HgII are range from 74.20 (14)° to 172.49 (15)°. The Hg—N and Hg—Br bond lengths are 2.274 (4), 2.403 (4) and 2.4996 (7), 2.5472 (7) Å (Table 1), respectively, which is similar to the reported HgII complexes (Wang et al. 2009; Li et al. 2007). The nitrogen atom of the imidazolyl group (Nimi) remains uncoordinated and just acts as a strong hydrogen bonding donor. The N—H···N hydrogen bonds (Table 2) formed between the NH of the benzimidazole group (NHbim) and Nim link the molecules into helical chain around the crystallographic 21 axis, with the pitches of 8.68 Å. These chains are connected by C—H···Br hydrogen bonds (Table 2) between the carbon atom on 2-position of the imidazole group and Br¯ anion to generate a two-dimensional network.

Related literature top

For general background to the design and synthesis of coordination polymers, see: Moulton & Zaworotko (2001); Roesky & Andruh (2003); Li et al. (2007); Zheng et al. (2011). For complexes with ligands containing benzimidazole or imidazole, see: Pan et al. (2010); Chen et al. (2007); Zhuang et al. (2009); Wang et al. (2009).

Experimental top

For general background to the design and synthesis of coordination polymers, see: Moulton & Zaworotko (2001); Roesky & Andruh (2003); Li et al. (2007); Zheng et al. (2011). For complexes with ligands containing benzimidazole or imidazole group, see: Pan et al. (2010); Chen et al. (2007); Zhuang, et al. (2009); Wang, et al. (2009).

Refinement top

All C– and N-bound H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and N–H = 0.86 Å and with Uĩso(H) =1.2Ueq (C or N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
{N-[1-(1H-Benzimidazol-2-yl)ethylidene-κN3]- 3-(1H-imidazol-1-yl)propan-1-amine-κN}dibromidomercury(II) top
Crystal data top
[HgBr2(C15H17N5)]Z = 4
Mr = 627.75F(000) = 1168
Monoclinic, P21/cDx = 2.326 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.3054 (4) Åθ = 2.8–27°
b = 10.6680 (4) ŵ = 13.05 mm1
c = 16.6030 (5) ÅT = 298 K
β = 100.844 (3)°Block, colourless
V = 1792.71 (11) Å30.37 × 0.33 × 0.30 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3891 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
phi and ω scansθmax = 27.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.086, Tmax = 0.111k = 1312
9489 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
3891 reflections(Δ/σ)max = 0.003
208 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 0.96 e Å3
Crystal data top
[HgBr2(C15H17N5)]V = 1792.71 (11) Å3
Mr = 627.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3054 (4) ŵ = 13.05 mm1
b = 10.6680 (4) ÅT = 298 K
c = 16.6030 (5) Å0.37 × 0.33 × 0.30 mm
β = 100.844 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2302 reflections with I > 2σ(I)
Tmin = 0.086, Tmax = 0.111Rint = 0.047
9489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 0.93Δρmax = 1.45 e Å3
3891 reflectionsΔρmin = 0.96 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.28943 (2)1.69192 (2)1.065782 (13)0.02437 (7)
Br20.09981 (6)1.80104 (7)1.10987 (3)0.03381 (17)
Br10.34657 (6)1.46862 (6)1.11412 (3)0.03254 (18)
N30.2664 (4)1.6902 (5)0.9191 (2)0.0196 (11)
N10.4643 (4)1.7966 (4)1.0326 (2)0.0153 (11)
C70.4677 (5)1.7955 (6)0.9526 (3)0.0220 (14)
C10.5760 (5)1.8564 (5)1.0723 (3)0.0164 (14)
C60.6472 (6)1.8935 (5)1.0109 (3)0.0179 (14)
C90.3613 (6)1.7408 (5)0.8910 (3)0.0176 (14)
C100.1465 (5)1.6394 (5)0.8673 (3)0.0242 (16)
H10A0.16171.62870.81180.029*
H10B0.07461.69860.86560.029*
N40.2183 (5)1.3873 (4)0.8074 (3)0.0210 (12)
N20.5751 (4)1.8553 (4)0.9374 (3)0.0204 (12)
H2B0.59491.86740.89000.025*
N50.3055 (5)1.3730 (4)0.6951 (3)0.0264 (13)
C20.6247 (6)1.8854 (5)1.1536 (3)0.0242 (16)
H2A0.57761.86461.19430.029*
C50.7670 (6)1.9576 (6)1.0293 (3)0.0259 (16)
H5A0.81231.98280.98860.031*
C80.3749 (5)1.7525 (5)0.8032 (3)0.0225 (15)
H8A0.30031.71400.76870.034*
H8B0.45451.71140.79530.034*
H8C0.37881.83950.78910.034*
C40.8144 (6)1.9815 (5)1.1109 (4)0.0318 (18)
H4A0.89502.02231.12600.038*
C150.3258 (6)1.4068 (5)0.7735 (3)0.0252 (16)
H15A0.40491.44000.80170.030*
C140.1767 (6)1.3299 (5)0.6795 (3)0.0250 (16)
H14A0.13281.29970.62920.030*
C30.7431 (6)1.9453 (6)1.1726 (3)0.0295 (17)
H3A0.77821.96301.22720.035*
C130.1234 (6)1.3376 (5)0.7478 (3)0.0272 (17)
H13A0.03861.31380.75310.033*
C110.1081 (5)1.5158 (5)0.8992 (3)0.0198 (14)
H11A0.02211.49150.86860.024*
H11B0.10071.52530.95620.024*
C120.2065 (6)1.4126 (5)0.8924 (3)0.0268 (16)
H12A0.29231.43640.92340.032*
H12B0.17911.33660.91650.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.02425 (14)0.03019 (14)0.01982 (12)0.00036 (16)0.00710 (9)0.00116 (13)
Br20.0283 (4)0.0368 (4)0.0408 (4)0.0044 (4)0.0179 (3)0.0032 (4)
Br10.0381 (5)0.0283 (4)0.0284 (4)0.0013 (3)0.0008 (3)0.0050 (3)
N30.026 (3)0.020 (3)0.014 (2)0.001 (3)0.006 (2)0.002 (2)
N10.019 (3)0.015 (3)0.014 (2)0.003 (3)0.008 (2)0.000 (2)
C70.021 (4)0.028 (4)0.017 (3)0.004 (3)0.002 (3)0.004 (3)
C10.013 (4)0.011 (3)0.023 (3)0.003 (3)0.003 (3)0.006 (3)
C60.016 (4)0.013 (4)0.025 (4)0.000 (3)0.005 (3)0.001 (3)
C90.018 (4)0.016 (3)0.018 (3)0.014 (3)0.002 (3)0.002 (3)
C100.026 (4)0.035 (4)0.011 (3)0.008 (3)0.001 (3)0.003 (3)
N40.016 (3)0.026 (3)0.022 (3)0.005 (3)0.008 (2)0.000 (2)
N20.016 (3)0.027 (3)0.021 (3)0.001 (2)0.012 (2)0.004 (2)
N50.029 (4)0.030 (3)0.021 (3)0.003 (3)0.008 (3)0.001 (2)
C20.027 (4)0.026 (4)0.021 (4)0.004 (3)0.006 (3)0.005 (3)
C50.028 (4)0.029 (4)0.022 (3)0.010 (3)0.010 (3)0.004 (3)
C80.024 (4)0.027 (4)0.017 (3)0.000 (3)0.004 (3)0.003 (3)
C40.020 (4)0.017 (4)0.055 (5)0.004 (3)0.002 (4)0.006 (3)
C150.016 (4)0.028 (4)0.027 (4)0.002 (3)0.006 (3)0.004 (3)
C140.025 (4)0.033 (4)0.016 (3)0.008 (3)0.001 (3)0.009 (3)
C30.039 (5)0.027 (4)0.021 (4)0.009 (4)0.002 (3)0.000 (3)
C130.018 (4)0.041 (5)0.023 (3)0.003 (3)0.003 (3)0.005 (3)
C110.017 (4)0.023 (4)0.022 (3)0.003 (3)0.009 (3)0.007 (3)
C120.034 (4)0.032 (4)0.014 (3)0.007 (3)0.004 (3)0.004 (3)
Geometric parameters (Å, º) top
Hg1—N12.274 (4)N5—C151.329 (6)
Hg1—N32.403 (4)N5—C141.382 (6)
Hg1—Br22.4996 (7)C2—C31.361 (7)
Hg1—Br12.5472 (7)C2—H2A0.9300
N3—C91.280 (6)C5—C41.374 (7)
N3—C101.469 (6)C5—H5A0.9300
N1—C71.335 (5)C8—H8A0.9600
N1—C11.372 (6)C8—H8B0.9600
C7—N21.342 (6)C8—H8C0.9600
C7—C91.472 (7)C4—C31.422 (7)
C1—C21.384 (6)C4—H4A0.9300
C1—C61.420 (7)C15—H15A0.9300
C6—N21.366 (6)C14—C131.352 (6)
C6—C51.393 (7)C14—H14A0.9300
C9—C81.497 (6)C3—H3A0.9300
C10—C111.502 (7)C13—H13A0.9300
C10—H10A0.9700C11—C121.514 (7)
C10—H10B0.9700C11—H11A0.9700
N4—C151.350 (6)C11—H11B0.9700
N4—C131.360 (6)C12—H12A0.9700
N4—C121.465 (6)C12—H12B0.9700
N2—H2B0.8600
N1—Hg1—N371.94 (15)C3—C2—H2A120.8
N1—Hg1—Br2122.76 (11)C1—C2—H2A120.8
N3—Hg1—Br2111.53 (11)C4—C5—C6116.3 (5)
N1—Hg1—Br1112.88 (11)C4—C5—H5A121.8
N3—Hg1—Br1106.56 (12)C6—C5—H5A121.8
Br2—Hg1—Br1119.37 (2)C9—C8—H8A109.5
C9—N3—C10124.0 (5)C9—C8—H8B109.5
C9—N3—Hg1115.4 (4)H8A—C8—H8B109.5
C10—N3—Hg1120.5 (3)C9—C8—H8C109.5
C7—N1—C1107.8 (5)H8A—C8—H8C109.5
C7—N1—Hg1114.0 (4)H8B—C8—H8C109.5
C1—N1—Hg1138.0 (3)C5—C4—C3121.6 (6)
N1—C7—N2111.1 (5)C5—C4—H4A119.2
N1—C7—C9122.6 (5)C3—C4—H4A119.2
N2—C7—C9126.2 (5)N5—C15—N4112.1 (5)
N1—C1—C2133.6 (5)N5—C15—H15A124.0
N1—C1—C6106.6 (5)N4—C15—H15A124.0
C2—C1—C6119.8 (5)C13—C14—N5110.5 (5)
N2—C6—C5130.8 (5)C13—C14—H14A124.8
N2—C6—C1106.9 (5)N5—C14—H14A124.8
C5—C6—C1122.4 (5)C2—C3—C4121.5 (5)
N3—C9—C7115.8 (5)C2—C3—H3A119.2
N3—C9—C8127.4 (5)C4—C3—H3A119.2
C7—C9—C8116.8 (5)C14—C13—N4106.5 (5)
N3—C10—C11111.5 (4)C14—C13—H13A126.8
N3—C10—H10A109.3N4—C13—H13A126.8
C11—C10—H10A109.3C10—C11—C12112.8 (4)
N3—C10—H10B109.3C10—C11—H11A109.0
C11—C10—H10B109.3C12—C11—H11A109.0
H10A—C10—H10B108.0C10—C11—H11B109.0
C15—N4—C13107.0 (5)C12—C11—H11B109.0
C15—N4—C12126.6 (5)H11A—C11—H11B107.8
C13—N4—C12126.4 (5)N4—C12—C11112.6 (4)
C7—N2—C6107.7 (4)N4—C12—H12A109.1
C7—N2—H2B126.2C11—C12—H12A109.1
C6—N2—H2B126.2N4—C12—H12B109.1
C15—N5—C14104.0 (5)C11—C12—H12B109.1
C3—C2—C1118.4 (5)H12A—C12—H12B107.8
N1—Hg1—N3—C93.1 (4)N1—C7—C9—N32.2 (8)
Br2—Hg1—N3—C9122.0 (4)N2—C7—C9—N3178.6 (5)
Br1—Hg1—N3—C9106.1 (4)N1—C7—C9—C8176.8 (5)
N1—Hg1—N3—C10173.8 (4)N2—C7—C9—C80.4 (8)
Br2—Hg1—N3—C1054.9 (4)C9—N3—C10—C11137.0 (5)
Br1—Hg1—N3—C1077.0 (4)Hg1—N3—C10—C1146.3 (5)
N3—Hg1—N1—C74.0 (4)N1—C7—N2—C62.1 (6)
Br2—Hg1—N1—C7108.5 (4)C9—C7—N2—C6178.8 (5)
Br1—Hg1—N1—C796.8 (4)C5—C6—N2—C7179.1 (6)
N3—Hg1—N1—C1178.7 (6)C1—C6—N2—C71.4 (6)
Br2—Hg1—N1—C176.9 (5)N1—C1—C2—C3178.9 (6)
Br1—Hg1—N1—C177.9 (5)C6—C1—C2—C32.4 (8)
C1—N1—C7—N21.8 (6)N2—C6—C5—C4179.6 (5)
Hg1—N1—C7—N2178.1 (4)C1—C6—C5—C41.0 (8)
C1—N1—C7—C9178.7 (5)C6—C5—C4—C31.5 (8)
Hg1—N1—C7—C95.1 (7)C14—N5—C15—N40.1 (6)
C7—N1—C1—C2179.6 (6)C13—N4—C15—N50.3 (7)
Hg1—N1—C1—C25.5 (10)C12—N4—C15—N5179.3 (5)
C7—N1—C1—C60.8 (6)C15—N5—C14—C130.4 (6)
Hg1—N1—C1—C6175.7 (4)C1—C2—C3—C42.0 (9)
N1—C1—C6—N20.4 (6)C5—C4—C3—C20.0 (9)
C2—C1—C6—N2178.6 (5)N5—C14—C13—N40.6 (6)
N1—C1—C6—C5179.9 (5)C15—N4—C13—C140.5 (6)
C2—C1—C6—C50.9 (8)C12—N4—C13—C14179.6 (5)
C10—N3—C9—C7175.0 (5)N3—C10—C11—C1267.2 (6)
Hg1—N3—C9—C71.7 (6)C15—N4—C12—C11114.2 (6)
C10—N3—C9—C83.8 (9)C13—N4—C12—C1167.0 (7)
Hg1—N3—C9—C8179.4 (4)C10—C11—C12—N461.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.861.902.722 (7)160
C15—H15A···Br1ii0.932.853.778 (6)177
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+3, z+2.

Experimental details

Crystal data
Chemical formula[HgBr2(C15H17N5)]
Mr627.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.3054 (4), 10.6680 (4), 16.6030 (5)
β (°) 100.844 (3)
V3)1792.71 (11)
Z4
Radiation typeMo Kα
µ (mm1)13.05
Crystal size (mm)0.37 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.086, 0.111
No. of measured, independent and
observed [I > 2σ(I)] reflections
9489, 3891, 2302
Rint0.047
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.041, 0.93
No. of reflections3891
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 0.96

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Hg1—N12.274 (4)Hg1—Br22.4996 (7)
Hg1—N32.403 (4)Hg1—Br12.5472 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N5i0.861.902.722 (7)160
C15—H15A···Br1ii0.932.853.778 (6)177.2
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+3, z+2.
 

Acknowledgements

We acknowledge the support of the Postdoctoral Innovation Foundation of Shandong Province.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C. L., Zhang, J. Y. & Su, C. Y. (2007). Eur. J. Inorg. Chem. pp. 2997–3010.  Web of Science CrossRef Google Scholar
First citationLi, X. P., Zhang, J. Y., Liu, Y., Pan, M., Zheng, S. R., Kang, B. S. & Su, C. Y. (2007). Inorg. Chim. Acta, 360, 2990–2996.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPan, M., Lan, M. H., Jiang, J. J., Yang, Q. Y. & Su, C. Y. (2010). J. Mol. Struct. 980, 193–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q., Zhang, J. Y., Zhuang, C. F., Tang, Y. & Su, C. Y. (2009). Inorg. Chem. 48, 287–295.  Web of Science CSD CrossRef PubMed Google Scholar
First citationZheng, S. R., Cai, S. L., Pan, M., Xiao, T. T., Fan, J. & Zhang, W. G. (2011). CrystEngComm, 13, 883–888.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhuang, C. F., Zhang, J. Y., Wang, Q., Chu, Z. H., Fenske, D. & Su, C. Y. (2009). Chem. Eur. J. 15, 7578–7585.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds