metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{N′-[(2-Oxidonaphthalen-1-yl)methyl­­idene]benzohydrazidato}(1,10-phenanthroline)copper(II) methanol monosolvate

aCollege of Environment and Resources, Jilin University, Changchun 130012, People's Republic of China, and bCollege of Earth Sciences, Jilin University, Changchun 130061, People's Republic of China
*Correspondence e-mail: jianweizhu1905@163.com

(Received 3 December 2011; accepted 17 December 2011; online 23 December 2011)

The title mononuclear complex, [Cu(C18H12N2O2)(C12H8N2)]·CH3OH, contains one N′-[(2-oxidonaphthalen-1-yl)methyl­idene]benzohydrazidate ligand (L2−), a Cu2+ cation, one 1,10-phenanthroline ligand and a methanol solvent mol­ecule. The CuII ion adopts a CuO2N3 distorted square-pyramidal coordination. An O—H⋯O hydrogen bond is formed between the methanol solvent mol­ecule and the hydrazide O atom of the L2− ligand.

Related literature

For details of the preparation of the Schiff base, see: Qiao et al. (2010[Qiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.]). For applications of Schiff base compounds, see: Anford et al. (1998[Anford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226-1231.]); Guo et al. (2010[Guo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538-8539.]). For related structures, see: Huo et al. (2004[Huo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636-m1638.]); Liu et al. (2008[Liu, H.-Y., Lu, Z.-S. & Niu, D.-Z. (2008). J. Coord. Chem. 61, 4040-4046.]); Sreeja et al. (2004[Sreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron. 23, 575-581.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C18H12N2O2)(C12H8N2)]·CH4O

  • Mr = 564.08

  • Monoclinic, P 21 /c

  • a = 20.388 (2) Å

  • b = 9.9707 (10) Å

  • c = 12.5268 (12) Å

  • β = 105.035 (2)°

  • V = 2459.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 185 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.836, Tmax = 0.858

  • 12077 measured reflections

  • 4352 independent reflections

  • 2950 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.093

  • S = 1.02

  • 4352 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.913 (2)
Cu1—N2 1.914 (2)
Cu1—O1 1.984 (2)
Cu1—N4 2.023 (3)
Cu1—N3 2.321 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.84 1.99 2.820 (3) 167

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Comment top

The study of transition metal-hydrazone compounds (Huo et al., 2004), in which the acylhydrazone ligands are formed by condensing hydrazine with naphthaldehyde or their derivatives, has attracted considerable attention because of the magnetochemistry and chemical versatility of these compounds (Anford et al., 1998; Guo et al., 2010). We selected acylhydrazone ligand of 2-hydroxy-1-naphthaldehyde benzoylhydrazide (H2L) to construct coordination polymers with defined geometry. We report here the preparation and crystal structure of the title Schiff base copper(II) compound (Fig. 1, Table 1). The title compound has a distorted square-pyramidal geometry and the central CuII is five-coordinated with the two O atoms and one N atom from H2L and two N atoms from 1,10-phenanthroline. Several mononuclear compounds with similar structures have been reported previously (Sreeja et al., 2004; Liu et al., 2008). The square plane around the Cu1 atom is formed by O2N2 donor atoms (O1, O2, N2 and N4 ). The apical position occupied by the second nitrogen atom (N3) of 1,10-phenanthroline with a larger distance than N4. The four basal atoms are coplanar showing a significant distortion from square geometry indicated by the trans-bond angle O1—Cu1—O2 [162.81 (9)°]. CuII is displaced from the basal plane in the direction of the axial nitrogen, which is evident from the bond angles of N2—Cu1—N4 [172.79 (11)°] and O1—Cu1—N2 [80.85 (10)°]. The maximum displacements from the least-squares plane through O1, O2, N2 and N4 are -0.0600 (21)Å and 0.1055 (27) Å for atoms O1 and N2, respectively; Cu1 is 0.2104 (4)Å below this plane. O3—H3A···O1 hydrogen bond is formed between the methanol solvent molecule and the O atom of the L2- ligand (Table 2).

Related literature top

For details of the preparation of the Schiff base, see: Qiao et al. (2010). For applications of Schiff base compounds, see: Anford et al. (1998); Guo et al. (2010). For related structures, see: Huo et al. (2004); Liu et al. (2008); Sreeja et al. (2004).

Experimental top

The 2-hydroxy-1-naphthaldehyde benzoylhydrazide ligand (H2L) was prepared in a similar manner to the reported procedures (Qiao et al. 2010). The title compound was synthesised by adding Cu(OAc)2.H2O (0.1 mmol) to a solution of H2L (0.1 mmol) and triethylamine (0.1 mmol) in methanol/dichloromethane (1:1 20 mL). After stirring for 3 h, 1,10-phenanthroline (0.1 mmol) was added to the resulting solution. Brown crystals of the title compound were isolated from the solution after two weeks.

Refinement top

H atoms bonded to C atoms were placed in calculated positions and refined using a riding model [Csp2–H = 0.95 Å; Csp3–H = 0.98 Å and Uĩso(H) = 1.2/1.5 Ueq(C). H atoms bonded to methanol OH groups were located from difference Fourier series and then allowed to ride on their parent O atoms (AFIX 147) with Uĩso(H) = 1.2Ueq(C) refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the title organic compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
{N'-[(2-Oxidonaphthalen-1-yl)methylidene]benzohydrazidato}(1,10- phenanthroline)copper(II) methanol monosolvate top
Crystal data top
[Cu(C18H12N2O2)(C12H8N2)]·CH4OF(000) = 1164
Mr = 564.08Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3881 reflections
a = 20.388 (2) Åθ = 2.3–25.1°
b = 9.9707 (10) ŵ = 0.93 mm1
c = 12.5268 (12) ÅT = 185 K
β = 105.035 (2)°Block, brown
V = 2459.4 (4) Å30.20 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4352 independent reflections
Radiation source: fine-focus sealed tube2950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
phi and ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2124
Tmin = 0.836, Tmax = 0.858k = 1110
12077 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0369P)2 + 0.1098P]
where P = (Fo2 + 2Fc2)/3
4352 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C18H12N2O2)(C12H8N2)]·CH4OV = 2459.4 (4) Å3
Mr = 564.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.388 (2) ŵ = 0.93 mm1
b = 9.9707 (10) ÅT = 185 K
c = 12.5268 (12) Å0.20 × 0.18 × 0.17 mm
β = 105.035 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4352 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2950 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.858Rint = 0.059
12077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
4352 reflectionsΔρmin = 0.32 e Å3
354 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25702 (2)0.62657 (4)0.14434 (3)0.02321 (13)
N20.22403 (12)0.6138 (3)0.2738 (2)0.0210 (6)
N40.30304 (13)0.6479 (3)0.0204 (2)0.0243 (7)
O10.32626 (11)0.5026 (2)0.23282 (18)0.0248 (5)
O20.20269 (11)0.7819 (2)0.09414 (18)0.0272 (5)
N10.25609 (13)0.5187 (3)0.3516 (2)0.0225 (6)
C220.21141 (17)0.3799 (3)0.1607 (3)0.0281 (8)
C100.08817 (15)0.8615 (3)0.2718 (3)0.0201 (7)
C300.28412 (16)0.5641 (3)0.0679 (3)0.0219 (8)
C180.15699 (16)0.8359 (3)0.1370 (3)0.0230 (8)
C170.12057 (16)0.9477 (3)0.0781 (3)0.0283 (8)
H170.13320.98190.01550.034*
C190.15462 (17)0.3786 (4)0.0142 (3)0.0334 (9)
H190.13450.37690.07470.040*
C290.23126 (16)0.4680 (3)0.0704 (3)0.0223 (8)
N30.20374 (13)0.4662 (3)0.0168 (2)0.0237 (7)
C280.35071 (17)0.7391 (3)0.0217 (3)0.0298 (8)
H280.36320.79840.08300.036*
C70.30846 (16)0.4681 (3)0.3224 (3)0.0218 (8)
C60.34865 (15)0.3646 (3)0.3957 (3)0.0224 (7)
C50.40428 (16)0.3049 (3)0.3705 (3)0.0283 (8)
H50.41790.33370.30730.034*
C80.17973 (15)0.6886 (3)0.3031 (3)0.0211 (7)
H80.17130.67200.37300.025*
C150.04909 (16)0.9624 (3)0.2047 (3)0.0253 (8)
C270.38318 (17)0.7519 (4)0.0626 (3)0.0327 (9)
H270.41680.81900.05900.039*
C250.31509 (16)0.5700 (3)0.1560 (3)0.0252 (8)
C90.14253 (16)0.7951 (3)0.2367 (3)0.0213 (7)
C240.29397 (18)0.4778 (4)0.2454 (3)0.0337 (9)
H240.31520.48050.30460.040*
C160.06880 (17)1.0053 (3)0.1098 (3)0.0294 (8)
H160.04481.07700.06700.035*
C40.44030 (18)0.2036 (3)0.4365 (3)0.0346 (9)
H40.47860.16420.41870.042*
C230.24477 (18)0.3873 (4)0.2479 (3)0.0343 (9)
H230.23190.32710.30860.041*
C120.01612 (16)0.8884 (3)0.3977 (3)0.0322 (9)
H120.00510.86350.46420.039*
C200.13060 (19)0.2883 (3)0.0727 (3)0.0377 (10)
H200.09500.22750.07110.045*
C210.15930 (17)0.2894 (3)0.1600 (3)0.0352 (9)
H210.14380.22890.21980.042*
C130.02362 (18)0.9835 (3)0.3284 (3)0.0353 (9)
H130.06191.02220.34660.042*
C110.07096 (16)0.8301 (3)0.3714 (3)0.0251 (8)
H110.09790.76750.42110.030*
C20.36495 (18)0.2189 (3)0.5537 (3)0.0336 (9)
H20.35100.18890.61640.040*
C10.32968 (17)0.3206 (3)0.4892 (3)0.0274 (8)
H10.29220.36120.50840.033*
C140.00667 (17)1.0199 (3)0.2342 (3)0.0331 (9)
H140.03321.08560.18730.040*
C260.36606 (17)0.6671 (3)0.1501 (3)0.0300 (9)
H260.38850.67320.20760.036*
C30.42037 (19)0.1600 (3)0.5282 (3)0.0381 (10)
H30.44460.09030.57330.046*
O30.45503 (12)0.6073 (3)0.2347 (2)0.0496 (7)
H3A0.42000.56900.24300.074*
C310.51281 (18)0.5443 (4)0.3014 (4)0.0487 (11)
H31A0.55370.58770.29060.073*
H31B0.51280.44940.28100.073*
H31C0.51220.55180.37920.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0281 (2)0.0251 (2)0.0184 (2)0.0030 (2)0.00950 (17)0.0013 (2)
N20.0245 (14)0.0205 (15)0.0193 (15)0.0015 (13)0.0081 (12)0.0036 (13)
N40.0260 (15)0.0254 (16)0.0228 (17)0.0045 (13)0.0087 (13)0.0020 (13)
O10.0274 (12)0.0288 (13)0.0199 (14)0.0057 (10)0.0090 (11)0.0031 (10)
O20.0360 (13)0.0264 (13)0.0220 (14)0.0046 (11)0.0124 (11)0.0042 (10)
N10.0271 (16)0.0227 (15)0.0187 (16)0.0027 (12)0.0079 (13)0.0015 (13)
C220.0337 (19)0.0243 (19)0.024 (2)0.0075 (18)0.0038 (16)0.0030 (17)
C100.0194 (16)0.0169 (17)0.0224 (19)0.0027 (14)0.0026 (14)0.0041 (15)
C300.0228 (18)0.0262 (19)0.0174 (19)0.0095 (15)0.0065 (16)0.0066 (15)
C180.0289 (19)0.0201 (19)0.0185 (19)0.0016 (14)0.0032 (16)0.0031 (14)
C170.036 (2)0.026 (2)0.022 (2)0.0012 (16)0.0056 (18)0.0032 (16)
C190.034 (2)0.031 (2)0.036 (2)0.0011 (19)0.0110 (18)0.0088 (19)
C290.0224 (18)0.0227 (19)0.022 (2)0.0086 (15)0.0055 (16)0.0038 (15)
N30.0268 (16)0.0256 (16)0.0210 (17)0.0045 (13)0.0104 (14)0.0041 (12)
C280.032 (2)0.033 (2)0.026 (2)0.0006 (17)0.0095 (17)0.0021 (17)
C70.0259 (19)0.0244 (19)0.0153 (19)0.0037 (15)0.0059 (16)0.0025 (14)
C60.0232 (17)0.0203 (17)0.0228 (19)0.0037 (16)0.0041 (15)0.0006 (16)
C50.0295 (19)0.0247 (19)0.031 (2)0.0005 (16)0.0073 (17)0.0022 (16)
C80.0247 (18)0.0218 (18)0.0187 (19)0.0035 (15)0.0089 (16)0.0026 (15)
C150.0241 (19)0.0218 (19)0.030 (2)0.0010 (15)0.0062 (17)0.0016 (16)
C270.029 (2)0.040 (2)0.032 (2)0.0010 (17)0.0136 (18)0.0117 (18)
C250.0258 (19)0.0297 (19)0.021 (2)0.0111 (16)0.0067 (17)0.0051 (16)
C90.0244 (18)0.0197 (18)0.0193 (19)0.0012 (15)0.0050 (15)0.0006 (15)
C240.042 (2)0.041 (2)0.022 (2)0.0164 (19)0.0154 (19)0.0033 (17)
C160.0294 (19)0.0234 (19)0.032 (2)0.0071 (16)0.0024 (18)0.0030 (16)
C40.032 (2)0.030 (2)0.037 (2)0.0038 (17)0.0012 (19)0.0067 (18)
C230.047 (2)0.034 (2)0.021 (2)0.008 (2)0.0072 (18)0.0025 (18)
C120.032 (2)0.033 (2)0.036 (2)0.0023 (18)0.0159 (18)0.0052 (18)
C200.040 (2)0.026 (2)0.045 (3)0.0039 (18)0.007 (2)0.0040 (19)
C210.039 (2)0.028 (2)0.033 (2)0.0024 (18)0.0009 (19)0.0030 (17)
C130.029 (2)0.032 (2)0.048 (3)0.0073 (18)0.016 (2)0.0036 (19)
C110.0256 (18)0.0216 (19)0.029 (2)0.0011 (15)0.0090 (17)0.0004 (15)
C20.037 (2)0.033 (2)0.026 (2)0.0103 (18)0.0001 (18)0.0073 (17)
C10.0255 (19)0.032 (2)0.023 (2)0.0059 (16)0.0034 (17)0.0017 (16)
C140.028 (2)0.027 (2)0.041 (3)0.0077 (16)0.0046 (19)0.0043 (17)
C260.029 (2)0.040 (2)0.025 (2)0.0100 (17)0.0146 (18)0.0105 (17)
C30.041 (2)0.027 (2)0.037 (2)0.0005 (17)0.008 (2)0.0085 (17)
O30.0353 (15)0.0576 (19)0.057 (2)0.0004 (15)0.0143 (15)0.0074 (15)
C310.035 (2)0.056 (3)0.056 (3)0.007 (2)0.014 (2)0.009 (2)
Geometric parameters (Å, º) top
Cu1—O21.913 (2)C8—C91.437 (4)
Cu1—N21.914 (2)C8—H80.9500
Cu1—O11.984 (2)C15—C141.405 (4)
Cu1—N42.023 (3)C15—C161.417 (5)
Cu1—N32.321 (3)C27—C261.357 (5)
N2—C81.296 (4)C27—H270.9500
N2—N11.396 (3)C25—C261.408 (4)
N4—C281.328 (4)C25—C241.427 (5)
N4—C301.360 (4)C24—C231.344 (4)
O1—C71.312 (4)C24—H240.9500
O2—C181.306 (3)C16—H160.9500
N1—C71.315 (4)C4—C31.384 (5)
C22—C211.395 (4)C4—H40.9500
C22—C291.406 (4)C23—H230.9500
C22—C231.431 (4)C12—C111.374 (4)
C10—C111.416 (4)C12—C131.395 (5)
C10—C151.416 (4)C12—H120.9500
C10—C91.454 (4)C20—C211.367 (5)
C30—C251.407 (4)C20—H200.9500
C30—C291.436 (4)C21—H210.9500
C18—C91.416 (4)C13—C141.362 (5)
C18—C171.433 (4)C13—H130.9500
C17—C161.349 (4)C11—H110.9500
C17—H170.9500C2—C11.378 (4)
C19—N31.323 (4)C2—C31.382 (5)
C19—C201.400 (5)C2—H20.9500
C19—H190.9500C1—H10.9500
C29—N31.352 (4)C14—H140.9500
C28—C271.390 (4)C26—H260.9500
C28—H280.9500C3—H30.9500
C7—C61.480 (4)O3—C311.403 (4)
C6—C51.387 (4)O3—H3A0.8400
C6—C11.396 (4)C31—H31A0.9800
C5—C41.388 (5)C31—H31B0.9800
C5—H50.9500C31—H31C0.9800
O2—Cu1—N291.80 (10)C10—C15—C16118.3 (3)
O2—Cu1—O1162.81 (9)C26—C27—C28118.9 (3)
N2—Cu1—O180.85 (10)C26—C27—H27120.6
O2—Cu1—N490.39 (10)C28—C27—H27120.6
N2—Cu1—N4172.79 (11)C30—C25—C26117.6 (3)
O1—Cu1—N495.16 (9)C30—C25—C24118.9 (3)
O2—Cu1—N3101.75 (9)C26—C25—C24123.5 (3)
N2—Cu1—N3109.43 (10)C18—C9—C8121.6 (3)
O1—Cu1—N395.36 (9)C18—C9—C10119.0 (3)
N4—Cu1—N376.80 (10)C8—C9—C10119.4 (3)
C8—N2—N1115.4 (3)C23—C24—C25121.5 (3)
C8—N2—Cu1128.7 (2)C23—C24—H24119.3
N1—N2—Cu1115.65 (18)C25—C24—H24119.3
C28—N4—C30118.9 (3)C17—C16—C15122.2 (3)
C28—N4—Cu1123.1 (2)C17—C16—H16118.9
C30—N4—Cu1118.0 (2)C15—C16—H16118.9
C7—O1—Cu1109.05 (19)C3—C4—C5119.9 (3)
C18—O2—Cu1127.8 (2)C3—C4—H4120.1
C7—N1—N2109.5 (2)C5—C4—H4120.1
C21—C22—C29117.3 (3)C24—C23—C22121.1 (3)
C21—C22—C23123.5 (3)C24—C23—H23119.4
C29—C22—C23119.2 (3)C22—C23—H23119.4
C11—C10—C15116.7 (3)C11—C12—C13121.0 (3)
C11—C10—C9123.3 (3)C11—C12—H12119.5
C15—C10—C9120.0 (3)C13—C12—H12119.5
N4—C30—C25121.4 (3)C21—C20—C19118.8 (3)
N4—C30—C29118.7 (3)C21—C20—H20120.6
C25—C30—C29119.9 (3)C19—C20—H20120.6
O2—C18—C9125.3 (3)C20—C21—C22119.7 (3)
O2—C18—C17116.0 (3)C20—C21—H21120.2
C9—C18—C17118.6 (3)C22—C21—H21120.2
C16—C17—C18121.4 (3)C14—C13—C12118.9 (3)
C16—C17—H17119.3C14—C13—H13120.5
C18—C17—H17119.3C12—C13—H13120.5
N3—C19—C20123.6 (3)C12—C11—C10121.4 (3)
N3—C19—H19118.2C12—C11—H11119.3
C20—C19—H19118.2C10—C11—H11119.3
N3—C29—C22123.3 (3)C1—C2—C3120.7 (3)
N3—C29—C30117.2 (3)C1—C2—H2119.7
C22—C29—C30119.5 (3)C3—C2—H2119.7
C19—N3—C29117.3 (3)C2—C1—C6120.5 (3)
C19—N3—Cu1133.5 (2)C2—C1—H1119.8
C29—N3—Cu1109.2 (2)C6—C1—H1119.8
N4—C28—C27123.0 (3)C13—C14—C15121.6 (3)
N4—C28—H28118.5C13—C14—H14119.2
C27—C28—H28118.5C15—C14—H14119.2
O1—C7—N1124.2 (3)C27—C26—C25120.2 (3)
O1—C7—C6118.8 (3)C27—C26—H26119.9
N1—C7—C6117.0 (3)C25—C26—H26119.9
C5—C6—C1118.5 (3)C2—C3—C4119.5 (3)
C5—C6—C7120.8 (3)C2—C3—H3120.2
C1—C6—C7120.7 (3)C4—C3—H3120.2
C6—C5—C4121.0 (3)C31—O3—H3A109.5
C6—C5—H5119.5O3—C31—H31A109.5
C4—C5—H5119.5O3—C31—H31B109.5
N2—C8—C9124.3 (3)H31A—C31—H31B109.5
N2—C8—H8117.9O3—C31—H31C109.5
C9—C8—H8117.9H31A—C31—H31C109.5
C14—C15—C10120.2 (3)H31B—C31—H31C109.5
C14—C15—C16121.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.841.992.820 (3)167

Experimental details

Crystal data
Chemical formula[Cu(C18H12N2O2)(C12H8N2)]·CH4O
Mr564.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)185
a, b, c (Å)20.388 (2), 9.9707 (10), 12.5268 (12)
β (°) 105.035 (2)
V3)2459.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.836, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
12077, 4352, 2950
Rint0.059
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.093, 1.02
No. of reflections4352
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O21.913 (2)Cu1—N42.023 (3)
Cu1—N21.914 (2)Cu1—N32.321 (3)
Cu1—O11.984 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.841.992.820 (3)167.1
 

Acknowledgements

The authors thank the Natural Science Foundation of Jilin University.

References

First citationAnford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem. 37, 1226–1231.  Web of Science CSD CrossRef PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, Y.-N., Xu, G.-F., Gamez, P., Zhao, L., Lin, S.-Y., Deng, R., Tang, J.-K. & Zhang, H.-J. (2010). J. Am. Chem. Soc. 132, 8538–8539.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHuo, L.-H., Lu, Z.-Z., Gao, S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1636–m1638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, H.-Y., Lu, Z.-S. & Niu, D.-Z. (2008). J. Coord. Chem. 61, 4040–4046.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiao, Y., Ju, X., Gao, Z. & Kong, L. (2010). Acta Cryst. E66, o95.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreeja, P. B., Prathapachandra Kurup, M. R., Kishore, A. & Jasmin, C. (2004). Polyhedron. 23, 575–581.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds