organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o134-o135

1H-Imidazol-3-ium-4-carboxyl­ate

aCollege of Chemistry and Life Science, Weinan Normal University, 714000 Weinan, Shaanxi, People's Republic of China, bChemistry and Chemical Engineering College, Yantai University, 264005 Yantai, Shandong, People's Republic of China, cEngineering Company Limited of China Railway and Airport Group, 714000 Weinan, Shaanxi, People's Republic of China, and dShaanxi Railway Institute, 714000 Weinan, Shaanxi, People's Republic of China
*Correspondence e-mail: ytsxzl@126.com

(Received 28 November 2011; accepted 9 December 2011; online 17 December 2011)

In the title compound, C4H4N2O2, both imidazole N atoms are protonated and carboxyl­ate group is deprotonated, resulting in a zwitterion. The mol­ecule is essentially planar, with an r.m.s. deviation of 0.012 (1) Å. In the crystal, N—H⋯O hydrogen bonds and ππ stacking inter­actions [centroid–centroid distance = 3.674 (2) Å] between the imidazole rings link the mol­ecules into a three-dimensional supra­molecular network.

Related literature

For general background to the construction of coordination polymers based on 1H-imidazole-4,5-dicarb­oxy­lic acid, see: Alkordi, Liu et al. (2008[Alkordi, M. H., Liu, Y. L., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 12639-12641.]); Alkordi, Brant et al. (2009[Alkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. Ch., Cairns, A. J. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753-17755.]); Gu et al. (2010[Gu, Z. G., Cai, Y. P., Fang, H. C., Zhou, Z. Y., Thallapally, P. K., Tian, J., Liu, J. & Exarhos, G. J. (2010). Chem. Commun. 46, 5373-5375.]); Lu et al. (2006[Lu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34-35.]); Nouar et al. (2009[Nouar, F., Eckert, J., Eubank, J. F., Forster, P. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 2864-2870.]); Wang et al. (2010[Wang, S., Zhao, T. T., Li, G. H., Wojtas, L., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). J. Am. Chem. Soc. 132, 18038-18041.]). For related complexes with 1H-imidazole-4-carb­oxy­lic acid, see: Haggag (2005[Haggag, S. S. (2005). Egypt. J. Chem. 48, 27-41.]); Starosta & Leciejewicz (2006[Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648-m2650.]); Gryz et al. (2007[Gryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539-546.]); Yin et al. (2009[Yin, W. P., Li, Y. G., Mei, X. L. & Yao, J. C. (2009). Chin. J. Struct. Chem. 28, 1155-1159.]); Shuai et al. (2011[Shuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.]); Zheng et al. (2011[Zheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.]). For the synthesis of 1H-imidazole-4-carb­oxy­lic acid, see: Davis et al. (1982[Davis, D. P., Kirk, K. L. & Cohen, L. A. (1982). J. Heterocycl. Chem. 19, 253-256.]).

[Scheme 1]

Experimental

Crystal data
  • C4H4N2O2

  • Mr = 112.09

  • Orthorhombic, P n a 21

  • a = 10.474 (6) Å

  • b = 11.676 (7) Å

  • c = 3.674 (2) Å

  • V = 449.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.976

  • 2280 measured reflections

  • 510 independent reflections

  • 480 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.083

  • S = 1.10

  • 510 reflections

  • 73 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.86 1.82 2.648 (2) 160
N1—H1⋯O1ii 0.86 1.91 2.736 (2) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXSInc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXSInc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The organic ligands containing N and O donors, especially the N-heterocyclic carboxylates, are ideal candidates for constructing novel metal coordination polymers, because of their versatile coordination modes and potential hydrogen bonding donors and acceptors. Particular attention has been paid to the 1H-imidazole-4,5-dicarboxylic acid ligand (H3IDC), because it can coordinate with metal ions in different coordination fashions to offer a series of complexes with diverse structures and interesting properties (Alkordi, Liu et al., 2008; Alkordi, Brant et al., 2009; Gu et al., 2010; Lu et al., 2006; Nouar et al., 2009; Wang et al., 2010). Recently, an analogue of H3IDC, 1H-imidazole-4-carboxylic acid (H2IMC), has also been used to prepare new coordination polymers (Haggag, 2005; Starosta & Leciejewicz, 2006; Gryz et al., 2007; Yin et al., 2009; Shuai et al., 2011; Zheng et al., 2011). However, the crystal structure of H2IMC ligand has not been determined. With this in mind, we attempteted to obtain its crystal structure that is reported here.

As illustrated in Fig. 1, the title compound, C4H4N2O2, crystallizes as a zwitterion in which the imidazole N atom is protonated and the carboxylate group is deprotonateded. In the crystal structure, intermolecular N2—H2···O2i and N1—H1···O1ii hydrogen bonds (Table 1) [symmetry code: (i) -x + 1/2, y - 1/2, z + 1/2; (ii) -x,-y + 1, z + 1/2] between the imidazole N—H groups and carboxylate O atoms link the molecules into a three-dimensional supramolecular network (Fig. 2). Moreover, the crystal structure is further stabilized by π-π stacking interactions between neighbouring imidazole rings [N2—C4—N1—C2—C3 and N2v—C4v—N1v—C2v—C3v, symmetry code: (v) x, y, z + 1], with centroid···centroid distances of 3.674 (2) Å (Fig. 2).

Related literature top

For general background to the construction of coordination polymers based on 1H-imidazole-4,5-dicarboxylic acid, see: Alkordi, Liu et al. (2008); Alkordi, Brant et al. (2009); Gu et al. (2010); Lu et al. (2006); Nouar et al. (2009); Wang et al. (2010). For related complexes with 1H-imidazole-4-carboxylic acid, see: Haggag (2005); Starosta & Leciejewicz (2006); Gryz et al. (2007); Yin et al. (2009); Shuai et al. (2011); Zheng et al. (2011). For the synthesis of 1H-imidazole-4-carboxylic acid, see: Davis et al. (1982).

Experimental top

The compound was synthesized from 1H-imidazole-4,5-dicarboxylic acid according to the method reported in the literature (Davis et al., 1982). Colourless single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in water at room temperature.

Refinement top

All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. The zwitter-ionic structure was established from a difference Fourier synthesis. Consequently, all hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and N—H =0.86 Å and with Uiso(H) =1.2 Ueq(C, N). Since this is a light atom structure (does not contain any atoms heavier than Si) and since the data collection was carried out using Mo radiation, it was not possible to unambiguously determine the absolute configuration of this molecule. In the absence of significant anomalous scattering effects Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view showing part of the three-dimensional supramolecular network linked by N–H···O hydrogen bonds and π-π stacking interactions. Hydrogen bonds and π-π stacking interactions are shown as dashed lines. Symmetry codes: (i) -x + 1/2, y - 1/2, z + 1/2; (ii) -x, -y + 1, z + 1/2; (v) x, y, z + 1.
1H-Imidazol-3-ium-4-carboxylate top
Crystal data top
C4H4N2O2F(000) = 232
Mr = 112.09Dx = 1.657 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1380 reflections
a = 10.474 (6) Åθ = 2.6–27.0°
b = 11.676 (7) ŵ = 0.14 mm1
c = 3.674 (2) ÅT = 298 K
V = 449.3 (5) Å3Block, colourless
Z = 40.25 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
510 independent reflections
Radiation source: fine-focus sealed tube480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.967, Tmax = 0.976k = 1412
2280 measured reflectionsl = 44
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.0406P]
where P = (Fo2 + 2Fc2)/3
510 reflections(Δ/σ)max < 0.001
73 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C4H4N2O2V = 449.3 (5) Å3
Mr = 112.09Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.474 (6) ŵ = 0.14 mm1
b = 11.676 (7) ÅT = 298 K
c = 3.674 (2) Å0.25 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
480 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.976Rint = 0.023
2280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.083H-atom parameters constrained
S = 1.10Δρmax = 0.12 e Å3
510 reflectionsΔρmin = 0.19 e Å3
73 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.15183 (19)0.33109 (16)0.6250 (7)0.0265 (5)
C10.20900 (19)0.44287 (17)0.5153 (6)0.0268 (5)
N20.10851 (15)0.15065 (14)0.7501 (6)0.0302 (5)
H20.11490.07740.76600.036*
C40.0113 (2)0.21278 (18)0.8693 (7)0.0301 (5)
H40.06100.18440.98530.036*
O20.31910 (13)0.43682 (12)0.3734 (5)0.0361 (5)
O10.14526 (14)0.53104 (13)0.5736 (6)0.0367 (5)
N10.03417 (16)0.32279 (14)0.7956 (6)0.0284 (5)
H10.01580.37910.84560.034*
C30.1970 (2)0.22218 (17)0.5977 (7)0.0280 (5)
H30.27430.20030.49400.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0254 (9)0.0223 (10)0.0320 (13)0.0003 (8)0.0016 (10)0.0003 (10)
C10.0295 (11)0.0190 (9)0.0319 (13)0.0011 (8)0.0047 (9)0.0035 (9)
N20.0323 (9)0.0181 (8)0.0401 (11)0.0007 (7)0.0033 (9)0.0011 (9)
C40.0275 (10)0.0271 (10)0.0358 (14)0.0035 (8)0.0004 (9)0.0032 (11)
O20.0324 (8)0.0235 (7)0.0524 (12)0.0013 (6)0.0078 (8)0.0043 (9)
O10.0352 (8)0.0203 (7)0.0545 (12)0.0047 (6)0.0018 (8)0.0025 (9)
N10.0279 (9)0.0203 (8)0.0371 (11)0.0024 (7)0.0016 (9)0.0004 (8)
C30.0261 (9)0.0222 (10)0.0357 (14)0.0005 (8)0.0022 (10)0.0017 (10)
Geometric parameters (Å, º) top
C2—C31.361 (3)N2—C31.368 (3)
C2—N11.386 (3)N2—H20.8600
C2—C11.491 (3)C4—N11.334 (3)
C1—O11.246 (3)C4—H40.9300
C1—O21.267 (3)N1—H10.8600
N2—C41.324 (3)C3—H30.9300
C3—C2—N1106.10 (17)N2—C4—N1108.81 (19)
C3—C2—C1131.2 (2)N2—C4—H4125.6
N1—C2—C1122.71 (17)N1—C4—H4125.6
O1—C1—O2127.19 (19)C4—N1—C2108.57 (17)
O1—C1—C2117.49 (18)C4—N1—H1125.7
O2—C1—C2115.32 (18)C2—N1—H1125.7
C4—N2—C3108.78 (17)C2—C3—N2107.74 (19)
C4—N2—H2125.6C2—C3—H3126.1
C3—N2—H2125.6N2—C3—H3126.1
C3—C2—C1—O1180.0 (3)C3—C2—N1—C40.5 (3)
N1—C2—C1—O11.9 (3)C1—C2—N1—C4178.0 (2)
C3—C2—C1—O20.5 (4)N1—C2—C3—N20.2 (3)
N1—C2—C1—O2177.6 (2)C1—C2—C3—N2178.1 (2)
C3—N2—C4—N10.4 (3)C4—N2—C3—C20.1 (3)
N2—C4—N1—C20.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.822.648 (2)160
N1—H1···O1ii0.861.912.736 (2)161
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H4N2O2
Mr112.09
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)10.474 (6), 11.676 (7), 3.674 (2)
V3)449.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
2280, 510, 480
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.083, 1.10
No. of reflections510
No. of parameters73
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.861.822.648 (2)159.9
N1—H1···O1ii0.861.912.736 (2)161.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge the Scientific Research Foundation of Weinan Normal University (grant No. 07YKZ027), the Natural Science Foundation of Yantai University (grant No. HY10Z10), the Science and Technology Research Projects of Yantai City (grant No. 2006GGAO00143), the Science and Technology Research Projects of Shandong Province (grant No. 2008 GG10003020) and the National Science and Technology Research Projects (grant No. 2004BA320B) for supporting this work.

References

First citationAlkordi, M. H., Brant, J. A., Wojtas, L., Kravtsov, V. Ch., Cairns, A. J. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 17753–17755.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAlkordi, M. H., Liu, Y. L., Larsen, R. W., Eubank, J. F. & Eddaoudi, M. (2008). J. Am. Chem. Soc. 130, 12639–12641.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXSInc., Madison, Wisconsin, USA.  Google Scholar
First citationDavis, D. P., Kirk, K. L. & Cohen, L. A. (1982). J. Heterocycl. Chem. 19, 253–256.  CrossRef CAS Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2007). J. Coord. Chem. 60, 539–546.  Web of Science CSD CrossRef CAS Google Scholar
First citationGu, Z. G., Cai, Y. P., Fang, H. C., Zhou, Z. Y., Thallapally, P. K., Tian, J., Liu, J. & Exarhos, G. J. (2010). Chem. Commun. 46, 5373–5375.  Web of Science CSD CrossRef CAS Google Scholar
First citationHaggag, S. S. (2005). Egypt. J. Chem. 48, 27–41.  CAS Google Scholar
First citationLu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34–35.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNouar, F., Eckert, J., Eubank, J. F., Forster, P. & Eddaoudi, M. (2009). J. Am. Chem. Soc. 131, 2864–2870.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShuai, W., Cai, S. & Zheng, S. (2011). Acta Cryst. E67, m897.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m2648–m2650.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, S., Zhao, T. T., Li, G. H., Wojtas, L., Huo, Q. S., Eddaoudi, M. & Liu, Y. L. (2010). J. Am. Chem. Soc. 132, 18038–18041.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYin, W. P., Li, Y. G., Mei, X. L. & Yao, J. C. (2009). Chin. J. Struct. Chem. 28, 1155–1159.  CAS Google Scholar
First citationZheng, S., Cai, S., Fan, J. & Zhang, W. (2011). Acta Cryst. E67, m865.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o134-o135
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds