organic compounds
3-Carbamoylquinoxalin-1-ium chloride
aUniversity of Central Florida, Department of Chemistry, 4000 Central Florida Blvd., Orlando, FL 32816, USA, bMontana State University, Department of Plant Sciences and Plant Patology, Bozeman, MT 59717, USA, and cUniversity of Utah, Department of Chemistry, 315 S. 1400 E. Rm. 2020, Salt Lake City, UT 84112, USA
*Correspondence e-mail: james.harper@ucf.edu
The title compound, C9H8N3O+·Cl−, was isolated from a liquid culture of streptomyces sp. In the cation, the ring system makes a dihedral angle of 0.2 (2)° with the amide group. The protonation creating the cation occurs at ome of the N atoms in the quinoxaline ring system. In the crystal, the ions are linked through N—H⋯O and N—H⋯Cl hydrogen bonds, forming a two-dimensional network parallel to (10).
Related literature
For a description of the bioactivity and mode of action of compounds containing the quinoxaline moiety, see: Bailly et al. (1999); May et al. (2004); Mollegaard et al. (2000); Waring (1993). For crystal structures of the molecules triostin A, echinomycin and their derivatives, which all contain two quinoxalines, see: Hossain et al. (1982); Sheldrick et al. (1984, 1995); Viswamitra et al. (1981); Wang et al. (1984); Ughetto et al. (1985). For a description of the Streptomycete producing the title compound, see: Castillo et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 1998); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811052457/lh5381sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811052457/lh5381Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811052457/lh5381Isup3.cml
The title compound was obtained by
(CH2Cl2/H2O) of a culture of an endophytic Streptomyces sp. described elsewhere (Castillo et al., 2003). A crystal was grown by slow evaporation of a 1:1 mix of CHCl3:MeOHData collection: COLLECT (Nonius, 1998); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C9H8N3O+·Cl− | F(000) = 432 |
Mr = 209.63 | Dx = 1.473 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 1998 reflections |
a = 5.6476 (2) Å | θ = 1.0–27.5° |
b = 15.1045 (9) Å | µ = 0.37 mm−1 |
c = 11.2556 (6) Å | T = 150 K |
β = 99.993 (3)° | Plate, pale yellow |
V = 945.58 (8) Å3 | 0.25 × 0.20 × 0.08 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 2147 independent reflections |
Radiation source: fine-focus sealed tube | 1798 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 27.5°, θmin = 3.9° |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | h = −7→7 |
Tmin = 0.913, Tmax = 0.971 | k = −18→19 |
3671 measured reflections | l = −14→14 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | All H-atom parameters refined |
wR(F2) = 0.085 | w = 1/[σ2(Fo2) + (0.0397P)2 + 0.2499P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
2147 reflections | Δρmax = 0.25 e Å−3 |
160 parameters | Δρmin = −0.24 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.012 (4) |
C9H8N3O+·Cl− | V = 945.58 (8) Å3 |
Mr = 209.63 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.6476 (2) Å | µ = 0.37 mm−1 |
b = 15.1045 (9) Å | T = 150 K |
c = 11.2556 (6) Å | 0.25 × 0.20 × 0.08 mm |
β = 99.993 (3)° |
Nonius KappaCCD diffractometer | 2147 independent reflections |
Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) | 1798 reflections with I > 2σ(I) |
Tmin = 0.913, Tmax = 0.971 | Rint = 0.018 |
3671 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.085 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.25 e Å−3 |
2147 reflections | Δρmin = −0.24 e Å−3 |
160 parameters |
Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm that effectively corrects for absorption effects. High redundancy data were used in the scaling program hence the 'multi-scan' code word was used. No transmission coefficients are available from the program (only scale factors for each frame). The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.08949 (6) | 0.30272 (3) | 0.19526 (3) | 0.03255 (15) | |
O1 | 0.76925 (19) | 0.43611 (7) | 0.55896 (10) | 0.0336 (3) | |
N1 | 0.4423 (2) | 0.39023 (9) | 0.42509 (12) | 0.0269 (3) | |
N2 | 0.6771 (2) | 0.23505 (8) | 0.39555 (10) | 0.0234 (3) | |
N3 | 1.1403 (2) | 0.21019 (8) | 0.51784 (11) | 0.0248 (3) | |
C1 | 0.6625 (3) | 0.38080 (9) | 0.48828 (13) | 0.0247 (3) | |
C2 | 0.7884 (2) | 0.29539 (9) | 0.46906 (12) | 0.0234 (3) | |
C3 | 1.0240 (3) | 0.28321 (10) | 0.53318 (13) | 0.0254 (3) | |
C4 | 1.0391 (2) | 0.14589 (9) | 0.43990 (12) | 0.0237 (3) | |
C5 | 1.1680 (3) | 0.06898 (10) | 0.42012 (14) | 0.0289 (3) | |
C6 | 1.0562 (3) | 0.00651 (11) | 0.34196 (14) | 0.0338 (4) | |
C7 | 0.8153 (3) | 0.01774 (11) | 0.28407 (14) | 0.0331 (4) | |
C8 | 0.6884 (3) | 0.09223 (10) | 0.30207 (13) | 0.0276 (3) | |
C9 | 0.7997 (2) | 0.15942 (9) | 0.37975 (12) | 0.0229 (3) | |
H1A | 0.370 (3) | 0.4397 (13) | 0.4318 (16) | 0.036 (5)* | |
H1B | 0.381 (4) | 0.3498 (15) | 0.3699 (19) | 0.051 (6)* | |
H3 | 1.102 (3) | 0.3227 (12) | 0.5857 (17) | 0.035 (5)* | |
H3N | 1.290 (3) | 0.2011 (11) | 0.5682 (17) | 0.034 (5)* | |
H5 | 1.324 (3) | 0.0634 (12) | 0.4615 (16) | 0.035 (5)* | |
H6 | 1.139 (3) | −0.0467 (12) | 0.3273 (15) | 0.032 (4)* | |
H7 | 0.738 (3) | −0.0276 (13) | 0.2325 (17) | 0.041 (5)* | |
H8 | 0.523 (3) | 0.1023 (10) | 0.2602 (15) | 0.027 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0270 (2) | 0.0419 (2) | 0.0258 (2) | −0.00693 (15) | −0.00344 (14) | −0.00243 (15) |
O1 | 0.0323 (6) | 0.0264 (5) | 0.0365 (6) | 0.0033 (4) | −0.0097 (5) | −0.0054 (5) |
N1 | 0.0258 (6) | 0.0235 (6) | 0.0284 (7) | 0.0029 (5) | −0.0037 (5) | −0.0018 (5) |
N2 | 0.0240 (6) | 0.0249 (6) | 0.0205 (6) | −0.0011 (5) | 0.0015 (5) | 0.0019 (5) |
N3 | 0.0217 (6) | 0.0290 (6) | 0.0225 (6) | 0.0013 (5) | 0.0000 (5) | 0.0016 (5) |
C1 | 0.0263 (7) | 0.0231 (7) | 0.0228 (7) | −0.0001 (6) | −0.0011 (5) | 0.0023 (6) |
C2 | 0.0235 (7) | 0.0251 (7) | 0.0212 (7) | −0.0014 (5) | 0.0030 (5) | 0.0016 (5) |
C3 | 0.0244 (7) | 0.0268 (7) | 0.0232 (7) | −0.0009 (6) | −0.0007 (6) | −0.0007 (6) |
C4 | 0.0253 (7) | 0.0258 (7) | 0.0204 (7) | −0.0011 (5) | 0.0051 (5) | 0.0029 (5) |
C5 | 0.0286 (8) | 0.0315 (8) | 0.0274 (8) | 0.0053 (6) | 0.0075 (6) | 0.0033 (6) |
C6 | 0.0433 (9) | 0.0288 (8) | 0.0321 (8) | 0.0056 (7) | 0.0144 (7) | −0.0001 (7) |
C7 | 0.0428 (9) | 0.0303 (8) | 0.0279 (8) | −0.0050 (7) | 0.0102 (7) | −0.0071 (7) |
C8 | 0.0296 (8) | 0.0314 (8) | 0.0220 (7) | −0.0046 (6) | 0.0052 (6) | −0.0018 (6) |
C9 | 0.0257 (7) | 0.0246 (7) | 0.0189 (7) | −0.0008 (6) | 0.0050 (5) | 0.0022 (5) |
O1—C1 | 1.2361 (17) | C3—H3 | 0.900 (19) |
N1—C1 | 1.3285 (18) | C4—C5 | 1.409 (2) |
N1—H1A | 0.86 (2) | C4—C9 | 1.4178 (19) |
N1—H1B | 0.90 (2) | C5—C6 | 1.368 (2) |
N2—C2 | 1.3154 (18) | C5—H5 | 0.928 (17) |
N2—C9 | 1.3635 (18) | C6—C7 | 1.413 (2) |
N3—C3 | 1.3104 (19) | C6—H6 | 0.957 (18) |
N3—C4 | 1.3660 (19) | C7—C8 | 1.368 (2) |
N3—H3N | 0.94 (2) | C7—H7 | 0.95 (2) |
C1—C2 | 1.5066 (19) | C8—C9 | 1.414 (2) |
C2—C3 | 1.411 (2) | C8—H8 | 0.980 (16) |
C1—N1—H1A | 117.3 (12) | N3—C4—C9 | 117.53 (13) |
C1—N1—H1B | 120.9 (13) | C5—C4—C9 | 121.29 (13) |
H1A—N1—H1B | 121.2 (18) | C6—C5—C4 | 118.49 (15) |
C2—N2—C9 | 117.67 (12) | C6—C5—H5 | 123.5 (11) |
C3—N3—C4 | 121.30 (13) | C4—C5—H5 | 118.0 (11) |
C3—N3—H3N | 117.5 (10) | C5—C6—C7 | 120.93 (15) |
C4—N3—H3N | 120.9 (10) | C5—C6—H6 | 120.4 (10) |
O1—C1—N1 | 125.36 (13) | C7—C6—H6 | 118.6 (10) |
O1—C1—C2 | 118.78 (12) | C8—C7—C6 | 121.19 (15) |
N1—C1—C2 | 115.85 (12) | C8—C7—H7 | 118.8 (11) |
N2—C2—C3 | 122.45 (13) | C6—C7—H7 | 120.0 (11) |
N2—C2—C1 | 119.85 (12) | C7—C8—C9 | 119.58 (14) |
C3—C2—C1 | 117.69 (12) | C7—C8—H8 | 122.4 (9) |
N3—C3—C2 | 119.48 (13) | C9—C8—H8 | 118.0 (9) |
N3—C3—H3 | 116.4 (12) | N2—C9—C8 | 120.04 (13) |
C2—C3—H3 | 124.2 (12) | N2—C9—C4 | 121.50 (13) |
N3—C4—C5 | 121.17 (13) | C8—C9—C4 | 118.46 (13) |
C9—N2—C2—C3 | −1.7 (2) | C9—C4—C5—C6 | −0.6 (2) |
C9—N2—C2—C1 | 179.05 (12) | C4—C5—C6—C7 | −1.3 (2) |
O1—C1—C2—N2 | 179.06 (13) | C5—C6—C7—C8 | 1.6 (2) |
N1—C1—C2—N2 | −1.63 (19) | C6—C7—C8—C9 | 0.1 (2) |
O1—C1—C2—C3 | −0.2 (2) | C2—N2—C9—C8 | 179.78 (13) |
N1—C1—C2—C3 | 179.12 (13) | C2—N2—C9—C4 | −0.14 (19) |
C4—N3—C3—C2 | 0.7 (2) | C7—C8—C9—N2 | 178.09 (13) |
N2—C2—C3—N3 | 1.5 (2) | C7—C8—C9—C4 | −2.0 (2) |
C1—C2—C3—N3 | −179.26 (12) | N3—C4—C9—N2 | 2.22 (19) |
C3—N3—C4—C5 | 177.53 (13) | C5—C4—C9—N2 | −177.80 (12) |
C3—N3—C4—C9 | −2.5 (2) | N3—C4—C9—C8 | −177.70 (12) |
N3—C4—C5—C6 | 179.33 (13) | C5—C4—C9—C8 | 2.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 (2) | 2.04 (2) | 2.9008 (17) | 173.5 (17) |
N1—H1B···Cl1 | 0.90 (2) | 2.44 (2) | 3.2590 (13) | 152.0 (17) |
N3—H3N···Cl1ii | 0.94 (2) | 2.02 (2) | 2.9501 (13) | 169.8 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+3/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C9H8N3O+·Cl− |
Mr | 209.63 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 5.6476 (2), 15.1045 (9), 11.2556 (6) |
β (°) | 99.993 (3) |
V (Å3) | 945.58 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.37 |
Crystal size (mm) | 0.25 × 0.20 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.913, 0.971 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3671, 2147, 1798 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.085, 1.05 |
No. of reflections | 2147 |
No. of parameters | 160 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.25, −0.24 |
Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O1i | 0.86 (2) | 2.04 (2) | 2.9008 (17) | 173.5 (17) |
N1—H1B···Cl1 | 0.90 (2) | 2.44 (2) | 3.2590 (13) | 152.0 (17) |
N3—H3N···Cl1ii | 0.94 (2) | 2.02 (2) | 2.9501 (13) | 169.8 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+3/2, −y+1/2, z+1/2. |
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bailly, C., Echepare, S., Gago, F. & Waring, M. J. (1999). Anti-Cancer Drug Des. 14, 291–303. Web of Science PubMed CAS Google Scholar
Castillo, U., Harper, J. K., Strobel, G. A., Sears, J., Alesi, K., Ford, E., Lin, J., Hunter, M., Maranta, M., Ge, H., Yaver, D., Jensen, J. B., Porter, H., Robison, R., Miller, D., Hess, W. M., Condron, M. & Teplow, D. (2003). FEMS Microbiol. Lett. 224, 183–190. Web of Science CrossRef PubMed CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hossain, M. B., van der Helm, D., Olsen, R. K., Jones, P. G., Sheldrick, G. M., Egert, E., Kennard, O., Waring, M. J. & Viswamitra, M. A. (1982). J. Am. Chem. Soc. 104, 3401–3408. CSD CrossRef CAS Web of Science Google Scholar
May, L. G., Madine, M. A. & Waring, M. J. (2004). Nucleic Acids Res. 32, 65–72. Web of Science CrossRef PubMed CAS Google Scholar
Mollegaard, N. K., Bailly, C., Waring, M. J. & Nielsen, P. E. (2000). Biochemistry, 39, 9502–9507. Web of Science PubMed CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M., Guy, J. J., Kennard, O., Rivera, U. & Waring, M. J. (1984). J. Chem. Soc. Perkin Trans. 2, pp. 1601–1605. CrossRef Google Scholar
Sheldrick, G. M., Heine, A., Schmidt-Bäse, K., Pohl, E., Jones, P. G., Paulus, E. & Waring, M. J. (1995). Acta Cryst. B51, 987–999. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ughetto, G., Wang, A. H.-J., Quigley, G. J., van der Marel, G. A., van Boom, J. H., Rich, A. (1985). Nucleic Acids Res. 13, 2305–2323. CrossRef CAS PubMed Web of Science Google Scholar
Viswamitra, M. A., Kennard, O., Cruse, W. B. T., Egert, E., Sheldrick, G. M., Jones, P. G., Waring, M. J., Wakelin, L. P. G. & Olsen, R. K. (1981). Nature (London), 289, 817–819. CSD CrossRef CAS PubMed Web of Science Google Scholar
Wang, A. H.-J., Ughetto, G., Quigley, G. J., Hakoshima, T., van der Marel, G. A., van Boom, J. H., Rich, A. (1984). Science, 225, 1115–1121. CrossRef CAS PubMed Web of Science Google Scholar
Waring, M. J. (1993). In Molecular aspects of anticancer drug-DNA interactions. Boca Raton, Florida, USA: CRC Press. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoxaline ring is an essential component of the DNA intercalators echinomycin and triostin A. The two quinoxaline rings present in each of these compounds bind the minor groove of double stranded DNA and thereby inhibit RNA synthesis (Bailly et al., 1999; May et al., 2004; Mollegaard et al., 2000; Waring, 1993). Presently, the quinoxaline ring has been characterized crystallographically only as part of a significantly larger molecular assembly (Hossain et al., 1982; Sheldrick et al.,1984; Sheldrick et al., 1995; Viswamitra et al., 1981; Wang et al., 1984; Ughetto et al., 1985). Accordingly, the resolution of the quinoxaline moieties currently established is relatively low. Here, characterization of a simpler quinoxaline ring system provides a higher resolution dataset for a compound having a substitution pattern identical to that found in the quinoxaline antibiotics. The conformation about the C1—C2 bond in the title compound is shown in Figure 1 and matches that reported for triostin A and echinomycin. Molecules in the crystal are linked through N1—H···O1i (see Table 1 for symmetry codes) hydrogen bonds as well as N1—H···Cl···H—N3 interaction. The structure viewed along the a axis is shown in figure 2.