metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m31-m32

2,9-Di­methyl-1,10-phenanthrolin-1-ium (6-carb­­oxy-4-hy­dr­oxy­pyridine-2-carboxyl­ato-κ3O2,N,O6)(4-hy­dr­oxy­pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)zincate(II) 2.35-hydrate: a proton-transfer compound

aFaculty of Science, Department of Chemistry, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran, bInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, and cIran Compiling Encyclopedia Foundation, Tajrish, Tehran, Iran
*Correspondence e-mail: zderik@yahoo.com

(Received 20 November 2011; accepted 5 December 2011; online 10 December 2011)

In the title compound, (C14H13N2)[Zn(C7H3NO5)(C7H4NO5)]·2.35H2O, the ZnII atom is coordinated by two N atoms and four O atoms from the carboxyl­ate groups of the 4-hy­droxy­pyridine-2,6-dicarboxyl­ate and 6-carb­oxy-4-hy­droxy­pyridine-2-carboxyl­ate ligands, forming a distored octa­hedral geometry. In the anion, the two pyridine rings are inclined to one another by 87.75 (13)°. Two types of robust O—H⋯O hydrogen bond synthons, viz. R22(16) and R66(42), link the anions to form a two-dimensional network parallel to the bc plane. Furthermore, O—H⋯O, N—H⋯O, N—H⋯N and weak C—H⋯O hydrogen bonds connect the two dimensional networks, forming a three-dimensional structure. In the crystal, there are also C—H⋯π and ππ inter­actions [centroid–centroid distances of 3.5554 (18) and 3.7681 (18) Å], and C=O⋯π inter­actions [O⋯centroid distance = 3.117 (2) Å] present. One of the three crystal water molecules shows an occupancy of 0.35.

Related literature

For related structures, see: Aghabozorg et al. (2007a[Aghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007a). Acta Cryst. E63, m1917-m1918.],b[Aghabozorg, H., Manteghi, F., Ghadermazi, M., Mohammad Panah, F. & Sheshmani, S. (2007b). J. Tech. Educ. 1, 57-78.],c[Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007c). Acta Cryst. E63, m1760.], 2008a[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008a). J. Iran. Chem. Soc. 5, 184-227.],b[Aghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008b). Acta Cryst. E64, m144-m145.],c[Aghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, m252-m253.]); Derakhshandeh et al. (2010[Derakhshandeh, M., Derikvand, Z., Nemati, A. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1084-m1085.]); Moghimi et al. (2005a[Moghimi, A., Aghabozorg, H., Sheshmani, S. & Soleimannejad, J. (2005a). Anal. Sci. 21, x71-x72.],b[Moghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005b). Acta Cryst. E61, o442-o444.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H13N2)[Zn(C7H3NO5)(C7H4NO5)]·2.35H2O

  • Mr = 680.19

  • Monoclinic, P 21 /c

  • a = 11.0687 (18) Å

  • b = 9.7888 (14) Å

  • c = 25.776 (4) Å

  • β = 94.160 (19)°

  • V = 2785.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 223 K

  • 0.38 × 0.15 × 0.15 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.972, Tmax = 1.000

  • 20517 measured reflections

  • 5464 independent reflections

  • 3242 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.081

  • S = 0.82

  • 5464 reflections

  • 437 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N4 0.87 2.37 2.721 (3) 105
N3—H3⋯O1W 0.87 2.01 2.848 (4) 161
O5—H5⋯O2W 0.83 1.76 2.570 (4) 166
O7—H7⋯O2i 0.83 1.66 2.402 (3) 147
O10—H10⋯O3ii 0.83 1.75 2.562 (3) 166
O1W—H1WA⋯O9iii 0.83 (3) 2.02 (4) 2.833 (4) 169 (4)
O1W—H1WB⋯O4iv 0.84 (4) 2.18 (4) 2.960 (4) 156 (3)
O2W—H2WA⋯O8v 0.82 (4) 1.98 (4) 2.738 (4) 155 (4)
O2W—H2WB⋯O4vi 0.81 (2) 2.25 (3) 3.046 (4) 171 (4)
O3W—H3WA⋯O4 0.83 (2) 1.75 (5) 2.530 (7) 157 (13)
O3W—H3WB⋯O2Wv 0.82 (2) 2.21 (4) 2.750 (9) 123 (3)
C27—H27C⋯O3vii 0.97 2.58 3.504 (4) 160
C22—H22⋯Cg1viii 0.94 2.76 3.634 (4) 155
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+2, -z; (iii) -x+1, -y+2, -z; (iv) -x+1, -y+1, -z; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x+1, y, z; (viii) x, y-1, z.

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). EXPOSE, CELL and INTEGRATE in IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS-I; data reduction: INTEGRATE in IPDS-I; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of some proton transfer complexes where 4-hydroxypyridine-2,6-dicarboxlic acid (hypydcH2) is the proton donor have been reported on previously (Derakhshandeh et al., 2010; Aghabozorg et al., 2007a, 2007b, 2007c, 2008a, 2008b, 2008c; Moghimi et al., 2005a, 2005b). Herein, we report on the crystal structure of the title compound, obtained by the reaction of zinc(II)nitrate, with the same proton donor (hpydcH2) and the proton acceptor 2,9-dimethyl-1,10-phenanthroline (dmp).

The title compound contains of one [Zn(hpydc)(hpydcH)]- anion, one (dmpH)+ cation and 2.35 uncoordinated water molecules (Fig. 1). A carboxylic acid proton has been transferred to an N atom of 2,9-dimethyl-1,10-phenanthroline. In the anions, the ZnII atom is six-coordinated by two N atoms (N1 and N2) that occupy the axial positions, and four O atoms (O1, O3, O6 and O8) from the carboxylate groups of the (hypydc)2– and (pydcH) ligands in the equitorial plane, so forming a distorted octahedral geometry. The (hypydc)2- and (pydcH)- ligands are almost perpendicular to one another, with a dihedral angle of 87.75 (13) ° between the two pyridine rings, (N1,C1–C5) and (N2,C8–C12). There is a short N—H···N interaction in the cation (Table 1).

In the crystal, the anions are linked via two types of robust O—H···O hydrogen bond synthons, type (I) R22(16) and (II) R66(42), forming a two-dimensional network lieing parallel to the bc plane (Fig. 2). Intermolecular O—H···O, N—H···O, N—H···N and weak C—H···O hydrogen bonds connect these two dimensional networks to form a three-dimensional arrangement (Table 1 and Fig. 3).

Another aspect of the crystal structure, illustrated in Fig. 4, is the presence of ππ interactions involving the pyridine rings, (Cg1 = N1,C1—C5) and (Cg2 = N2,C8—C12) of the anion and the central ring (Cg3 = C18—C26) of the phenantholinium cation: centroid-centroid distances are 3.7681 (18) Å for Cg1···Cg3i [symmetry code: (i) x + 1, -y + 1/2, z + 1/2] and 3.5554 (18) Å for Cg2···Cg3ii [symmetry code: (ii) x - 1, y + 1, z]. There is also a C—H···π interaction (C22—H22···Cg1viii, see Table 1) and a CO···π interaction present [C6O2···Cg4iii = 3.117 (2) Å; symmetry code: (iii) x - 1, y + 1/2, -z + 1/2; Cg4 is the centroid of ring (N3,C15—C18,C26)].

The crystal structure of the title compound is isostructural to that of the nickel(II) complex, (dmpH)[Ni(hpydc)(hpydcH)].2.35 H2O (Derakhshandeh et al., 2010).

Related literature top

For related structures, see: Aghabozorg et al. (2007a,b,c, 2008a,b,c); Derakhshandeh et al. (2010); Moghimi et al. (2005a,b).

Experimental top

The reaction between 4-hydroxypyridine-2,6-dicarboxylic acid (100 mg, 1 mmol) in 10 ml water, 2,9-dimethyl-1,10-phenanthroline(dmp) (110 mg, 1 mmol) in 20 ml water and zinc(II)nitrate hexahydrate (90 mg, 0.5 mmol) in 5 ml water, in a 2:2:1 molar ratio, gave colourless crystals after slow evaporation of the solvent at room temperature.

Refinement top

The water H-atoms could all be located in difference Fourier maps. They were refined with distance restraints, O—H = 0.84 (2) Å and H···H = 1.35 (2) Å, with Uiso(H) = 1.5Ueq(O). The NH, OH and C-bound H-atoms were included in calculated postions and treated as riding atoms: O—H = 0.83 Å, N—H = 0.87 Å, C—H = 0.94 and 0.97 Å for CH and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(O,N,C), where k = 1.5 for OH and CH3 H atoms and k = 1.2 for all other H atoms.

Computing details top

Data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000); cell refinement: CELL in IPDS-I (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the robust O–H···O hydrogen bond synthons, (I) R22(16) and (II) R66(42) forming a two-dimensional network parallel to the bc plane [the dashed cyan lines show donor-acceptor distances of hydrogen bonds].
[Figure 3] Fig. 3. Crystal packing of the title compound viewed along the b axis. The O—H···O and N—H···N,O hydrogen bonds are shown as dashed lines [anion is black; cation is red; water molecules are blue, green and yellow].
[Figure 4] Fig. 4. A view of the π···π stacking interactions involving the aromatic rings of the anions [(hpydc)2- and (hpydcH)-] and the cations [(dmpH)+], and the CO···π and C–H···π interactions (see Comment section and Table 1 for details).
2,9-Dimethyl-1,10-phenanthrolin-1-ium (6-carboxy-4-hydroxypyridine-2-carboxylato- κ3O2,N,O6)(4-hydroxypyridine-2,6- dicarboxylato-κ3O2,N,O6)zincate(II) 2.35-hydrate top
Crystal data top
(C14H13N2)[Zn(C7H3NO5)(C7H4NO5)]·2.35H2OF(000) = 1398
Mr = 680.19Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 11.0687 (18) Åθ = 2.2–26.0°
b = 9.7888 (14) ŵ = 0.96 mm1
c = 25.776 (4) ÅT = 223 K
β = 94.160 (19)°Rod, colourless
V = 2785.4 (7) Å30.38 × 0.15 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
5464 independent reflections
Radiation source: fine-focus sealed tube3242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
phi rotation scansθmax = 26.1°, θmin = 2.2°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1313
Tmin = 0.972, Tmax = 1.000k = 1212
20517 measured reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.002
5464 reflectionsΔρmax = 0.39 e Å3
437 parametersΔρmin = 0.82 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00093 (19)
Crystal data top
(C14H13N2)[Zn(C7H3NO5)(C7H4NO5)]·2.35H2OV = 2785.4 (7) Å3
Mr = 680.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0687 (18) ŵ = 0.96 mm1
b = 9.7888 (14) ÅT = 223 K
c = 25.776 (4) Å0.38 × 0.15 × 0.15 mm
β = 94.160 (19)°
Data collection top
Stoe IPDS
diffractometer
5464 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3242 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 1.000Rint = 0.079
20517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03912 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.39 e Å3
5464 reflectionsΔρmin = 0.82 e Å3
437 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.14673 (3)0.98758 (4)0.15309 (1)0.0276 (1)
O10.15029 (16)1.0865 (2)0.22605 (8)0.0289 (7)
O20.25273 (17)1.0801 (2)0.30401 (8)0.0274 (6)
O30.21577 (18)0.8234 (2)0.09690 (8)0.0314 (7)
O40.3476 (2)0.6508 (3)0.09550 (10)0.0689 (10)
O50.5868 (2)0.7374 (2)0.27002 (9)0.0447 (8)
O60.00735 (17)0.8304 (2)0.17669 (8)0.0297 (7)
O70.19803 (19)0.7776 (2)0.14763 (9)0.0401 (8)
O80.20512 (17)1.1572 (2)0.11038 (8)0.0322 (7)
O90.1454 (2)1.2917 (2)0.04327 (9)0.0413 (8)
O100.26324 (18)1.0555 (2)0.01266 (8)0.0389 (8)
N10.28365 (19)0.8892 (2)0.19133 (9)0.0215 (7)
N20.00293 (18)1.0208 (2)0.10403 (9)0.0213 (7)
C10.3153 (2)0.9352 (3)0.23913 (11)0.0201 (8)
C20.4150 (2)0.8856 (3)0.26789 (11)0.0228 (8)
C30.4854 (2)0.7857 (3)0.24588 (12)0.0278 (10)
C40.4493 (3)0.7357 (3)0.19700 (12)0.0281 (9)
C50.3486 (2)0.7895 (3)0.17071 (11)0.0230 (9)
C60.2327 (2)1.0437 (3)0.25746 (11)0.0220 (8)
C70.3012 (3)0.7494 (3)0.11652 (12)0.0317 (10)
C80.0969 (2)0.9428 (3)0.10265 (11)0.0222 (8)
C90.1869 (2)0.9531 (3)0.06417 (11)0.0270 (9)
C100.1751 (2)1.0492 (3)0.02501 (11)0.0260 (9)
C110.0730 (2)1.1329 (3)0.02694 (11)0.0237 (9)
C120.0138 (2)1.1140 (3)0.06687 (11)0.0218 (9)
C130.0976 (2)0.8425 (3)0.14675 (11)0.0255 (9)
C140.1313 (3)1.1960 (3)0.07331 (12)0.0279 (10)
N30.8557 (2)0.4051 (2)0.10378 (9)0.0258 (8)
N40.6479 (2)0.2623 (3)0.08062 (10)0.0367 (9)
C150.9555 (2)0.4806 (3)0.11164 (11)0.0291 (9)
C161.0300 (3)0.4557 (3)0.15657 (12)0.0356 (11)
C171.0020 (3)0.3569 (3)0.19104 (13)0.0336 (10)
C180.8955 (3)0.2793 (3)0.18217 (12)0.0280 (9)
C190.8607 (3)0.1741 (3)0.21645 (13)0.0350 (11)
C200.7593 (3)0.1014 (3)0.20556 (13)0.0383 (11)
C210.6825 (3)0.1273 (3)0.15952 (12)0.0333 (10)
C220.5761 (3)0.0541 (4)0.14581 (16)0.0508 (12)
C230.5108 (3)0.0864 (4)0.10097 (16)0.0546 (16)
C240.5479 (3)0.1905 (4)0.06875 (14)0.0463 (13)
C250.7131 (3)0.2303 (3)0.12519 (12)0.0301 (10)
C260.8223 (3)0.3064 (3)0.13721 (12)0.0267 (9)
C270.9843 (3)0.5828 (3)0.07228 (13)0.0380 (11)
C280.4762 (3)0.2261 (5)0.01921 (16)0.0668 (18)
O1W0.7545 (3)0.4750 (3)0.00253 (10)0.0581 (10)
O2W0.6528 (3)0.8705 (3)0.35323 (11)0.0646 (11)
O3W0.5323 (7)0.4978 (8)0.0999 (3)0.067 (3)0.350
H20.435400.918200.301700.0270*
H40.493300.665600.182100.0340*
H50.598100.774300.299000.0670*
H70.190400.714700.169200.0600*
H90.255700.896700.064000.0320*
H100.241501.104200.036600.0580*
H110.064101.200400.001600.0280*
H30.809100.419700.075700.0310*
H161.100800.507800.163200.0430*
H171.054100.340600.220900.0400*
H190.909500.155500.247000.0420*
H200.738400.032200.228500.0460*
H220.550500.016100.167300.0610*
H230.439300.037800.091400.0660*
H27A0.910500.628900.059400.0570*
H27B1.020200.537500.043700.0570*
H27C1.040900.649200.087900.0570*
H28A0.443200.317400.021900.1000*
H28B0.528400.222800.009400.1000*
H28C0.410500.161200.013000.1000*
H1WA0.774 (4)0.546 (3)0.0123 (16)0.0870*
H1WB0.713 (4)0.427 (3)0.0189 (14)0.0870*
H2WA0.687 (4)0.814 (3)0.3724 (16)0.0970*
H2WB0.657 (3)0.948 (2)0.3640 (17)0.0970*
H3WA0.483 (6)0.559 (4)0.105 (5)0.1010*0.350
H3WB0.523 (3)0.430 (3)0.1179 (8)0.1010*0.350
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0267 (2)0.0298 (2)0.0248 (2)0.0004 (2)0.0081 (1)0.0028 (2)
O10.0257 (10)0.0283 (12)0.0313 (12)0.0070 (9)0.0067 (9)0.0021 (10)
O20.0335 (11)0.0264 (11)0.0219 (11)0.0065 (9)0.0003 (9)0.0041 (9)
O30.0339 (12)0.0381 (13)0.0211 (11)0.0020 (10)0.0047 (9)0.0005 (10)
O40.0615 (17)0.091 (2)0.0508 (17)0.0338 (16)0.0196 (13)0.0456 (16)
O50.0410 (13)0.0526 (16)0.0375 (14)0.0277 (11)0.0168 (11)0.0113 (12)
O60.0293 (11)0.0335 (12)0.0253 (11)0.0030 (9)0.0039 (9)0.0067 (10)
O70.0355 (12)0.0417 (14)0.0419 (14)0.0137 (11)0.0056 (10)0.0226 (12)
O80.0279 (11)0.0344 (12)0.0324 (13)0.0099 (9)0.0108 (9)0.0035 (10)
O90.0481 (14)0.0333 (13)0.0408 (14)0.0172 (11)0.0079 (11)0.0170 (12)
O100.0306 (11)0.0603 (16)0.0238 (12)0.0119 (10)0.0114 (9)0.0133 (11)
N10.0228 (12)0.0219 (12)0.0195 (12)0.0016 (10)0.0009 (9)0.0034 (10)
N20.0232 (11)0.0196 (12)0.0208 (11)0.0016 (10)0.0006 (9)0.0015 (11)
C10.0240 (14)0.0176 (14)0.0187 (14)0.0021 (11)0.0015 (11)0.0000 (12)
C20.0258 (14)0.0244 (15)0.0172 (14)0.0016 (12)0.0045 (11)0.0009 (13)
C30.0268 (16)0.0275 (17)0.0281 (17)0.0076 (13)0.0052 (13)0.0011 (14)
C40.0331 (16)0.0248 (16)0.0260 (16)0.0078 (13)0.0005 (13)0.0041 (14)
C50.0272 (15)0.0217 (15)0.0197 (15)0.0014 (12)0.0002 (12)0.0040 (13)
C60.0210 (13)0.0236 (16)0.0211 (15)0.0017 (11)0.0007 (11)0.0020 (12)
C70.0308 (17)0.039 (2)0.0250 (17)0.0003 (14)0.0009 (13)0.0107 (15)
C80.0198 (14)0.0242 (15)0.0224 (15)0.0023 (11)0.0009 (11)0.0015 (12)
C90.0218 (14)0.0349 (18)0.0238 (16)0.0066 (12)0.0008 (12)0.0015 (13)
C100.0224 (14)0.0356 (17)0.0192 (15)0.0027 (12)0.0047 (12)0.0002 (13)
C110.0285 (15)0.0241 (16)0.0179 (14)0.0016 (12)0.0018 (12)0.0036 (13)
C120.0263 (15)0.0193 (15)0.0196 (15)0.0010 (12)0.0011 (11)0.0001 (13)
C130.0256 (15)0.0264 (16)0.0242 (16)0.0045 (13)0.0004 (12)0.0017 (14)
C140.0305 (16)0.0258 (17)0.0266 (17)0.0064 (13)0.0025 (13)0.0003 (14)
N30.0271 (13)0.0261 (14)0.0240 (13)0.0001 (11)0.0002 (10)0.0024 (11)
N40.0306 (14)0.0492 (18)0.0300 (15)0.0070 (12)0.0001 (12)0.0005 (13)
C150.0306 (15)0.0296 (17)0.0273 (15)0.0015 (13)0.0036 (12)0.0037 (15)
C160.0342 (17)0.038 (2)0.0338 (18)0.0056 (14)0.0037 (14)0.0048 (15)
C170.0322 (17)0.0376 (19)0.0295 (18)0.0059 (14)0.0083 (13)0.0032 (16)
C180.0340 (16)0.0254 (16)0.0244 (16)0.0064 (13)0.0010 (13)0.0027 (14)
C190.0419 (19)0.0329 (18)0.0302 (18)0.0104 (15)0.0027 (14)0.0008 (15)
C200.051 (2)0.0303 (19)0.0353 (19)0.0047 (16)0.0148 (16)0.0063 (16)
C210.0373 (17)0.0335 (18)0.0302 (18)0.0054 (14)0.0091 (14)0.0008 (15)
C220.048 (2)0.052 (2)0.054 (2)0.0172 (17)0.0154 (19)0.0017 (19)
C230.040 (2)0.069 (3)0.055 (3)0.0253 (19)0.0050 (18)0.001 (2)
C240.0295 (17)0.065 (3)0.044 (2)0.0114 (17)0.0000 (15)0.0022 (19)
C250.0307 (16)0.0339 (18)0.0257 (16)0.0009 (13)0.0017 (13)0.0038 (14)
C260.0301 (16)0.0248 (16)0.0253 (16)0.0024 (13)0.0030 (13)0.0027 (14)
C270.0466 (19)0.0337 (19)0.0338 (19)0.0114 (15)0.0041 (15)0.0014 (16)
C280.035 (2)0.106 (4)0.057 (3)0.020 (2)0.0126 (18)0.006 (3)
O1W0.0858 (19)0.0464 (17)0.0386 (14)0.0232 (14)0.0184 (13)0.0125 (13)
O2W0.081 (2)0.0485 (17)0.0573 (18)0.0233 (15)0.0433 (15)0.0106 (15)
O3W0.065 (5)0.047 (5)0.087 (6)0.020 (4)0.011 (4)0.001 (5)
Geometric parameters (Å, º) top
Zn1—O12.113 (2)C4—C51.367 (4)
Zn1—O32.329 (2)C5—C71.508 (4)
Zn1—O62.408 (2)C8—C131.503 (4)
Zn1—O82.119 (2)C8—C91.358 (4)
Zn1—N11.995 (2)C9—C101.393 (4)
Zn1—N21.987 (2)C10—C111.394 (4)
O1—C61.247 (3)C11—C121.369 (4)
O2—C61.256 (3)C12—C141.527 (4)
O3—C71.267 (4)C2—H20.9400
O4—C71.237 (4)C4—H40.9400
O5—C31.330 (3)C9—H90.9400
O6—C131.223 (3)C11—H110.9400
O7—C131.282 (3)C15—C271.476 (4)
O8—C141.270 (4)C15—C161.394 (4)
O9—C141.233 (4)C16—C171.364 (4)
O10—C101.327 (3)C17—C181.407 (5)
O5—H50.8300C18—C191.428 (4)
O7—H70.8300C18—C261.391 (4)
O10—H100.8300C19—C201.341 (5)
O1W—H1WB0.84 (4)C20—C211.431 (5)
O1W—H1WA0.83 (3)C21—C251.399 (4)
O2W—H2WB0.81 (2)C21—C221.402 (5)
O2W—H2WA0.82 (4)C22—C231.355 (6)
O3W—H3WB0.82 (3)C23—C241.395 (5)
O3W—H3WA0.83 (6)C24—C281.495 (5)
N1—C11.335 (4)C25—C261.434 (5)
N1—C51.344 (3)C16—H160.9400
N2—C121.335 (4)C17—H170.9400
N2—C81.342 (3)C19—H190.9400
N3—C261.363 (4)C20—H200.9400
N3—C151.332 (3)C22—H220.9400
N4—C251.349 (4)C23—H230.9400
N4—C241.328 (4)C27—H27B0.9700
N3—H30.8700C27—H27A0.9700
C1—C61.500 (4)C27—H27C0.9700
C1—C21.373 (4)C28—H28C0.9700
C2—C31.396 (4)C28—H28A0.9700
C3—C41.383 (4)C28—H28B0.9700
O1—Zn1—O3152.10 (8)O6—C13—C8119.5 (2)
O1—Zn1—O692.05 (7)O7—C13—C8112.9 (2)
O1—Zn1—O896.70 (8)O6—C13—O7127.6 (3)
O1—Zn1—N179.45 (8)O9—C14—C12118.5 (3)
O1—Zn1—N2116.99 (8)O8—C14—O9126.6 (3)
O3—Zn1—O689.23 (7)O8—C14—C12114.9 (3)
O3—Zn1—O895.25 (8)C1—C2—H2121.00
O3—Zn1—N172.69 (8)C3—C2—H2121.00
O3—Zn1—N290.06 (8)C5—C4—H4120.00
O6—Zn1—O8151.69 (7)C3—C4—H4120.00
O6—Zn1—N195.35 (8)C8—C9—H9121.00
O6—Zn1—N273.50 (8)C10—C9—H9121.00
O8—Zn1—N1112.68 (8)C12—C11—H11121.00
O8—Zn1—N278.55 (8)C10—C11—H11121.00
N1—Zn1—N2159.81 (9)N3—C15—C27119.3 (2)
Zn1—O1—C6112.91 (18)N3—C15—C16117.6 (3)
Zn1—O3—C7114.54 (19)C16—C15—C27123.1 (3)
Zn1—O6—C13109.86 (18)C15—C16—C17121.1 (3)
Zn1—O8—C14114.93 (18)C16—C17—C18120.3 (3)
C3—O5—H5109.00C17—C18—C26117.6 (3)
C13—O7—H7109.00C19—C18—C26119.1 (3)
C10—O10—H10109.00C17—C18—C19123.3 (3)
H1WA—O1W—H1WB108 (4)C18—C19—C20120.8 (3)
H2WA—O2W—H2WB115 (4)C19—C20—C21121.1 (3)
H3WA—O3W—H3WB113 (7)C20—C21—C22123.8 (3)
Zn1—N1—C5124.33 (19)C22—C21—C25116.5 (3)
Zn1—N1—C1115.63 (17)C20—C21—C25119.7 (3)
C1—N1—C5119.9 (2)C21—C22—C23118.8 (3)
Zn1—N2—C8122.97 (18)C22—C23—C24121.1 (3)
Zn1—N2—C12117.32 (16)N4—C24—C28117.1 (3)
C8—N2—C12119.2 (2)N4—C24—C23121.7 (3)
C15—N3—C26123.8 (3)C23—C24—C28121.2 (3)
C24—N4—C25117.3 (3)C21—C25—C26118.5 (3)
C26—N3—H3118.00N4—C25—C21124.5 (3)
C15—N3—H3118.00N4—C25—C26117.0 (3)
C2—C1—C6124.4 (3)C18—C26—C25120.8 (3)
N1—C1—C6113.9 (2)N3—C26—C25119.6 (3)
N1—C1—C2121.8 (2)N3—C26—C18119.6 (3)
C1—C2—C3118.6 (3)C15—C16—H16119.00
O5—C3—C4118.6 (3)C17—C16—H16119.00
O5—C3—C2122.4 (3)C16—C17—H17120.00
C2—C3—C4119.0 (2)C18—C17—H17120.00
C3—C4—C5119.1 (3)C20—C19—H19120.00
N1—C5—C7113.3 (2)C18—C19—H19120.00
C4—C5—C7125.1 (3)C19—C20—H20119.00
N1—C5—C4121.6 (3)C21—C20—H20119.00
O2—C6—C1115.6 (2)C21—C22—H22121.00
O1—C6—C1117.9 (2)C23—C22—H22121.00
O1—C6—O2126.5 (3)C24—C23—H23119.00
O3—C7—O4126.4 (3)C22—C23—H23119.00
O3—C7—C5114.9 (3)C15—C27—H27B109.00
O4—C7—C5118.8 (3)H27A—C27—H27C109.00
N2—C8—C13113.7 (2)C15—C27—H27C110.00
N2—C8—C9122.4 (3)H27A—C27—H27B110.00
C9—C8—C13123.9 (2)C15—C27—H27A109.00
C8—C9—C10118.5 (2)H27B—C27—H27C110.00
O10—C10—C11123.4 (3)C24—C28—H28C109.00
O10—C10—C9117.3 (2)H28A—C28—H28C109.00
C9—C10—C11119.3 (2)H28B—C28—H28C109.00
C10—C11—C12118.1 (3)H28A—C28—H28B109.00
N2—C12—C11122.5 (2)C24—C28—H28A109.00
C11—C12—C14123.8 (3)C24—C28—H28B109.00
N2—C12—C14113.7 (2)
O3—Zn1—O1—C64.4 (3)C26—N3—C15—C27178.7 (3)
O6—Zn1—O1—C696.58 (18)C15—N3—C26—C25179.9 (3)
O8—Zn1—O1—C6110.39 (18)C24—N4—C25—C210.1 (5)
N1—Zn1—O1—C61.51 (18)C25—N4—C24—C230.3 (5)
N2—Zn1—O1—C6169.07 (17)C25—N4—C24—C28179.8 (3)
O1—Zn1—O3—C70.9 (3)C24—N4—C25—C26178.8 (3)
O6—Zn1—O3—C793.9 (2)N1—C1—C2—C30.9 (4)
O8—Zn1—O3—C7114.1 (2)N1—C1—C6—O2173.5 (2)
N1—Zn1—O3—C72.0 (2)C6—C1—C2—C3179.1 (3)
N2—Zn1—O3—C7167.4 (2)N1—C1—C6—O15.0 (4)
O1—Zn1—O6—C13119.77 (19)C2—C1—C6—O1175.0 (3)
O3—Zn1—O6—C1388.10 (19)C2—C1—C6—O26.6 (4)
O8—Zn1—O6—C1311.6 (3)C1—C2—C3—C43.0 (4)
N1—Zn1—O6—C13160.63 (19)C1—C2—C3—O5176.4 (3)
N2—Zn1—O6—C132.19 (19)C2—C3—C4—C52.7 (4)
O1—Zn1—O8—C14120.2 (2)O5—C3—C4—C5176.7 (3)
O3—Zn1—O8—C1485.1 (2)C3—C4—C5—C7177.5 (3)
O6—Zn1—O8—C1413.1 (3)C3—C4—C5—N10.3 (4)
N1—Zn1—O8—C14158.5 (2)N1—C5—C7—O36.4 (4)
N2—Zn1—O8—C143.9 (2)N1—C5—C7—O4173.9 (3)
O1—Zn1—N1—C14.36 (18)C4—C5—C7—O48.1 (5)
O1—Zn1—N1—C5179.5 (2)C4—C5—C7—O3171.6 (3)
O3—Zn1—N1—C1177.0 (2)N2—C8—C9—C100.6 (4)
O3—Zn1—N1—C52.0 (2)C13—C8—C9—C10179.2 (3)
O6—Zn1—N1—C195.45 (19)N2—C8—C13—O66.4 (4)
O6—Zn1—N1—C589.5 (2)N2—C8—C13—O7174.0 (2)
O8—Zn1—N1—C188.55 (19)C9—C8—C13—O6172.4 (3)
O8—Zn1—N1—C586.5 (2)C9—C8—C13—O77.3 (4)
N2—Zn1—N1—C1150.6 (2)C8—C9—C10—O10178.8 (2)
N2—Zn1—N1—C534.3 (4)C8—C9—C10—C111.1 (4)
O1—Zn1—N2—C890.0 (2)C9—C10—C11—C121.9 (4)
O1—Zn1—N2—C1298.8 (2)O10—C10—C11—C12178.0 (3)
O3—Zn1—N2—C883.0 (2)C10—C11—C12—C14178.7 (3)
O3—Zn1—N2—C1288.3 (2)C10—C11—C12—N21.2 (4)
O6—Zn1—N2—C86.2 (2)N2—C12—C14—O85.1 (4)
O6—Zn1—N2—C12177.5 (2)C11—C12—C14—O8174.8 (3)
O8—Zn1—N2—C8178.3 (2)C11—C12—C14—O95.7 (4)
O8—Zn1—N2—C127.01 (19)N2—C12—C14—O9174.4 (3)
N1—Zn1—N2—C852.2 (4)N3—C15—C16—C170.4 (4)
N1—Zn1—N2—C12119.1 (3)C27—C15—C16—C17177.7 (3)
Zn1—O1—C6—O2176.9 (2)C15—C16—C17—C181.1 (5)
Zn1—O1—C6—C11.3 (3)C16—C17—C18—C19179.8 (3)
Zn1—O3—C7—O4175.4 (3)C16—C17—C18—C260.7 (5)
Zn1—O3—C7—C54.9 (3)C17—C18—C19—C20178.7 (3)
Zn1—O6—C13—O7178.8 (2)C26—C18—C19—C200.4 (5)
Zn1—O6—C13—C81.5 (3)C17—C18—C26—N30.2 (4)
Zn1—O8—C14—O9180.0 (3)C17—C18—C26—C25179.2 (3)
Zn1—O8—C14—C120.6 (3)C19—C18—C26—N3178.9 (3)
Zn1—N1—C1—C2173.8 (2)C19—C18—C26—C250.1 (5)
Zn1—N1—C1—C66.2 (3)C18—C19—C20—C210.4 (5)
C5—N1—C1—C21.5 (4)C19—C20—C21—C22179.4 (3)
C5—N1—C1—C6178.5 (2)C19—C20—C21—C250.2 (5)
Zn1—N1—C5—C4173.1 (2)C20—C21—C22—C23179.3 (3)
Zn1—N1—C5—C75.0 (3)C25—C21—C22—C230.2 (5)
C1—N1—C5—C41.8 (4)C20—C21—C25—N4179.4 (3)
C1—N1—C5—C7179.9 (2)C20—C21—C25—C260.6 (4)
Zn1—N2—C8—C9169.8 (2)C22—C21—C25—N40.2 (5)
Zn1—N2—C8—C139.0 (3)C22—C21—C25—C26179.0 (3)
C12—N2—C8—C91.3 (4)C21—C22—C23—C240.0 (6)
C12—N2—C8—C13179.9 (2)C22—C23—C24—N40.2 (6)
Zn1—N2—C12—C11171.2 (2)C22—C23—C24—C28179.9 (4)
Zn1—N2—C12—C148.7 (3)N4—C25—C26—N30.5 (4)
C8—N2—C12—C110.4 (4)N4—C25—C26—C18179.5 (3)
C8—N2—C12—C14179.7 (2)C21—C25—C26—N3178.4 (3)
C15—N3—C26—C180.8 (4)C21—C25—C26—C180.6 (5)
C26—N3—C15—C160.5 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N40.872.372.721 (3)105
N3—H3···O1W0.872.012.848 (4)161
O5—H5···O2W0.831.762.570 (4)166
O7—H7···O2i0.831.662.402 (3)147
O10—H10···O3ii0.831.752.562 (3)166
O1W—H1WA···O9iii0.83 (3)2.02 (4)2.833 (4)169 (4)
O1W—H1WB···O4iv0.84 (4)2.18 (4)2.960 (4)156 (3)
O2W—H2WA···O8v0.82 (4)1.98 (4)2.738 (4)155 (4)
O2W—H2WB···O4vi0.81 (2)2.25 (3)3.046 (4)171 (4)
O3W—H3WA···O40.83 (2)1.75 (5)2.530 (7)157 (13)
O3W—H3WB···O2Wv0.82 (2)2.21 (4)2.750 (9)123 (3)
C27—H27C···O3vii0.972.583.504 (4)160
C22—H22···Cg1viii0.942.763.634 (4)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y1, z.

Experimental details

Crystal data
Chemical formula(C14H13N2)[Zn(C7H3NO5)(C7H4NO5)]·2.35H2O
Mr680.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)11.0687 (18), 9.7888 (14), 25.776 (4)
β (°) 94.160 (19)
V3)2785.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.38 × 0.15 × 0.15
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.972, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
20517, 5464, 3242
Rint0.079
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.081, 0.82
No. of reflections5464
No. of parameters437
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.82

Computer programs: EXPOSE in IPDS-I (Stoe & Cie, 2000), CELL in IPDS-I (Stoe & Cie, 2000), INTEGRATE in IPDS-I (Stoe & Cie, 2000), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3···N40.872.372.721 (3)105
N3—H3···O1W0.872.012.848 (4)161
O5—H5···O2W0.831.762.570 (4)166
O7—H7···O2i0.831.662.402 (3)147
O10—H10···O3ii0.831.752.562 (3)166
O1W—H1WA···O9iii0.83 (3)2.02 (4)2.833 (4)169 (4)
O1W—H1WB···O4iv0.84 (4)2.18 (4)2.960 (4)156 (3)
O2W—H2WA···O8v0.82 (4)1.98 (4)2.738 (4)155 (4)
O2W—H2WB···O4vi0.81 (2)2.25 (3)3.046 (4)171 (4)
O3W—H3WA···O40.83 (2)1.75 (5)2.530 (7)157 (13)
O3W—H3WB···O2Wv0.82 (2)2.21 (4)2.750 (9)123 (3)
C27—H27C···O3vii0.972.583.504 (4)160
C22—H22···Cg1viii0.942.763.634 (4)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+2, z; (iii) x+1, y+2, z; (iv) x+1, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y1, z.
 

Acknowledgements

HSE thanks the XRD Application Lab. of the CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAghabozorg, H., Ghadermazi, M., Soleimannejad, J. & Sheshmani, S. (2007a). Acta Cryst. E63, m1917–m1918.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F., Ghadermazi, M., Mohammad Panah, F. & Sheshmani, S. (2007b). J. Tech. Educ. 1, 57–78.  Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008a). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Motyeian, E., Attar Gharamaleki, J., Soleimannejad, J., Ghadermazi, M. & Spey Sharon, E. (2008b). Acta Cryst. E64, m144–m145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Motyeian, E., Soleimannejad, J., Ghadermazi, M. & Attar Gharamaleki, J. (2008c). Acta Cryst. E64, m252–m253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007c). Acta Cryst. E63, m1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDerakhshandeh, M., Derikvand, Z., Nemati, A. & Stoeckli-Evans, H. (2010). Acta Cryst. E66, m1084–m1085.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoghimi, A., Aghabozorg, H., Sheshmani, S. & Soleimannejad, J. (2005a). Anal. Sci. 21, x71–x72.  CAS Google Scholar
First citationMoghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005b). Acta Cryst. E61, o442–o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). EXPOSE, CELL and INTEGRATE in IPDS-I. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m31-m32
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds