organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o180-o181

6-Ethyl-N-methyl-3-nitro-4-nitro­methyl-4H-chromen-2-amine

aCentre for Bioinformatics, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 23 November 2011; accepted 12 December 2011; online 21 December 2011)

In the title compound, C13H15N3O5, the O and N atoms of the nitro­methyl group and the methyl C atom of the ethyl group are disordered over two sets of sites with refined occupancies of 0.629 (7):0.371 (7) and 0.533 (8):0.467 (8), respectively. The dihydro­pyran ring has an extremely flattened conformation. An intra­molecular N—H⋯O hydrogen bond occurs. In the crystal, pairs of N—H⋯O hydrogen bonds link mol­ecules, forming inversion dimers. In addition, weak inter­molecular C—H⋯O hydrogen bonds are also present.

Related literature

For the biological and pharmacological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For related structures, see: Muthukumaran et al. (2011a[Muthukumaran, J., Parthiban, A., Rao, H. S. P. & Krishna, R. (2011c). J. Chem. Crystallogr. 41, 1927-1934.],b[Muthukumaran, J., Parthiban, A., Kannan, M., Rao, H. S. P. & Krishna, R. (2011a). Acta Cryst. E67, o898-o899.],c[Muthukumaran, J., Parthiban, A., Manivel, P., Rao, H. S. P. & Krishna, R. (2011b). Acta Cryst. E67, o1276-o1277.]); Gayathri et al. (2006[Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961-o1963.]); Bhaskaran et al. (2006[Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188-o190.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N3O5

  • Mr = 293.28

  • Triclinic, [P \overline 1]

  • a = 8.2538 (10) Å

  • b = 9.0431 (9) Å

  • c = 10.3323 (12) Å

  • α = 73.484 (9)°

  • β = 71.728 (11)°

  • γ = 83.234 (9)°

  • V = 701.75 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.4 × 0.35 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.958, Tmax = 0.979

  • 4281 measured reflections

  • 2463 independent reflections

  • 1520 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.232

  • S = 1.06

  • 2463 reflections

  • 205 parameters

  • 122 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.97 2.600 (3) 129
N1—H1⋯O2i 0.86 2.21 2.943 (4) 143
C11—H11A⋯O3ii 0.97 2.58 3.258 (4) 128
C12—H12A⋯O2iii 0.97 2.55 3.457 (5) 156
Symmetry codes: (i) -x+1, -y+1, -z+3; (ii) -x+2, -y+1, -z+2; (iii) x, y, z-1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4H-chromene moiety frequently appears as a main structural component in various biologically important compounds. They exhibit the various pharmacological properties such as anti-coagulant, anti-viral, anti-fungal, anti-inflammatory, anti-diabetic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor et al., 1988; Brooks, 1998; Hyana & Saimoto, 1987; Tang et al., 2007). Considering the growing medicinal importance of these derivatives, an X-ray crystallographic study on the title compound was carried out. In the molecular structure of the title compound (I) (Fig. 1) the O and N atoms of the nitromethyl group and the methyl C atom of the ethyl group are disordered over two sets of sites with refined occupancies of 0.629 (7):0.371 (7) and 0.533 (8):0.467 (8), respectively. Some crystal structures of related 4H-chromene derivatives have already been published e.g. N-methyl-3-nitro-4-(nitromethyl)-4H-chromen-2-amine (Muthukumaran et al., 2011c), 6,8-dichloro-N-methyl-3-nitro-4-nitro-methyl-4H-chromen-2-amine (Muthukumaran et al., 2011a), 6-methoxy-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine (Muthukumaran et al., 2011b), N-benzyl-N-[4-methylsulfanyl)-3-nitro-4H-chromen-2-yl] amine (Bhaskaran et al., 2006) and N,6-dimethyl-4-(methylsulfanyl)-3-nitro-4H-chromen-2-amine (Gayathri et al., 2006). In the crystal, N—H···O hydrogen bonds form centrosymmetric dimers (Fig .2). In addition, there are weak intermolecular C—H···O hydrogen bonds.

Related literature top

For the biological and pharmacological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor et al. (1988); Brooks (1998); Hyana & Saimoto (1987); Tang et al. (2007). For related structures, see: Muthukumaran et al. (2011a,b,c); Gayathri et al. (2006); Bhaskaran et al. (2006).

Experimental top

To a solution of (E)-5-ethyl-2-(2-nitrovinyl)phenol (150 mg, 0.77 mmol) in methanol (5 mL), 1,8-diazabicyclo[5.4.0]undec-7-ene (15 mg, 0.10 mmol) was added and stirred for 10 minutes at room temperature. To this solution (E) N-methyl-1-(methylthio)-2-nitroethenamine (115 mg, 0.77 mmol) was added and stirred for 8 h until completion of the reaction (TLC, hexane:ethyl acetate, 3:2, Rf = 1/2). The reaction mixture was then kept aside at 278 K in a refrigerator for 3 h to afford racemic mixture of the product as a white precipitate, which was filtered. Good crystals were obtained by recrystallization of a solution of dichloromethane: hexane (9:3 v/v).

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å. N—H = 0.86Å) and were refined using a riding model with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl and 1.2 for all other atoms. The nitro and terminal carbon atom of ethyl group are disordered over two orientations, with the refined site-occupancy ratios being 0.629 (7):0.371 (7) and 0.533 (8):0.467 (8), respectively. The DFIX, SIMU, DELU and EADP commands in SHELXL (Sheldrick, 2008) were used to model the disorder.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : The crystal packing of (I) showing intermolecular hydrogen bonds as dashed lines.
6-Ethyl-N-methyl-3-nitro-4-nitromethyl-4H-chromen-2-amine top
Crystal data top
C13H15N3O5Z = 2
Mr = 293.28F(000) = 308
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2538 (10) ÅCell parameters from 1935 reflections
b = 9.0431 (9) Åθ = 2.7–29.1°
c = 10.3323 (12) ŵ = 0.11 mm1
α = 73.484 (9)°T = 293 K
β = 71.728 (11)°Block, colorless
γ = 83.234 (9)°0.4 × 0.35 × 0.2 mm
V = 701.75 (14) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2463 independent reflections
Radiation source: fine-focus sealed tube1520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1010
Tmin = 0.958, Tmax = 0.979l = 1112
4281 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1377P)2 + 0.1022P]
where P = (Fo2 + 2Fc2)/3
2463 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.40 e Å3
122 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H15N3O5γ = 83.234 (9)°
Mr = 293.28V = 701.75 (14) Å3
Triclinic, P1Z = 2
a = 8.2538 (10) ÅMo Kα radiation
b = 9.0431 (9) ŵ = 0.11 mm1
c = 10.3323 (12) ÅT = 293 K
α = 73.484 (9)°0.4 × 0.35 × 0.2 mm
β = 71.728 (11)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2463 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1520 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.031
4281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.073122 restraints
wR(F2) = 0.232H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
2463 reflectionsΔρmin = 0.34 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.4139 (2)0.2857 (3)1.1942 (2)0.0468 (6)
C10.5007 (4)0.2700 (4)1.0581 (3)0.0401 (8)
C80.6569 (4)0.4021 (4)1.1982 (3)0.0383 (8)
O20.6415 (3)0.5176 (3)1.3724 (2)0.0569 (7)
O30.8792 (3)0.5209 (3)1.2039 (2)0.0636 (8)
N20.7266 (3)0.4819 (3)1.2608 (3)0.0435 (7)
C90.4856 (4)0.3561 (4)1.2598 (3)0.0394 (8)
N10.3831 (3)0.3738 (3)1.3790 (3)0.0490 (8)
H10.42240.41671.42670.059*
C60.6684 (4)0.3088 (4)0.9922 (3)0.0380 (8)
C20.4066 (4)0.2138 (4)0.9941 (4)0.0490 (9)
H20.29350.18771.04080.059*
C50.7416 (4)0.2899 (4)0.8563 (3)0.0489 (9)
H50.85510.31510.80990.059*
C70.7700 (4)0.3607 (4)1.0681 (3)0.0413 (8)
H70.82380.45631.00440.050*
C40.6519 (5)0.2354 (4)0.7888 (4)0.0528 (9)
C30.4833 (5)0.1970 (4)0.8600 (4)0.0548 (10)
H30.42090.15920.81600.066*
C110.9145 (4)0.2466 (4)1.0924 (4)0.0588 (10)
H11A0.99640.24401.00210.071*
H11B0.97260.28041.14680.071*
N3A0.8506 (10)0.0891 (5)1.1687 (9)0.085 (2)0.629 (7)
O4A0.7196 (14)0.0755 (17)1.2654 (17)0.113 (3)0.629 (7)
O5A0.9064 (12)0.0297 (9)1.1366 (11)0.169 (3)0.629 (7)
N3B0.8580 (16)0.0962 (10)1.1944 (16)0.085 (2)0.371 (7)
O4B0.717 (2)0.043 (3)1.240 (3)0.113 (3)0.371 (7)
O5B0.9759 (19)0.0179 (16)1.2268 (18)0.169 (3)0.371 (7)
C120.7376 (6)0.2240 (6)0.6386 (4)0.0778 (13)
H12A0.72790.32460.57510.093*0.533 (8)
H12B0.85810.20080.62770.093*0.533 (8)
H12C0.65500.25060.58570.093*0.467 (8)
H12D0.82860.29700.59320.093*0.467 (8)
C13A0.6702 (15)0.1062 (12)0.5913 (10)0.114 (3)0.533 (8)
H13A0.73340.10970.49510.171*0.533 (8)
H13B0.55170.12910.59830.171*0.533 (8)
H13C0.68280.00500.65060.171*0.533 (8)
C13B0.8100 (18)0.0627 (8)0.6369 (12)0.114 (3)0.467 (8)
H13D0.86360.05830.54110.171*0.467 (8)
H13E0.71970.00940.68040.171*0.467 (8)
H13F0.89290.03690.68810.171*0.467 (8)
C100.2057 (4)0.3261 (6)1.4383 (4)0.0722 (13)
H10A0.13800.39121.38250.108*
H10B0.16240.33501.53360.108*
H10C0.20010.22091.43760.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0348 (11)0.0592 (17)0.0485 (13)0.0089 (10)0.0032 (9)0.0247 (11)
C10.0371 (16)0.041 (2)0.0445 (17)0.0043 (14)0.0130 (14)0.0158 (14)
C80.0367 (16)0.039 (2)0.0394 (16)0.0034 (13)0.0094 (13)0.0109 (14)
O20.0646 (15)0.0694 (19)0.0409 (12)0.0110 (13)0.0074 (11)0.0262 (12)
O30.0457 (14)0.085 (2)0.0667 (16)0.0271 (13)0.0008 (12)0.0383 (15)
N20.0472 (16)0.0450 (18)0.0393 (14)0.0071 (12)0.0081 (12)0.0155 (13)
C90.0362 (16)0.0365 (19)0.0431 (17)0.0004 (13)0.0080 (14)0.0114 (14)
N10.0431 (15)0.058 (2)0.0448 (15)0.0076 (13)0.0022 (12)0.0255 (14)
C60.0404 (17)0.0360 (19)0.0386 (16)0.0007 (13)0.0114 (13)0.0126 (14)
C20.0420 (18)0.050 (2)0.063 (2)0.0021 (15)0.0210 (16)0.0223 (18)
C50.0472 (18)0.051 (2)0.0468 (19)0.0022 (16)0.0073 (15)0.0175 (16)
C70.0361 (16)0.047 (2)0.0416 (17)0.0084 (14)0.0050 (13)0.0173 (15)
C40.064 (2)0.052 (2)0.0476 (19)0.0046 (17)0.0212 (17)0.0185 (17)
C30.066 (2)0.050 (2)0.063 (2)0.0010 (18)0.0350 (19)0.0208 (18)
C110.0356 (17)0.080 (3)0.074 (2)0.0052 (17)0.0169 (16)0.042 (2)
N3A0.075 (3)0.079 (3)0.095 (4)0.044 (2)0.033 (2)0.023 (2)
O4A0.131 (3)0.045 (7)0.154 (7)0.008 (3)0.030 (3)0.021 (4)
O5A0.189 (6)0.098 (5)0.222 (9)0.055 (5)0.065 (5)0.065 (5)
N3B0.075 (3)0.079 (3)0.095 (4)0.044 (2)0.033 (2)0.023 (2)
O4B0.131 (3)0.045 (7)0.154 (7)0.008 (3)0.030 (3)0.021 (4)
O5B0.189 (6)0.098 (5)0.222 (9)0.055 (5)0.065 (5)0.065 (5)
C120.100 (3)0.084 (3)0.056 (2)0.003 (3)0.022 (2)0.031 (2)
C13A0.168 (10)0.096 (6)0.073 (5)0.015 (6)0.000 (5)0.049 (4)
C13B0.168 (10)0.096 (6)0.073 (5)0.015 (6)0.000 (5)0.049 (4)
C100.046 (2)0.092 (4)0.073 (3)0.015 (2)0.0122 (19)0.041 (2)
Geometric parameters (Å, º) top
O1—C91.342 (4)C11—N3B1.4847 (11)
O1—C11.403 (3)C11—N3A1.4847 (11)
C1—C61.375 (4)C11—H11A0.9700
C1—C21.380 (4)C11—H11B0.9700
C8—N21.366 (4)N3A—O4A1.2113 (11)
C8—C91.414 (4)N3A—O5A1.2115 (11)
C8—C71.496 (4)N3B—O4B1.2114 (11)
O2—N21.256 (3)N3B—O5B1.2117 (11)
O3—N21.256 (3)C12—C13B1.5122 (11)
C9—N11.298 (4)C12—C13A1.5125 (11)
N1—C101.463 (4)C12—H12A0.9700
N1—H10.8600C12—H12B0.9700
C6—C51.395 (4)C12—H12C0.9700
C6—C71.501 (4)C12—H12D0.9700
C2—C31.376 (5)C13A—H13A0.9600
C2—H20.9300C13A—H13B0.9600
C5—C41.372 (5)C13A—H13C0.9600
C5—H50.9300C13B—H13D0.9600
C7—C111.517 (5)C13B—H13E0.9600
C7—H70.9800C13B—H13F0.9600
C4—C31.387 (5)C10—H10A0.9600
C4—C121.518 (5)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C9—O1—C1120.9 (2)O4A—N3A—O5A114.3 (8)
C6—C1—C2122.1 (3)O4A—N3A—C11118.5 (9)
C6—C1—O1122.2 (3)O5A—N3A—C11126.8 (8)
C2—C1—O1115.7 (3)O4B—N3B—O5B118.9 (19)
N2—C8—C9120.1 (3)O4B—N3B—C11128.9 (19)
N2—C8—C7117.6 (2)O5B—N3B—C11112.1 (11)
C9—C8—C7122.2 (3)C13B—C12—C13A53.2 (7)
O3—N2—O2119.8 (3)C13B—C12—C4110.9 (5)
O3—N2—C8118.7 (2)C13A—C12—C4116.9 (5)
O2—N2—C8121.5 (3)C13B—C12—H12A141.0
N1—C9—O1113.2 (3)C13A—C12—H12A108.1
N1—C9—C8126.7 (3)C4—C12—H12A108.1
O1—C9—C8120.1 (3)C13B—C12—H12B59.8
C9—N1—C10125.0 (3)C13A—C12—H12B108.1
C9—N1—H1117.5C4—C12—H12B108.1
C10—N1—H1117.5H12A—C12—H12B107.3
C1—C6—C5117.5 (3)C13B—C12—H12C109.5
C1—C6—C7120.6 (3)C13A—C12—H12C57.4
C5—C6—C7121.8 (3)C4—C12—H12C109.5
C3—C2—C1118.7 (3)H12A—C12—H12C56.1
C3—C2—H2120.6H12B—C12—H12C142.2
C1—C2—H2120.6C13B—C12—H12D109.5
C4—C5—C6122.2 (3)C13A—C12—H12D133.6
C4—C5—H5118.9C4—C12—H12D109.5
C6—C5—H5118.9H12A—C12—H12D55.3
C8—C7—C6111.4 (2)H12B—C12—H12D53.9
C8—C7—C11114.3 (3)H12C—C12—H12D108.0
C6—C7—C11111.6 (3)C12—C13A—H13A109.5
C8—C7—H7106.3C12—C13A—H13B109.5
C6—C7—H7106.3H13A—C13A—H13B109.5
C11—C7—H7106.3C12—C13A—H13C109.5
C5—C4—C3118.2 (3)H13A—C13A—H13C109.5
C5—C4—C12119.3 (3)H13B—C13A—H13C109.5
C3—C4—C12122.5 (3)C12—C13B—H13D109.5
C2—C3—C4121.4 (3)C12—C13B—H13E109.5
C2—C3—H3119.3H13D—C13B—H13E109.5
C4—C3—H3119.3C12—C13B—H13F109.5
N3B—C11—C7114.4 (6)H13D—C13B—H13F109.5
N3A—C11—C7111.4 (4)H13E—C13B—H13F109.5
N3B—C11—H11A117.3N1—C10—H10A109.5
N3A—C11—H11A109.3N1—C10—H10B109.5
C7—C11—H11A109.3H10A—C10—H10B109.5
N3B—C11—H11B97.5N1—C10—H10C109.5
N3A—C11—H11B109.3H10A—C10—H10C109.5
C7—C11—H11B109.3H10B—C10—H10C109.5
H11A—C11—H11B108.0
C9—O1—C1—C67.7 (5)C1—C6—C7—C814.8 (4)
C9—O1—C1—C2172.0 (3)C5—C6—C7—C8168.7 (3)
C9—C8—N2—O3179.8 (3)C1—C6—C7—C11114.3 (3)
C7—C8—N2—O32.4 (4)C5—C6—C7—C1162.2 (4)
C9—C8—N2—O20.7 (5)C6—C5—C4—C30.6 (5)
C7—C8—N2—O2178.2 (3)C6—C5—C4—C12177.5 (3)
C1—O1—C9—N1174.0 (3)C1—C2—C3—C40.0 (5)
C1—O1—C9—C86.3 (4)C5—C4—C3—C20.4 (6)
N2—C8—C9—N14.2 (5)C12—C4—C3—C2177.5 (4)
C7—C8—C9—N1173.1 (3)C8—C7—C11—N3B59.4 (9)
N2—C8—C9—O1176.1 (3)C6—C7—C11—N3B68.2 (9)
C7—C8—C9—O16.6 (5)C8—C7—C11—N3A72.3 (5)
O1—C9—N1—C101.1 (5)C6—C7—C11—N3A55.3 (5)
C8—C9—N1—C10179.2 (4)N3B—C11—N3A—O4A65 (4)
C2—C1—C6—C50.3 (5)C7—C11—N3A—O4A41.2 (12)
O1—C1—C6—C5179.4 (3)N3B—C11—N3A—O5A123 (4)
C2—C1—C6—C7176.3 (3)C7—C11—N3A—O5A131.0 (10)
O1—C1—C6—C74.0 (5)N3A—C11—N3B—O4B64 (4)
C6—C1—C2—C30.4 (5)C7—C11—N3B—O4B15 (2)
O1—C1—C2—C3179.3 (3)N3A—C11—N3B—O5B112 (4)
C1—C6—C5—C40.2 (5)C7—C11—N3B—O5B169.6 (13)
C7—C6—C5—C4176.8 (3)C5—C4—C12—C13B96.2 (7)
N2—C8—C7—C6166.3 (3)C3—C4—C12—C13B85.9 (8)
C9—C8—C7—C616.4 (4)C5—C4—C12—C13A154.5 (7)
N2—C8—C7—C1166.0 (4)C3—C4—C12—C13A27.5 (8)
C9—C8—C7—C11111.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.600 (3)129
N1—H1···O2i0.862.212.943 (4)143
C11—H11A···O3ii0.972.583.258 (4)128
C12—H12A···O2iii0.972.553.457 (5)156
Symmetry codes: (i) x+1, y+1, z+3; (ii) x+2, y+1, z+2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC13H15N3O5
Mr293.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2538 (10), 9.0431 (9), 10.3323 (12)
α, β, γ (°)73.484 (9), 71.728 (11), 83.234 (9)
V3)701.75 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.35 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
4281, 2463, 1520
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.232, 1.06
No. of reflections2463
No. of parameters205
No. of restraints122
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.972.600 (3)129
N1—H1···O2i0.862.212.943 (4)143
C11—H11A···O3ii0.972.583.258 (4)128
C12—H12A···O2iii0.972.553.457 (5)156
Symmetry codes: (i) x+1, y+1, z+3; (ii) x+2, y+1, z+2; (iii) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: hspr@yahoo.com.

Acknowledgements

JM thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF). RK thanks the Centre for Bioinformatics (funded by the Department of Biotechnology and Department of Information Technology, New Delhi, India), Pondicherry University, for providing the computational facilities to carry out this research work. AP thanks Pondicherry University for a fellowship. HSPR thanks the UGC (University Grant Commission) for the Special Assistance Programme (SAP) and the Department of Science and Technology (DST) for the Fund for Improvement of Science and Technology Infrastructure in Universities and Higher Educational Institutions (FIST).

References

First citationBhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationMuthukumaran, J., Parthiban, A., Kannan, M., Rao, H. S. P. & Krishna, R. (2011a). Acta Cryst. E67, o898–o899.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuthukumaran, J., Parthiban, A., Manivel, P., Rao, H. S. P. & Krishna, R. (2011b). Acta Cryst. E67, o1276–o1277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuthukumaran, J., Parthiban, A., Rao, H. S. P. & Krishna, R. (2011c). J. Chem. Crystallogr. 41, 1927–1934.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o180-o181
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds