metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{(1R,2R)-N,N′-Bis[2-(N-methyl­anilino)benzyl­­idene]cyclo­hexane-1,2-di­amine-κ2N,N′}di­chloridoiron(II)

aState Key Laboratory of Supramolecular Structure and Materials, School of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: wuql@jlu.edu.cn, ymu@jlu.edu.cn

(Received 9 December 2011; accepted 14 December 2011; online 17 December 2011)

In the title compound, [FeCl2(C34H36N4)], the FeII ion is coordinated by two Cl atoms and by two N atoms from a (1R,2R)-N,N′-bis[2-(N-methyl­anilino)benzyl­idene]cyclo­hexane-1,2-diamine ligand in a distorted tetra­hedral geometry. The mol­ecule has approximate C2 point symmetry. The dihedral angles between the phenyl and benzene rings on either side of the ligand are 64.56 (14) and 65.61 (13)°.

Related literature

For background to chiral diimine-based catalysts, see: Li et al. (1993[Li, Z., Conser, K. R. & Jacobsen, E. N. (1993). J. Am. Chem. Soc. 115, 5326-5327.]). For the application of iron complexes in enanti­o­selective oxidation, see: Muthupandi et al. (2009[Muthupandi, P., Alamsetti, S. K. & Sekar, G. (2009). Chem. Commun. pp. 3288-3290.]). For related structures, see: Yan et al. (2009[Yan, P.-F., Bao, Y., Li, H.-F. & Li, G.-M. (2009). Acta Cryst. E65, m832.]); Chaggar et al. (2003[Chaggar, R. K., Fawcett, J. & Solan, G. A. (2003). Acta Cryst. E59, m462-m463.]); Sui-Seng et al. (2008[Sui-Seng, C., Freutel, F., Lough, A. J. & Morris, R. H. (2008). Angew. Chem. Int. Ed. 47, 940-943.], 2009[Sui-Seng, C., Haque, F. N., Hadzovic, A., Puetz, A. M., Reuss, V., Meyer, N., Lough, A. J., Iuliis, M. Z. D. & Morris, R. H. (2009). Inorg. Chem. 48, 735-743.]).

[Scheme 1]

Experimental

Crystal data
  • [FeCl2(C34H36N4)]

  • Mr = 627.42

  • Orthorhombic, P 21 21 21

  • a = 13.040 (3) Å

  • b = 13.228 (3) Å

  • c = 20.602 (4) Å

  • V = 3553.6 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.60 mm−1

  • T = 298 K

  • 0.24 × 0.21 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.866, Tmax = 0.897

  • 33683 measured reflections

  • 8057 independent reflections

  • 6495 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.03

  • 8057 reflections

  • 370 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3578 Friedel pairs

  • Flack parameter: 0.010 (12)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Asymmetric alkene aziridination with readily available chiral diimine-based catalysts has been studied (Li, et al., 1993). Salen iron complexes were successfully applied in enantioselective oxidation of racemic benzoins (Muthupandi, et al. 2009), and iron(II) complexes with tetradentate PNNP ligands have been used as catalysts in the asymmetric hydrogenation of acetophenone (Sui-Seng, et al. 2008, 2009). Herein we report a novel chiral iron(II) complex and its molecular structure is shown in Fig. 1.

The title complex (I) possesses approximate C2 point symmetry with the FeII ion coordinated in a distorted tetrahedral geometry by two Cl atoms and by two N atoms from the imine groups of the (1R,2R)-N, N'-bis[ortho- (N-methylphenylamino)-benzylidene]-1,2- diaminocyclohexane ligand. The dihedral angles between the phenyl and benzene rings on either side of the ligand are 64.56 (14)° (C8-C13/C14-C19) and 65.61 (13)° (C22-C27C28-C33). The geometric parameters of (I) can be compared to related complexes (Bao et al. (2009); Chaggar et al. (2003).

Related literature top

For background on chiral diimine-based catalysts, see: Li et al. (1993). For the application of iron complexes applied in enantioselective oxidation, see: Muthupandi et al. (2009). For related structures, see: Bao et al. (2009); Chaggar et al. (2003); Sui-Seng et al. (2008, 2009).

Experimental top

[(1R,2R)-N,N'-Bis(2-fluorobenzylidene) cyclohexane-1,2-diamine] {L} was prepared according to reported procedure (Li et al., 1993). (1R,2R)-N,N'-Bis[ortho-(N-methylphenylamino)- benzylidene]- 1,2-diaminocyclohexane was synthesized according to the following method: A solution of nBuLi (2 mol/L in hexane, 30.0 ml, 60.0 mmol) was added to a solution of N-methylaniline (6.50 ml, 60.0 mmol) in THF (60 ml) at 195K. The mixture was allowed to warm to room temperature and stirred for 6 h. The resulting solution was transferred into a solution of {L} (9.79 g, 30.0 mmol) in THF (60 ml) at 293K. After stirring for 48 h, the reaction was quenched with H2O (20 ml). The organic phase was evaporated to dryness in vacuo to give the crude product as a yellow solid. Pure product was obtained by recrystallization from THF as yellow crystals (11.2 g, 75%) Anal. Calcd for C34H36N4 (500.29): C 81.56, H 7.25, N 11.19; Found: C 81.46, H 7.29, N 11.22%.

The title compound was synthesized according to the following method: FeCl2 (127 mg, 1 mmol) was added to a stirred MeCN solution of the ligand (500 mg, 1 mmol) at room temperature. The resulting mixture was stirred for 12 h. The product precipitated as an brown powder and was isolated by filtration (395 mg, 63%). Crystals suitable for X-ray diffraction studies were obtained from a MeCN/Et2O solution. Anal. Calcd for C34H36Cl2N4Fe (627.43): C 65.09, H 5.78, N 8.93; Found: C 65.14, H 5.69, N 8.90%.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and imine carbon), 0.97 (methylene) and 0.96 (methyl) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing displacement ellipsoids are drawn at the 30% probability level. The hydrogen atoms are omitted for clarity.
(I) top
Crystal data top
C34H36Cl2FeN4Dx = 1.173 Mg m3
Mr = 627.42Melting point: not measured K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 26371 reflections
a = 13.040 (3) Åθ = 3.1–27.5°
b = 13.228 (3) ŵ = 0.60 mm1
c = 20.602 (4) ÅT = 298 K
V = 3553.6 (12) Å3Block, brown
Z = 40.24 × 0.21 × 0.18 mm
F(000) = 1312
Data collection top
Rigaku RAXIS-RAPID
diffractometer
8057 independent reflections
Radiation source: fine-focus sealed tube6495 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 0 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 1614
Absorption correction: multi-scan
ABSCOR, Rigaku (1995).
k = 1716
Tmin = 0.866, Tmax = 0.897l = 2626
33683 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8057 reflectionsΔρmax = 0.18 e Å3
370 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983) 3578 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (12)
Crystal data top
C34H36Cl2FeN4V = 3553.6 (12) Å3
Mr = 627.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 13.040 (3) ŵ = 0.60 mm1
b = 13.228 (3) ÅT = 298 K
c = 20.602 (4) Å0.24 × 0.21 × 0.18 mm
Data collection top
Rigaku RAXIS-RAPID
diffractometer
8057 independent reflections
Absorption correction: multi-scan
ABSCOR, Rigaku (1995).
6495 reflections with I > 2σ(I)
Tmin = 0.866, Tmax = 0.897Rint = 0.043
33683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.093Δρmax = 0.18 e Å3
S = 1.03Δρmin = 0.18 e Å3
8057 reflectionsAbsolute structure: Flack (1983) 3578 Friedel pairs
370 parametersAbsolute structure parameter: 0.010 (12)
1 restraint
Special details top

Experimental. 1H NMR (300 MHz, CDCl3, 298 K) δ (p.p.m.): 8.27 (s, 2H, CH=N), 7.89 (d, 2H, J = 9.0 Hz, ArH), 7.37 (t, 2H, J = 9.0 Hz, ArH), 7.21–7.06 (m, 10H, ArH), 6.74 (t, 2H, J = 9.0 Hz), 6.56 (d, J = 9.0 Hz, 2H), 3.27 (m, 2H, NCHCH2), 1.03 (s, 6H, NCH3), 1.75–1.37 (m, 8H,CH2).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.56631 (2)0.42985 (2)0.460486 (15)0.04245 (9)
Cl10.67993 (5)0.48063 (5)0.53572 (3)0.06293 (17)
Cl20.46852 (6)0.54282 (5)0.40817 (3)0.06693 (18)
N10.47736 (13)0.30362 (14)0.49010 (8)0.0402 (4)
N20.63149 (13)0.31650 (13)0.40093 (8)0.0394 (4)
N30.45490 (16)0.25188 (18)0.67965 (10)0.0584 (5)
N40.67088 (15)0.36560 (17)0.21363 (10)0.0566 (5)
C10.48832 (16)0.21737 (16)0.44434 (10)0.0394 (5)
H10.44720.23290.40580.090*
C20.60131 (15)0.21292 (15)0.42297 (10)0.0374 (4)
H20.64190.19800.46190.090*
C30.62008 (19)0.12705 (19)0.37537 (12)0.0506 (6)
H3A0.69270.12330.36530.090*
H3B0.58330.14040.33530.090*
C40.5846 (2)0.02654 (18)0.40358 (13)0.0597 (6)
H4A0.59550.02670.37200.090*
H4B0.62480.01080.44190.090*
C50.4727 (2)0.0309 (2)0.42142 (13)0.0638 (7)
H5A0.45190.03330.44000.090*
H5B0.43210.04240.38270.090*
C60.45287 (17)0.11521 (17)0.47001 (12)0.0518 (5)
H6A0.48870.10030.51010.090*
H6B0.38010.11830.47950.090*
C70.43205 (15)0.29153 (16)0.54426 (10)0.0430 (4)
H70.40670.22760.55400.090*
C80.41725 (16)0.37204 (19)0.59235 (11)0.0490 (5)
C90.42638 (18)0.3503 (2)0.65930 (11)0.0530 (5)
C100.4029 (2)0.4271 (3)0.70306 (13)0.0722 (8)
H100.40770.41430.74730.090*
C110.3730 (3)0.5202 (3)0.68277 (17)0.0858 (10)
H110.35690.56950.71330.090*
C120.3661 (2)0.5428 (2)0.61802 (17)0.0752 (8)
H120.34630.60690.60450.090*
C130.3893 (2)0.4683 (2)0.57297 (13)0.0613 (7)
H130.38600.48340.52890.090*
C140.54177 (18)0.2032 (2)0.65208 (11)0.0534 (6)
C150.62253 (18)0.2577 (2)0.62606 (12)0.0556 (6)
H150.62100.32800.62660.090*
C160.7052 (2)0.2078 (3)0.59926 (15)0.0754 (9)
H160.75850.24490.58100.090*
C170.7097 (3)0.1044 (4)0.59921 (17)0.0973 (12)
H170.76650.07170.58180.090*
C180.6305 (4)0.0490 (3)0.62469 (18)0.0957 (12)
H180.63340.02120.62410.090*
C190.5460 (3)0.0972 (2)0.65142 (15)0.0754 (8)
H190.49240.05950.66880.090*
C200.4310 (2)0.2244 (3)0.74653 (14)0.0802 (9)
H20A0.45400.15670.75480.090*
H20B0.35820.22830.75320.090*
H20C0.46500.27020.77560.090*
C210.67820 (17)0.32672 (17)0.34710 (10)0.0428 (5)
H210.68760.26900.32200.090*
C220.71833 (16)0.42188 (18)0.32147 (11)0.0449 (5)
C230.72020 (16)0.43670 (19)0.25358 (11)0.0480 (5)
C240.77257 (19)0.5197 (2)0.22871 (13)0.0561 (6)
H240.77500.52990.18410.090*
C250.82048 (19)0.5866 (2)0.26927 (15)0.0632 (7)
H250.85670.64050.25160.090*
C260.81626 (18)0.5757 (2)0.33613 (14)0.0595 (6)
H260.84700.62310.36320.090*
C270.76565 (18)0.4933 (2)0.36163 (12)0.0526 (6)
H270.76290.48510.40640.090*
C280.56550 (18)0.34379 (18)0.22359 (10)0.0486 (5)
C290.5025 (2)0.4097 (2)0.25693 (13)0.0566 (6)
H290.52880.47050.27240.090*
C300.3998 (2)0.3856 (3)0.26745 (15)0.0700 (8)
H300.35830.42970.29090.090*
C310.3597 (2)0.2980 (3)0.24368 (17)0.0771 (9)
H310.29090.28260.25020.090*
C320.4222 (3)0.2325 (3)0.20982 (18)0.0840 (9)
H320.39500.17260.19360.090*
C330.5235 (2)0.2540 (2)0.19977 (16)0.0716 (8)
H330.56460.20880.17700.090*
C340.7164 (2)0.3395 (2)0.15165 (12)0.0630 (7)
H34A0.67410.29060.13000.090*
H34B0.78350.31150.15860.090*
H34C0.72190.39900.12530.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.04618 (16)0.04382 (15)0.03736 (16)0.00461 (14)0.00017 (14)0.00167 (13)
Cl10.0632 (3)0.0743 (4)0.0513 (3)0.0149 (3)0.0097 (3)0.0089 (3)
Cl20.0795 (4)0.0616 (4)0.0597 (4)0.0074 (3)0.0054 (3)0.0132 (3)
N10.0368 (8)0.0509 (9)0.0329 (9)0.0012 (8)0.0005 (7)0.0017 (7)
N20.0381 (9)0.0468 (9)0.0332 (9)0.0033 (8)0.0024 (7)0.0020 (8)
N30.0528 (12)0.0846 (12)0.0379 (10)0.0104 (11)0.0079 (9)0.0083 (10)
N40.0578 (11)0.0741 (13)0.0378 (10)0.0103 (11)0.0137 (9)0.0027 (10)
C10.0380 (10)0.0486 (11)0.0316 (11)0.0053 (9)0.0035 (8)0.0027 (8)
C20.0372 (10)0.0438 (11)0.0311 (11)0.0044 (9)0.0003 (8)0.0032 (8)
C30.0572 (14)0.0499 (13)0.0448 (13)0.0004 (11)0.0026 (11)0.0015 (10)
C40.0765 (18)0.0461 (12)0.0565 (14)0.0036 (13)0.0015 (13)0.0069 (11)
C50.0762 (17)0.0527 (13)0.0625 (17)0.0221 (13)0.0004 (13)0.0053 (12)
C60.0529 (13)0.0542 (12)0.0482 (13)0.0153 (11)0.0038 (11)0.0003 (10)
C70.0361 (9)0.0568 (11)0.0361 (11)0.0058 (10)0.0008 (10)0.0039 (9)
C80.0379 (11)0.0658 (14)0.0432 (12)0.0008 (11)0.0059 (10)0.0051 (11)
C90.0391 (11)0.0815 (13)0.0385 (12)0.0058 (12)0.0052 (10)0.0067 (11)
C100.0643 (16)0.109 (2)0.0431 (14)0.0046 (18)0.0051 (11)0.0205 (16)
C110.077 (2)0.106 (3)0.074 (2)0.020 (2)0.0004 (16)0.043 (2)
C120.0716 (18)0.0737 (19)0.080 (2)0.0170 (15)0.0006 (15)0.0148 (16)
C130.0557 (14)0.0734 (16)0.0549 (15)0.0050 (13)0.0040 (12)0.0078 (13)
C140.0522 (13)0.0743 (15)0.0335 (12)0.0071 (13)0.0066 (10)0.0073 (11)
C150.0426 (12)0.0819 (17)0.0422 (13)0.0105 (12)0.0049 (10)0.0031 (12)
C160.0499 (15)0.122 (3)0.0544 (17)0.0069 (18)0.0055 (13)0.0040 (18)
C170.093 (2)0.143 (4)0.0558 (19)0.050 (3)0.0125 (18)0.003 (2)
C180.132 (3)0.089 (2)0.067 (2)0.035 (2)0.018 (2)0.0068 (18)
C190.100 (2)0.0679 (17)0.0582 (17)0.0066 (17)0.0133 (16)0.0156 (13)
C200.0707 (17)0.124 (3)0.0462 (15)0.0200 (19)0.0112 (14)0.0218 (16)
C210.0436 (11)0.0499 (11)0.0348 (11)0.0003 (10)0.0023 (9)0.0023 (9)
C220.0402 (11)0.0511 (12)0.0432 (12)0.0032 (11)0.0079 (9)0.0032 (11)
C230.0410 (10)0.0596 (13)0.0434 (12)0.0028 (11)0.0097 (9)0.0013 (11)
C240.0546 (13)0.0602 (15)0.0535 (15)0.0043 (12)0.0110 (11)0.0140 (12)
C250.0465 (12)0.0663 (16)0.0767 (19)0.0040 (13)0.0122 (12)0.0160 (14)
C260.0462 (12)0.0576 (13)0.0748 (18)0.0101 (13)0.0001 (12)0.0028 (14)
C270.0442 (12)0.0638 (14)0.0499 (14)0.0023 (11)0.0044 (10)0.0017 (12)
C280.0535 (12)0.0562 (12)0.0360 (11)0.0035 (12)0.0073 (10)0.0001 (9)
C290.0557 (13)0.0644 (15)0.0495 (14)0.0069 (12)0.0031 (11)0.0041 (12)
C300.0477 (13)0.094 (2)0.0688 (19)0.0002 (15)0.0054 (13)0.0116 (16)
C310.0597 (16)0.092 (2)0.079 (2)0.0274 (16)0.0053 (15)0.0091 (18)
C320.075 (2)0.084 (2)0.093 (2)0.0273 (18)0.0032 (19)0.0236 (18)
C330.0713 (18)0.0674 (16)0.076 (2)0.0087 (15)0.0074 (15)0.0168 (15)
C340.0601 (14)0.0901 (19)0.0388 (13)0.0146 (15)0.0097 (11)0.0029 (13)
Geometric parameters (Å, º) top
Fe1—N22.1157 (18)C13—H130.9300
Fe1—N12.1227 (18)C14—C151.384 (4)
Fe1—Cl22.2408 (8)C14—C191.403 (4)
Fe1—Cl12.2468 (7)C15—C161.379 (4)
N1—C71.273 (3)C15—H150.9300
N1—C11.487 (3)C16—C171.369 (6)
N2—C211.272 (3)C16—H160.9300
N2—C21.496 (3)C17—C181.370 (6)
N3—C91.417 (3)C17—H170.9300
N3—C141.422 (3)C18—C191.387 (5)
N3—C201.459 (3)C18—H180.9300
N4—C231.406 (3)C19—H190.9300
N4—C281.419 (3)C20—H20A0.9600
N4—C341.450 (3)C20—H20B0.9600
C1—C61.523 (3)C20—H20C0.9600
C1—C21.539 (3)C21—C221.462 (3)
C1—H10.9800C21—H210.9300
C2—C31.520 (3)C22—C271.400 (4)
C2—H20.9800C22—C231.413 (3)
C3—C41.523 (4)C23—C241.391 (3)
C3—H3A0.9700C24—C251.368 (4)
C3—H3B0.9700C24—H240.9300
C4—C51.505 (4)C25—C261.386 (4)
C4—H4A0.9700C25—H250.9300
C4—H4B0.9700C26—C271.378 (4)
C5—C61.521 (4)C26—H260.9300
C5—H5A0.9700C27—H270.9300
C5—H5B0.9700C28—C291.381 (3)
C6—H6A0.9700C28—C331.396 (4)
C6—H6B0.9700C29—C301.394 (4)
C7—C81.467 (3)C29—H290.9300
C7—H70.9300C30—C311.362 (5)
C8—C131.384 (4)C30—H300.9300
C8—C91.414 (3)C31—C321.379 (5)
C9—C101.393 (4)C31—H310.9300
C10—C111.358 (5)C32—C331.368 (4)
C10—H100.9300C32—H320.9300
C11—C121.370 (5)C33—H330.9300
C11—H110.9300C34—H34A0.9600
C12—C131.386 (4)C34—H34B0.9600
C12—H120.9300C34—H34C0.9600
N2—Fe1—N180.14 (7)C8—C13—C12121.2 (3)
N2—Fe1—Cl2114.98 (5)C8—C13—H13119.4
N1—Fe1—Cl2110.60 (5)C12—C13—H13119.4
N2—Fe1—Cl1110.31 (5)C15—C14—C19119.2 (3)
N1—Fe1—Cl1113.40 (5)C15—C14—N3121.7 (3)
Cl2—Fe1—Cl1120.51 (3)C19—C14—N3119.2 (3)
C7—N1—C1120.27 (18)C16—C15—C14120.0 (3)
C7—N1—Fe1127.20 (15)C16—C15—H15120.0
C1—N1—Fe1111.65 (12)C14—C15—H15120.0
C21—N2—C2119.19 (18)C17—C16—C15120.8 (3)
C21—N2—Fe1128.50 (15)C17—C16—H16119.6
C2—N2—Fe1111.55 (12)C15—C16—H16119.6
C9—N3—C14120.5 (2)C16—C17—C18120.1 (3)
C9—N3—C20116.9 (2)C16—C17—H17119.9
C14—N3—C20115.8 (2)C18—C17—H17120.0
C23—N4—C28119.64 (18)C17—C18—C19120.3 (4)
C23—N4—C34119.2 (2)C17—C18—H18119.8
C28—N4—C34118.4 (2)C19—C18—H18119.8
N1—C1—C6115.56 (17)C18—C19—C14119.6 (3)
N1—C1—C2107.62 (16)C18—C19—H19120.2
C6—C1—C2110.85 (18)C14—C19—H19120.2
N1—C1—H1107.5N3—C20—H20A109.5
C6—C1—H1107.5N3—C20—H20B109.5
C2—C1—H1107.5H20A—C20—H20B109.5
N2—C2—C3116.49 (17)N3—C20—H20C109.5
N2—C2—C1107.68 (16)H20A—C20—H20C109.5
C3—C2—C1111.54 (17)H20B—C20—H20C109.5
N2—C2—H2106.9N2—C21—C22125.3 (2)
C3—C2—H2106.9N2—C21—H21117.4
C1—C2—H2106.9C22—C21—H21117.4
C2—C3—C4110.92 (19)C27—C22—C23118.9 (2)
C2—C3—H3A109.5C27—C22—C21121.7 (2)
C4—C3—H3A109.5C23—C22—C21118.9 (2)
C2—C3—H3B109.5C24—C23—N4122.5 (2)
C4—C3—H3B109.5C24—C23—C22118.9 (2)
H3A—C3—H3B108.0N4—C23—C22118.6 (2)
C5—C4—C3110.7 (2)C25—C24—C23120.6 (2)
C5—C4—H4A109.5C25—C24—H24119.7
C3—C4—H4A109.5C23—C24—H24119.7
C5—C4—H4B109.5C24—C25—C26121.5 (2)
C3—C4—H4B109.5C24—C25—H25119.3
H4A—C4—H4B108.1C26—C25—H25119.3
C4—C5—C6110.7 (2)C27—C26—C25118.7 (2)
C4—C5—H5A109.5C27—C26—H26120.7
C6—C5—H5A109.5C25—C26—H26120.7
C4—C5—H5B109.5C26—C27—C22121.3 (2)
C6—C5—H5B109.5C26—C27—H27119.3
H5A—C5—H5B108.1C22—C27—H27119.3
C5—C6—C1111.74 (19)C29—C28—C33118.6 (2)
C5—C6—H6A109.3C29—C28—N4121.3 (2)
C1—C6—H6A109.3C33—C28—N4120.1 (2)
C5—C6—H6B109.3C28—C29—C30120.3 (3)
C1—C6—H6B109.3C28—C29—H29119.9
H6A—C6—H6B107.9C30—C29—H29119.9
N1—C7—C8124.2 (2)C31—C30—C29120.5 (3)
N1—C7—H7117.9C31—C30—H30119.7
C8—C7—H7117.9C29—C30—H30119.7
C13—C8—C9119.4 (2)C30—C31—C32119.3 (3)
C13—C8—C7120.5 (2)C30—C31—H31120.3
C9—C8—C7120.0 (2)C32—C31—H31120.3
C10—C9—C8117.7 (3)C33—C32—C31121.1 (3)
C10—C9—N3122.4 (2)C33—C32—H32119.5
C8—C9—N3119.9 (2)C31—C32—H32119.5
C11—C10—C9121.7 (3)C32—C33—C28120.2 (3)
C11—C10—H10119.1C32—C33—H33119.9
C9—C10—H10119.1C28—C33—H33119.9
C10—C11—C12121.1 (3)N4—C34—H34A109.5
C10—C11—H11119.5N4—C34—H34B109.5
C12—C11—H11119.5H34A—C34—H34B109.5
C11—C12—C13118.9 (3)N4—C34—H34C109.5
C11—C12—H12120.6H34A—C34—H34C109.5
C13—C12—H12120.6H34B—C34—H34C109.5

Experimental details

Crystal data
Chemical formulaC34H36Cl2FeN4
Mr627.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)13.040 (3), 13.228 (3), 20.602 (4)
V3)3553.6 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.24 × 0.21 × 0.18
Data collection
DiffractometerRigaku RAXIS-RAPID
diffractometer
Absorption correctionMulti-scan
ABSCOR, Rigaku (1995).
Tmin, Tmax0.866, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
33683, 8057, 6495
Rint0.043
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.03
No. of reflections8057
No. of parameters370
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18
Absolute structureFlack (1983) 3578 Friedel pairs
Absolute structure parameter0.010 (12)

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL.

 

Acknowledgements

We thank the National Natural Science Foundation of China (grant Nos. 21074043 and 21004026).

References

First citationChaggar, R. K., Fawcett, J. & Solan, G. A. (2003). Acta Cryst. E59, m462–m463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Z., Conser, K. R. & Jacobsen, E. N. (1993). J. Am. Chem. Soc. 115, 5326–5327.  CrossRef CAS Web of Science Google Scholar
First citationMuthupandi, P., Alamsetti, S. K. & Sekar, G. (2009). Chem. Commun. pp. 3288–3290.  Web of Science CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui-Seng, C., Freutel, F., Lough, A. J. & Morris, R. H. (2008). Angew. Chem. Int. Ed. 47, 940–943.  CAS Google Scholar
First citationSui-Seng, C., Haque, F. N., Hadzovic, A., Puetz, A. M., Reuss, V., Meyer, N., Lough, A. J., Iuliis, M. Z. D. & Morris, R. H. (2009). Inorg. Chem. 48, 735–743.  Web of Science PubMed CAS Google Scholar
First citationYan, P.-F., Bao, Y., Li, H.-F. & Li, G.-M. (2009). Acta Cryst. E65, m832.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds