metal-organic compounds
catena-Poly[[bis(acetato-κO)aquacopper(II)]-μ-5-(pyridin-3-yl)pyrimidine-κ2N1:N5]
aCollege of Pharmacy, Binzhou Medical University, Yantai 264003, People's Republic of China
*Correspondence e-mail: guigehou@163.com
In the title compound, [Cu(CH3CO2)2(C9H7N3)(H2O)]n, the CuII ion is pentacoordinated in a square-pyramidal geometry. The N atoms of the two chelating symmetry-related 5-(pyridin-3-yl)pyrimidine ligands and the O atoms of the two monodentate acetate anions are nearly coplanar, with a mean deviation from the least-squares plane of 0.157 (2) Å and the CuII ion is displaced by 0.050 (3) Å from this plane towards the apical water O atom. Bridging through the bis-monodentate 5-(pyridin-3-yl)pyrimidine ligand forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal, O—H⋯O hydrogen bonds link the molecules into a two-dimensional supramolecular structure parallel to (100). The crystal studied was an with a 0.57 (3):0.43 (3) domain ratio.
Related literature
For background to the network topologies and applications of coordination polymers, see: Allendorf et al. (2009); Evans & Lin (2002); Fujita et al. (2005); He et al. (2006); Hou et al. (2010). For complexes with 5-(4-pyridyl)pyrimidine, see: Thébault et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681105481X/lx2203sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681105481X/lx2203Isup2.hkl
A solution of Cu(CH3COO)2 (10.0 mg, 0.050 mmol) in CH3CN (2 ml) was layered into a solution of 5-(pyridin-3-yl)pyrimidine (7.8 mg, 0.050 mmol) in CH2Cl2 (2 ml) solvent. The solutions were left for about three weeks at room temperature, and blue crystals were obtained. Yield, 73%.
The reported
was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008). Hydrogen atoms on the water molecule were located in the difference Fourier map and refined as riding in their as-found relative positions. Uiso(H) = 1.5Ueq(O). Other H atoms were placed in idealized positions and treated as riding, with C–H = 0.93 Å (CH) or 0.96 (CH3) and, Uiso(H) = 1.2 Ueq(CH) and Uiso(H) = 1.5 Ueq(CH3).Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C2H3O2)2(C9H7N3)(H2O)] | F(000) = 366 |
Mr = 356.82 | Dx = 1.591 Mg m−3 |
Monoclinic, Pc | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P -2yc | Cell parameters from 1345 reflections |
a = 9.154 (2) Å | θ = 2.3–23.5° |
b = 7.9940 (19) Å | µ = 1.49 mm−1 |
c = 10.590 (2) Å | T = 298 K |
β = 106.040 (3)° | Block, blue |
V = 744.8 (3) Å3 | 0.12 × 0.10 × 0.10 mm |
Z = 2 |
Bruker SMART APEX CCD diffractometer | 2305 independent reflections |
Radiation source: fine-focus sealed tube | 2226 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −11→7 |
Tmin = 0.841, Tmax = 0.865 | k = −9→9 |
3778 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3262P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2305 reflections | Δρmax = 1.20 e Å−3 |
203 parameters | Δρmin = −0.57 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 912 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.43 (3) |
[Cu(C2H3O2)2(C9H7N3)(H2O)] | V = 744.8 (3) Å3 |
Mr = 356.82 | Z = 2 |
Monoclinic, Pc | Mo Kα radiation |
a = 9.154 (2) Å | µ = 1.49 mm−1 |
b = 7.9940 (19) Å | T = 298 K |
c = 10.590 (2) Å | 0.12 × 0.10 × 0.10 mm |
β = 106.040 (3)° |
Bruker SMART APEX CCD diffractometer | 2305 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2226 reflections with I > 2σ(I) |
Tmin = 0.841, Tmax = 0.865 | Rint = 0.028 |
3778 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.118 | Δρmax = 1.20 e Å−3 |
S = 1.10 | Δρmin = −0.57 e Å−3 |
2305 reflections | Absolute structure: Flack (1983), 912 Friedel pairs |
203 parameters | Absolute structure parameter: 0.43 (3) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.61030 (11) | 0.52089 (7) | 0.66628 (10) | 0.0291 (2) | |
N1 | −0.1787 (6) | 0.3833 (6) | 0.1934 (5) | 0.0305 (12) | |
N2 | 0.4051 (5) | 0.4089 (6) | 0.6244 (4) | 0.0268 (11) | |
N3 | 0.2208 (7) | 0.2714 (9) | 0.7028 (5) | 0.0482 (16) | |
O1 | 0.5280 (5) | 0.7024 (5) | 0.5469 (4) | 0.0314 (10) | |
O2 | 0.4417 (8) | 0.8581 (8) | 0.6826 (5) | 0.0735 (19) | |
O3 | 0.7014 (5) | 0.3218 (5) | 0.7628 (4) | 0.0334 (10) | |
O4 | 0.7659 (6) | 0.2455 (7) | 0.5853 (4) | 0.0545 (14) | |
O5 | 0.5716 (6) | 0.6364 (6) | 0.8582 (4) | 0.0468 (12) | |
H5A | 0.6520 | 0.6362 | 0.9166 | 0.070* | |
H5B | 0.5193 | 0.7202 | 0.8342 | 0.070* | |
C1 | −0.1278 (8) | 0.3318 (7) | 0.0925 (6) | 0.0324 (14) | |
H1 | −0.1942 | 0.3295 | 0.0084 | 0.039* | |
C2 | 0.0175 (9) | 0.2835 (9) | 0.1108 (6) | 0.0374 (16) | |
H2 | 0.0487 | 0.2476 | 0.0388 | 0.045* | |
C3 | 0.1209 (9) | 0.2859 (8) | 0.2328 (6) | 0.0370 (16) | |
H3 | 0.2219 | 0.2558 | 0.2442 | 0.044* | |
C4 | 0.0683 (7) | 0.3352 (7) | 0.3387 (6) | 0.0266 (13) | |
C5 | −0.0823 (7) | 0.3815 (7) | 0.3133 (6) | 0.0268 (13) | |
H5 | −0.1184 | 0.4131 | 0.3838 | 0.032* | |
C6 | 0.3104 (7) | 0.4091 (7) | 0.5014 (6) | 0.0277 (13) | |
H6 | 0.3416 | 0.4589 | 0.4338 | 0.033* | |
C7 | 0.1690 (7) | 0.3374 (7) | 0.4744 (6) | 0.0264 (12) | |
C8 | 0.1251 (8) | 0.2725 (8) | 0.5788 (6) | 0.0377 (15) | |
H8 | 0.0278 | 0.2284 | 0.5643 | 0.045* | |
C9 | 0.3576 (8) | 0.3358 (8) | 0.7159 (6) | 0.0348 (15) | |
H9 | 0.4267 | 0.3281 | 0.7987 | 0.042* | |
C10 | 0.4699 (8) | 0.8334 (8) | 0.5766 (5) | 0.0347 (15) | |
C11 | 0.4311 (13) | 0.9693 (10) | 0.4751 (9) | 0.070 (3) | |
H11A | 0.4048 | 1.0693 | 0.5140 | 0.105* | |
H11B | 0.3465 | 0.9346 | 0.4040 | 0.105* | |
H11C | 0.5172 | 0.9909 | 0.4424 | 0.105* | |
C12 | 0.7641 (8) | 0.2209 (9) | 0.6993 (6) | 0.0362 (14) | |
C13 | 0.8361 (11) | 0.0699 (10) | 0.7730 (8) | 0.063 (2) | |
H13A | 0.9396 | 0.0946 | 0.8194 | 0.095* | |
H13B | 0.8337 | −0.0202 | 0.7125 | 0.095* | |
H13C | 0.7814 | 0.0379 | 0.8345 | 0.095* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0200 (3) | 0.0287 (3) | 0.0328 (3) | −0.0013 (5) | −0.0025 (2) | 0.0095 (5) |
N1 | 0.025 (3) | 0.032 (3) | 0.029 (3) | 0.001 (2) | −0.003 (2) | −0.003 (2) |
N2 | 0.018 (3) | 0.031 (2) | 0.030 (3) | −0.003 (2) | 0.005 (2) | 0.001 (2) |
N3 | 0.029 (4) | 0.075 (4) | 0.039 (3) | −0.011 (3) | 0.006 (3) | 0.008 (3) |
O1 | 0.034 (3) | 0.032 (2) | 0.025 (2) | 0.0038 (18) | 0.0027 (18) | 0.0034 (17) |
O2 | 0.083 (5) | 0.091 (5) | 0.049 (3) | 0.036 (4) | 0.023 (3) | −0.002 (3) |
O3 | 0.028 (3) | 0.036 (2) | 0.033 (2) | 0.0060 (18) | 0.0029 (19) | 0.0076 (18) |
O4 | 0.057 (4) | 0.072 (3) | 0.032 (3) | 0.004 (3) | 0.009 (2) | −0.002 (2) |
O5 | 0.048 (3) | 0.052 (3) | 0.044 (3) | −0.004 (2) | 0.019 (2) | −0.012 (2) |
C1 | 0.037 (4) | 0.040 (3) | 0.020 (3) | −0.005 (3) | 0.006 (3) | −0.006 (2) |
C2 | 0.031 (4) | 0.056 (4) | 0.029 (3) | −0.003 (3) | 0.015 (3) | −0.007 (3) |
C3 | 0.034 (4) | 0.047 (4) | 0.035 (3) | 0.003 (3) | 0.019 (3) | −0.003 (3) |
C4 | 0.017 (3) | 0.026 (3) | 0.033 (3) | 0.002 (2) | 0.002 (2) | 0.002 (2) |
C5 | 0.026 (3) | 0.028 (3) | 0.025 (3) | 0.004 (2) | 0.005 (2) | −0.007 (2) |
C6 | 0.022 (3) | 0.033 (3) | 0.026 (3) | 0.000 (2) | 0.003 (2) | −0.002 (2) |
C7 | 0.021 (3) | 0.031 (3) | 0.026 (3) | 0.004 (2) | 0.005 (2) | 0.002 (2) |
C8 | 0.017 (3) | 0.055 (4) | 0.038 (3) | −0.005 (3) | 0.003 (3) | 0.002 (3) |
C9 | 0.031 (4) | 0.042 (4) | 0.028 (3) | 0.000 (3) | 0.003 (3) | 0.000 (3) |
C10 | 0.035 (4) | 0.044 (3) | 0.023 (3) | 0.000 (3) | 0.005 (3) | −0.006 (2) |
C11 | 0.084 (7) | 0.041 (4) | 0.073 (6) | 0.009 (4) | 0.002 (5) | 0.012 (4) |
C12 | 0.023 (3) | 0.053 (4) | 0.028 (3) | −0.004 (3) | −0.001 (3) | −0.003 (3) |
C13 | 0.074 (6) | 0.046 (4) | 0.063 (5) | 0.022 (4) | 0.008 (4) | 0.004 (4) |
Cu1—O1 | 1.935 (4) | C2—C3 | 1.375 (9) |
Cu1—O3 | 1.950 (4) | C2—H2 | 0.9300 |
Cu1—N2 | 2.016 (5) | C3—C4 | 1.395 (9) |
Cu1—N1i | 2.023 (5) | C3—H3 | 0.9300 |
Cu1—O5 | 2.347 (4) | C4—C5 | 1.380 (8) |
N1—C5 | 1.332 (7) | C4—C7 | 1.478 (7) |
N1—C1 | 1.343 (8) | C5—H5 | 0.9300 |
N1—Cu1ii | 2.023 (5) | C6—C7 | 1.372 (8) |
N2—C9 | 1.306 (8) | C6—H6 | 0.9300 |
N2—C6 | 1.350 (7) | C7—C8 | 1.378 (9) |
N3—C9 | 1.325 (9) | C8—H8 | 0.9300 |
N3—C8 | 1.362 (8) | C9—H9 | 0.9300 |
O1—C10 | 1.253 (7) | C10—C11 | 1.500 (10) |
O2—C10 | 1.236 (8) | C11—H11A | 0.9600 |
O3—C12 | 1.283 (8) | C11—H11B | 0.9600 |
O4—C12 | 1.228 (8) | C11—H11C | 0.9600 |
O5—H5A | 0.8200 | C12—C13 | 1.488 (10) |
O5—H5B | 0.8218 | C13—H13A | 0.9600 |
C1—C2 | 1.346 (10) | C13—H13B | 0.9600 |
C1—H1 | 0.9300 | C13—H13C | 0.9600 |
O1—Cu1—O3 | 170.9 (2) | N1—C5—C4 | 123.5 (6) |
O1—Cu1—N2 | 91.05 (19) | N1—C5—H5 | 118.3 |
O3—Cu1—N2 | 89.44 (19) | C4—C5—H5 | 118.3 |
O1—Cu1—N1i | 89.60 (19) | N2—C6—C7 | 121.2 (6) |
O3—Cu1—N1i | 88.9 (2) | N2—C6—H6 | 119.4 |
N2—Cu1—N1i | 173.7 (2) | C7—C6—H6 | 119.4 |
O1—Cu1—O5 | 98.41 (17) | C6—C7—C8 | 117.3 (5) |
O3—Cu1—O5 | 90.70 (18) | C6—C7—C4 | 120.4 (5) |
N2—Cu1—O5 | 90.64 (19) | C8—C7—C4 | 122.3 (5) |
N1i—Cu1—O5 | 95.44 (19) | N3—C8—C7 | 121.5 (6) |
C5—N1—C1 | 118.1 (5) | N3—C8—H8 | 119.2 |
C5—N1—Cu1ii | 119.6 (4) | C7—C8—H8 | 119.2 |
C1—N1—Cu1ii | 122.1 (4) | N2—C9—N3 | 126.5 (6) |
C9—N2—C6 | 117.4 (5) | N2—C9—H9 | 116.8 |
C9—N2—Cu1 | 121.1 (4) | N3—C9—H9 | 116.8 |
C6—N2—Cu1 | 121.5 (4) | O2—C10—O1 | 124.8 (6) |
C9—N3—C8 | 115.9 (6) | O2—C10—C11 | 117.9 (7) |
C10—O1—Cu1 | 125.3 (4) | O1—C10—C11 | 117.3 (6) |
C12—O3—Cu1 | 115.3 (4) | C10—C11—H11A | 109.5 |
Cu1—O5—H5A | 109.5 | C10—C11—H11B | 109.5 |
Cu1—O5—H5B | 105.5 | H11A—C11—H11B | 109.5 |
H5A—O5—H5B | 124.0 | C10—C11—H11C | 109.5 |
N1—C1—C2 | 121.3 (6) | H11A—C11—H11C | 109.5 |
N1—C1—H1 | 119.3 | H11B—C11—H11C | 109.5 |
C2—C1—H1 | 119.3 | O4—C12—O3 | 123.0 (6) |
C1—C2—C3 | 121.8 (7) | O4—C12—C13 | 121.4 (7) |
C1—C2—H2 | 119.1 | O3—C12—C13 | 115.6 (6) |
C3—C2—H2 | 119.1 | C12—C13—H13A | 109.5 |
C2—C3—C4 | 117.3 (7) | C12—C13—H13B | 109.5 |
C2—C3—H3 | 121.4 | H13A—C13—H13B | 109.5 |
C4—C3—H3 | 121.4 | C12—C13—H13C | 109.5 |
C5—C4—C3 | 117.9 (5) | H13A—C13—H13C | 109.5 |
C5—C4—C7 | 120.5 (5) | H13B—C13—H13C | 109.5 |
C3—C4—C7 | 121.6 (5) | ||
O1—Cu1—N2—C9 | −140.6 (5) | C1—N1—C5—C4 | 2.4 (8) |
O3—Cu1—N2—C9 | 48.5 (5) | Cu1ii—N1—C5—C4 | −172.9 (4) |
N1i—Cu1—N2—C9 | 123.5 (18) | C3—C4—C5—N1 | −0.8 (9) |
O5—Cu1—N2—C9 | −42.2 (5) | C7—C4—C5—N1 | 179.5 (5) |
O1—Cu1—N2—C6 | 38.1 (4) | C9—N2—C6—C7 | 0.9 (8) |
O3—Cu1—N2—C6 | −132.8 (4) | Cu1—N2—C6—C7 | −177.9 (4) |
N1i—Cu1—N2—C6 | −58 (2) | N2—C6—C7—C8 | 3.0 (8) |
O5—Cu1—N2—C6 | 136.5 (4) | N2—C6—C7—C4 | −178.5 (5) |
O3—Cu1—O1—C10 | −178.3 (11) | C5—C4—C7—C6 | −132.9 (6) |
N2—Cu1—O1—C10 | 88.7 (5) | C3—C4—C7—C6 | 47.5 (8) |
N1i—Cu1—O1—C10 | −97.5 (5) | C5—C4—C7—C8 | 45.5 (8) |
O5—Cu1—O1—C10 | −2.1 (5) | C3—C4—C7—C8 | −134.1 (6) |
O1—Cu1—O3—C12 | 5.4 (16) | C9—N3—C8—C7 | −0.2 (10) |
N2—Cu1—O3—C12 | 98.5 (5) | C6—C7—C8—N3 | −3.4 (9) |
N1i—Cu1—O3—C12 | −75.4 (5) | C4—C7—C8—N3 | 178.2 (6) |
O5—Cu1—O3—C12 | −170.9 (4) | C6—N2—C9—N3 | −5.1 (10) |
C5—N1—C1—C2 | −1.7 (9) | Cu1—N2—C9—N3 | 173.6 (6) |
Cu1ii—N1—C1—C2 | 173.5 (5) | C8—N3—C9—N2 | 4.8 (10) |
N1—C1—C2—C3 | −0.6 (11) | Cu1—O1—C10—O2 | −8.3 (10) |
C1—C2—C3—C4 | 2.1 (11) | Cu1—O1—C10—C11 | 172.2 (5) |
C2—C3—C4—C5 | −1.4 (9) | Cu1—O3—C12—O4 | −0.8 (9) |
C2—C3—C4—C7 | 178.2 (6) | Cu1—O3—C12—C13 | 179.0 (5) |
Symmetry codes: (i) x+1, −y+1, z+1/2; (ii) x−1, −y+1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4iii | 0.82 | 2.04 | 2.734 (7) | 143 |
O5—H5B···O2 | 0.82 | 1.92 | 2.606 (7) | 141 |
Symmetry code: (iii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H3O2)2(C9H7N3)(H2O)] |
Mr | 356.82 |
Crystal system, space group | Monoclinic, Pc |
Temperature (K) | 298 |
a, b, c (Å) | 9.154 (2), 7.9940 (19), 10.590 (2) |
β (°) | 106.040 (3) |
V (Å3) | 744.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.49 |
Crystal size (mm) | 0.12 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.841, 0.865 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3778, 2305, 2226 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.118, 1.10 |
No. of reflections | 2305 |
No. of parameters | 203 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.20, −0.57 |
Absolute structure | Flack (1983), 912 Friedel pairs |
Absolute structure parameter | 0.43 (3) |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4i | 0.82 | 2.04 | 2.734 (7) | 142.8 |
O5—H5B···O2 | 0.82 | 1.92 | 2.606 (7) | 141.1 |
Symmetry code: (i) x, −y+1, z+1/2. |
Acknowledgements
We are grateful for financial support from the National Natural Science Foundation of China (grant No. 30970298), and we are also thankful for financial support from the Foundation of Shandong province (No. J11LF27) and the Foundation of Yantai City (No. 2011076).
References
Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2003). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 371–380. Web of Science CrossRef Google Scholar
He, Z., Wang, Z.-M., Gao, S. & Yan, C.-H. (2006). Inorg. Chem. 45, 6694–6705. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hou, G.-G., Ma, J.-P., Wang, L., Wang, P., Dong, Y.-B. & Huang, R.-Q. (2010). CrystEngComm, 12, 4287–4303. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thébault, F., Barnett, S. A., Blake, A. J., Wilson, C., Champness, N. R. & Schroder, M. (2006). Inorg. Chem. 45, 6179–6187. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Asymmetric organic ligands with various topologies and coordination natures, are widely used in the construction of coordination polymers and supramolecular complexes by chemists. Some of them exhibit encouraging potential for application in magnetic (He et al., 2006), luminescent property (Allendorf et al., 2009; Hou et al., 2010) and nonlinear optical materials (Evans et al., 2002). Among these strategies, the geometry of organic ligands is one of the most important factors in determining the structure of the framework. Pyrimidine derivatives have been widely used in supramolecular chemistry and many coordination polymers with versatile structures and potential properties have been reported (Thébault, et al., 2006; Fujita, et al., 2005). For example, Champness and co-workers have reported a highly unusual three-dimensional polymer, [Cu3I3(5-(4-Pyridyl)pyrimidine)]n, in which the 5-(4-Pyridyl)pyrimidine ligand bridges two-dimensional brick-wall (CuI)n sheets (Thébault, et al., 2006). In this work, we employed 5-(pyridin-3-yl)pyrimidine and acetate as ligands.
The crystal studied of the title compound was an inversion twin with a 0.57 (3):0.43 (3) domain ratio. In the title complex, the Cu2+ ion is pentacoordinated, with two different N atoms of the chelating 5-(pyridin-3-yl)pyrimidine ligand and two O atoms of two acetate ligands in the basal plane and the O atom of water molecule completing the square-pyramidal geometry from the apical site (Fig. 1). The pyrimidine and pyridine rings in the asymmetric ligand are seriously twisted. The corresponding dihedral angle is about 47.1 (1)°, which is distinctly larger than the reported value of 34.0 (1)° in [Cu3I3(5-(4-pyridyl)pyrimidine)]n (Thébault, et al., 2006). The atoms N1i, N2, O1 and O3i [Symmetry code: (i)x - 1, -y + 1, z - 1/2] are on the nearly coplanar, with a mean deviation from the least-squares plane of 0.157 (2) Å and the Cu atom is displaced by 0.050 (3) Å from this plane towards the apical O atom. Further coordination via the bidentate 5-(pyridin-3-yl)pyrimidine ligand forms a one-dimensional coordination polymer extending parallel to [010]. In the crystal structure (Fig. 2), intermolecular O–H···O hydrogen bonds link the molecules into a 2D supramolecular structure (Table 1).