organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Di­bromo­meth­yl)benzoic acid

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 3 October 2011; accepted 8 December 2011; online 14 December 2011)

In the crystal structure of the title compound, C8H6Br2O2, the carboxyl groups are involved in pairs of O—H⋯O hydrogen bonds, which link the mol­ecules into inversion dimers.

Related literature

For the preparation of the title compound, see: Eliel & Rivard (1952[Eliel, E. L. & Rivard, D. E. (1952). J. Org. Chem. 17, 1252-1256.]). For its applications, see: Dey & Mal (2005[Dey, S. & Mal, D. (2005). Tetrahedron Lett. 46, 5483-5486.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Br2O2

  • Mr = 293.95

  • Monoclinic, P 21 /n

  • a = 4.9988 (6) Å

  • b = 25.617 (3) Å

  • c = 7.1844 (8) Å

  • β = 97.709 (10)°

  • V = 911.68 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.85 mm−1

  • T = 297 K

  • 0.74 × 0.36 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.251, Tmax = 1.000

  • 7515 measured reflections

  • 2210 independent reflections

  • 1221 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.227

  • S = 1.13

  • 2210 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.82 2.641 (11) 176
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a useful reagent to prepare phthalaldehydic acid (Eliel & Rivard, 1952). In addition, it has been prepared as a potential precursor to an antitumour agent, BE-23254. (Dey & Mal, 2005). The structure of the title compound is shown in Fig. 1. In the crystal structure (Fig. 2), inversion-related molecules are linked by pairs of O–H···O hydrogen bonds, forming a cyclic dimers with R22(8) graph-set motif (Table 1) (Bernstein et al., 1995). The intramolecular C–H···O hydrogen bond (Table 1) generates an S(6) ring motif .

Related literature top

For the preparation of the title compound, see: Eliel & Rivard (1952). For its applications, see: Dey & Mal (2005). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Eliel & Rivard, 1952). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature for six weeks.

Refinement top

The C bound H atoms positioned geometrically (C–H = 0.93-0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)]. The O bound H atoms positioned geometrically (O–H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the O–H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound.
2-(Dibromomethyl)benzoic acid top
Crystal data top
C8H6Br2O2F(000) = 560
Mr = 293.95Dx = 2.142 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2762 reflections
a = 4.9988 (6) Åθ = 2.9–29.2°
b = 25.617 (3) ŵ = 8.85 mm1
c = 7.1844 (8) ÅT = 297 K
β = 97.709 (10)°Parallelepiped, colorless
V = 911.68 (18) Å30.74 × 0.36 × 0.25 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2210 independent reflections
Radiation source: fine-focus sealed tube1221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
ω scansθmax = 29.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.251, Tmax = 1.000k = 3434
7515 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: difference Fourier map
wR(F2) = 0.227H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0876P)2 + 4.8672P]
where P = (Fo2 + 2Fc2)/3
2210 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
C8H6Br2O2V = 911.68 (18) Å3
Mr = 293.95Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.9988 (6) ŵ = 8.85 mm1
b = 25.617 (3) ÅT = 297 K
c = 7.1844 (8) Å0.74 × 0.36 × 0.25 mm
β = 97.709 (10)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2210 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1221 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 1.000Rint = 0.088
7515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0910 restraints
wR(F2) = 0.227H-atom parameters constrained
S = 1.13Δρmax = 0.85 e Å3
2210 reflectionsΔρmin = 0.93 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.4317 (3)0.14770 (6)0.73655 (16)0.0676 (5)
Br20.6793 (3)0.22661 (4)0.4627 (2)0.0700 (5)
O10.8610 (16)0.0565 (3)0.5279 (11)0.055 (2)
O20.7203 (17)0.0025 (3)0.3117 (11)0.057 (2)
H2A0.85230.01810.36490.086*
C10.613 (2)0.1540 (4)0.5132 (14)0.038 (2)
H1A0.78590.13560.53550.046*
C20.4355 (19)0.1276 (3)0.3520 (12)0.032 (2)
C30.216 (2)0.1550 (4)0.2570 (14)0.043 (2)
H3A0.18400.18900.29260.052*
C40.050 (2)0.1329 (4)0.1143 (14)0.045 (3)
H4A0.09430.15190.05280.054*
C50.093 (2)0.0821 (4)0.0596 (14)0.050 (3)
H5A0.02230.06670.03750.060*
C60.307 (2)0.0547 (4)0.1501 (14)0.041 (2)
H6A0.33670.02070.11150.049*
C70.484 (2)0.0759 (4)0.2988 (12)0.033 (2)
C80.702 (2)0.0430 (4)0.3896 (14)0.037 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0750 (9)0.0939 (10)0.0320 (6)0.0025 (8)0.0000 (5)0.0081 (6)
Br20.0771 (10)0.0335 (6)0.0951 (11)0.0055 (6)0.0039 (8)0.0100 (6)
O10.060 (5)0.039 (4)0.062 (5)0.013 (4)0.013 (4)0.011 (4)
O20.065 (5)0.036 (4)0.065 (5)0.011 (4)0.011 (4)0.011 (4)
C10.043 (6)0.028 (5)0.042 (6)0.007 (4)0.003 (5)0.010 (4)
C20.040 (5)0.030 (4)0.024 (4)0.002 (4)0.002 (4)0.000 (4)
C30.056 (7)0.037 (5)0.037 (6)0.004 (5)0.010 (5)0.000 (4)
C40.039 (6)0.062 (7)0.032 (5)0.003 (5)0.000 (4)0.009 (5)
C50.057 (7)0.060 (7)0.029 (5)0.013 (6)0.009 (5)0.004 (5)
C60.034 (5)0.045 (6)0.043 (6)0.001 (5)0.002 (4)0.013 (5)
C70.044 (6)0.034 (5)0.022 (4)0.000 (4)0.004 (4)0.001 (4)
C80.042 (6)0.031 (5)0.040 (6)0.002 (4)0.016 (5)0.001 (4)
Geometric parameters (Å, º) top
Br1—C11.951 (10)C3—C41.354 (14)
Br2—C11.932 (10)C3—H3A0.9300
O1—C81.235 (12)C4—C51.386 (15)
O2—C81.302 (11)C4—H4A0.9300
O2—H2A0.8200C5—C61.370 (15)
C1—C21.519 (13)C5—H5A0.9300
C1—H1A0.9800C6—C71.402 (13)
C2—C31.399 (14)C6—H6A0.9300
C2—C71.409 (12)C7—C81.461 (14)
C8—O2—H2A109.5C3—C4—H4A119.9
C2—C1—Br2112.5 (7)C5—C4—H4A119.9
C2—C1—Br1107.6 (7)C6—C5—C4119.3 (9)
Br2—C1—Br1110.2 (4)C6—C5—H5A120.4
C2—C1—H1A108.8C4—C5—H5A120.4
Br2—C1—H1A108.8C5—C6—C7122.4 (9)
Br1—C1—H1A108.8C5—C6—H6A118.8
C3—C2—C7119.4 (9)C7—C6—H6A118.8
C3—C2—C1119.2 (8)C2—C7—C6117.3 (9)
C7—C2—C1121.4 (8)C2—C7—C8124.5 (9)
C4—C3—C2121.5 (10)C6—C7—C8118.2 (9)
C4—C3—H3A119.2O1—C8—O2121.5 (9)
C2—C3—H3A119.2O1—C8—C7123.9 (9)
C3—C4—C5120.2 (10)O2—C8—C7114.6 (9)
Br2—C1—C2—C340.2 (11)C1—C2—C7—C6179.1 (9)
Br1—C1—C2—C381.4 (9)C3—C2—C7—C8178.5 (9)
Br2—C1—C2—C7141.2 (8)C1—C2—C7—C80.1 (15)
Br1—C1—C2—C797.3 (9)C5—C6—C7—C20.8 (15)
C7—C2—C3—C40.2 (15)C5—C6—C7—C8178.3 (10)
C1—C2—C3—C4178.9 (9)C2—C7—C8—O12.9 (16)
C2—C3—C4—C50.4 (16)C6—C7—C8—O1176.1 (10)
C3—C4—C5—C60.7 (16)C2—C7—C8—O2176.3 (9)
C4—C5—C6—C70.9 (17)C6—C7—C8—O24.7 (13)
C3—C2—C7—C60.4 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.822.641 (11)176
C1—H1A···O10.982.062.784 (13)129
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H6Br2O2
Mr293.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)4.9988 (6), 25.617 (3), 7.1844 (8)
β (°) 97.709 (10)
V3)911.68 (18)
Z4
Radiation typeMo Kα
µ (mm1)8.85
Crystal size (mm)0.74 × 0.36 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.251, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7515, 2210, 1221
Rint0.088
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.227, 1.13
No. of reflections2210
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.93

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.821.822.641 (11)176
C1—H1A···O10.982.062.784 (13)129
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This work was supported by the National Science Council (NSC 99-2113-M-035-001-MY2) and Feng Chia University, Taiwan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, S. & Mal, D. (2005). Tetrahedron Lett. 46, 5483–5486.  Web of Science CrossRef CAS Google Scholar
First citationEliel, E. L. & Rivard, D. E. (1952). J. Org. Chem. 17, 1252–1256.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds