metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m29-m30

Aqua­bis­­(1,1,1,5,5,5-hexa­fluoro­acetyl­acetonato)[4′-(4-pyrid­yl)-2,2′:6′,2′′-terpyridine]­ytterbium(III) chloride methanol monosolvate monohydrate

aMoto-oka 744, Nishi-ku, Fukuoka 819-0395, Japan
*Correspondence e-mail: mabe@mail.cstm.kyushu-u.ac.jp, yhisatcm@mail.cstm.kyushu-u.ac.jp

(Received 12 September 2011; accepted 5 December 2011; online 10 December 2011)

The title compound, [Yb(C5HF6O2)2(C20H14N4)(H2O)]Cl·CH3OH·H2O, adopts an eight-coordinated geometry around the YbIII atom consisting of a 4′-(4-pyrid­yl)-2,2′:6′,2′′-terpyridine (pytpy) ligand, two 1,1,1,5,5,5-hexa­fluoro­acetyl­acetonate (hfac) anions and an aqua ligand. In the solid state, the compound forms supra­molecular chains running along the b-axis via inter­molecular hydrogen bonds between the Yb—OH2 unit and the N-atom donor of the 4-pyridyl pendant of pytpy, with an O⋯N distance of 2.686 (4) Å. A chloride counter-anion and lattice methanol and water solvent mol­ecules occupy a hydro­philic columnar space along the coordination chains. O—H⋯Cl hydrogen bonds occur. The two water molecules and the four trifluoromethyl groups are disordered over two sets of sites, each with different occupancy ratios.

Related literature

For general background to pytpy, see: Constable & Thompson (1992[Constable, E. C. & Thompson, A. M. W. C. (1992). J. Chem. Soc. Dalton Trans. pp. 2947-2950.], 1994[Constable, E. C. & Thompson, A. M. W. C. (1994). J. Chem. Soc. Dalton Trans. pp. 1409-1418.]). For pytpy complexes, see: Sun et al. (2000[Sun, S.-S., Silva, A. S., Brinn, I. M. & Lees, A. J. (2000). Inorg. Chem. 39, 1344-1345.]); Sun & Lees (2001[Sun, S.-S. & Lees, A. J. (2001). Inorg. Chem. 40, 3154-3160.]). For related Yb complexes, see: Fukuda et al. (2002[Fukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527-533.]); Hayashi et al. (1998[Hayashi, K., Nagao, N., Harada, K., Haga, M. & Fukuda, F. (1998). Chem. Lett. 27, 1173-1174.]); Przychodzen et al. (2007[Przychodzen, P., Pelka, R., Lewinski, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924-8938.]); Stojanovic et al. (2010[Stojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933-939.]); Li et al. (2007[Li, X.-L., Shi, L.-X., Zhang, L.-Y., Wen, H.-M. & Chen, Z.-N. (2007). Inorg. Chem. 46, 10892-10900.]); Xu et al. (2009[Xu, H.-B., Zhang, L.-Y., Chen, X.-M., Li, X.-L. & Chen, Z.-N. (2009). Cryst. Growth Des. 9, 569-576.]); Ahrens et al. (2002[Ahrens, B., Cotton, S. A., Feeder, N., Noy, O. E., Raithby, P. R. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2027-2030.]); Zhang et al. (2007a[Zhang, J., Badger, P. D., Geib, S. J. & Petoud, S. (2007a). Inorg. Chem. 46, 6473-6482.]). For potential applications of compounds with infinite one-dimensional to three-dimensional structures, see: Hayami et al. (2004[Hayami, S., Hashiguchi, K., Juhász, G., Ohba, M., Okawa, H., Maeda, Y., Kato, K., Osaka, K., Takata, M. & Inoue, K. (2004). Inorg. Chem. 43, 4124-4126.]); Hou et al. (2005[Hou, L., Li, D., Shi, W., Yin, Y. & Ng, S. W. (2005). Inorg. Chem. 44, 7825-7832.]); Feng et al. (2006[Feng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027-4035.]); Beves et al. (2007a[Beves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J. & Price, D. J. (2007a). CrystEngComm, 9, 456-459.]); Zhang et al. (2007b[Zhang, S., Zhan, S., Li, M., Peng, R. & Li, D. (2007b). Inorg. Chem. 46, 4365-4367.]); Gou et al. (2008[Gou, L., Wu, Q.-R., Hu, H.-M., Qin, T., Xue, G.-L., Yang, M.-L. & Tang, Z. X. (2008). Polyhedron, 27, 1517-1526.]); Leong & Vittal (2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For the binding mode of pytpy involving hydrogen-bonding, see: Beves et al. (2007b[Beves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2007b). CrystEngComm, 9, 1073-1077.], 2008[Beves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582-2590.]).

[Scheme 1]

Experimental

Crystal data
  • [Yb(C5HF6O2)2(C20H14N4)(H2O)]Cl·CH4O·H2O

  • Mr = 1001.03

  • Triclinic, [P \overline 1]

  • a = 9.7559 (6) Å

  • b = 12.4035 (7) Å

  • c = 16.5543 (10) Å

  • α = 98.870 (1)°

  • β = 104.717 (1)°

  • γ = 93.559 (1)°

  • V = 1903.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 223 K

  • 0.46 × 0.33 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.53, Tmax = 0.68

  • 13523 measured reflections

  • 9671 independent reflections

  • 8205 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.081

  • S = 1.08

  • 9671 reflections

  • 587 parameters

  • 34 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯Cl1i 0.75 (4) 2.31 (4) 3.054 (3) 175 (5)
O6—H6⋯Cl1 0.83 2.27 3.102 (3) 177
O5—H5A⋯N4ii 0.78 (4) 1.92 (4) 2.686 (4) 167 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2010[CrystalMaker (2010). CrystalMaker. CrystalMaker Software Limited, Yarnton, England.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The molecular design of multidentate ligands is crucial to determining structures and functions of the resulting coordination compounds and metallo-supramolecular systems. Specifically, a tetradentate ligand 4'-(4-pyridyl)-2,2':6',2"-terpyridine (pytpy) provides a unique structural feature as a bridging ligand where two different coordination donors, the tridentate terpyridyl and monodentate pyridyl moieties, are both associated with metal coordination. Herein we report an unusual bridging mode of pytpy in a one-dimensional metallo-supramolecular system as exemplified with an X-ray crystal structure of compound (I), where the monodentate pyridyl arm in pytpy is now bound to the neighboring molecule via intermolecular hydrogen bonding to form a one-dimensional supramolecular chain. Compound (I) consists of a monocationic complex [YbIII(pytpy)(hfac)2(H2O)], a Cl- anion, and lattice solvents, CH3OH and H2O. The YbIII center is surrounded by three N donors from pytpy and five O donors from two hfac chelates and one aqua ligand completing the 8-coordinate geometry as shown in Figure 1. Among structurally determined YbIII complexes containing a single terpyridine ligand, the coordination number 8 is rather unusual and 9- and 10-coordination is more commonly observed (Hayashi et al., 1998; Ahrens et al., 2002; Fukuda et al., 2002; Przychodzen et al., 2007; Li et al., 2007; Xu et al., 2009; Stojanovic et al., 2010). The 8-coordination around lanthanide(III) ions are seen, for example, in [LnIII(Trop)4]- [Trop = tropolonene (2-hydroxycyclohepta-2,4,6-trienone)] (Zhang et al., 2007a). In compound (I), the Yb—N(pytpy) lengths vary from 2.434 (3) to 2.464 (3) Å and the Yb—O(hfac) lengths from 2.262 (3) to 2.334 (3) Å; these values compare well with those observed in complexes containing the [YbIII(tpy)(hfac)3] entity (Li et al., 2007; Xu et al., 2009). There is a hydrogen-bonding interaction with the chloride anion with an O5···Cl1i (symmetry code: (i) 1 + x, y, z) distance of 3.054 (3) Å and an O6···Cl1 distance of 3.102 (3) Å. An additional hydrogen-bonding interaction is seen between the N atom of the dangling pyridyl group and the aqua ligand in the neighboring molecule with an O5···N4ii (symmetry code: (ii) x, 1 + y, z) distance of 2.686 (4) Å to form one-dimensional supramolecular chains of [Yb(pytpy)(hfac)2(H2O)]+ units running along the b-axis. Similar hydrogen bonded one-dimensional networks including pytpy moieties have been also reported (Beves et al., 2007b; Beves et al., 2008).

Related literature top

For general background to pytpy, see: Constable & Thompson (1992, 1994). For pytpy complexes, see: Sun et al. (2000); Sun & Lees (2001). For related Yb complexes, see: Fukuda et al. (2002); Hayashi et al. (1998); Przychodzen et al. (2007); Stojanovic et al. (2010); Li et al. (2007); Xu et al. (2009); Ahrens et al. (2002); Zhang et al. (2007a). For potential applications of infinite one-dimensional to three-dimensional systems, see: Hayami et al. (2004); Hou et al. (2005); Feng et al. (2006); Beves et al. (2007a); Zhang et al. (2007b); Gou et al. (2008); Leong & Vittal (2011); Moulton & Zaworotko (2001). For the binding mode of pytpy involving hydrogen-bonding, see: Beves et al. (2007b, 2008).

Experimental top

An ethanol solution (50 ml) of pytpy (600 mg, 1.94 mmol) Hhfac (1.21 g, 5.92 mmol), and YbCl3.6H2O (760 mg, 1.94 mmol) was stirred for 30 min at room temperature. After evaporation, the residue was recrystallized from CH3OH/water to give (I) as colorless crystals. Elemental analysis of the compound that was dried by vacuum pumping overnight at room temperature reveals the loss of the solvent molecules of crystallization (H2O and CH3OH). Transparent needle-shaped single crystals of compound (I) suitable for X-ray diffraction analysis were obtained by slow evaporation of a CH3OH/water (95:5, v/v) solution in a few days. Yield: 637 mg, 0.67 mmol (35%). Analysis: calculated for C30H18ClF12N4O5Yb ([Yb(pytpy)(hfac)2(H2O)]Cl): C 37.89, H 1.91, N 5.89%; found: C 37.60, H 1.96, N 5.92%. IR (KBr pellet): 1603, 1664, 3031, 3410 cm-1. UV-vis (CH3OH) λmax/nm (ε/M-1cm-1): 241 (41,300), 285 (34,300). ESI-TOF-MS (CH3OH): m/z 898.39 (calcd: 898.04 for [M–2H2O–CH3OH–Cl-]+).

Refinement top

H atoms except those of water were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C—H) or 1.5Ueq(O—H).

The lattice water shows positional disorder which is modeled as two oxygen atoms, O7A and O7B, with site occupancies of 0.58 and 0.42, respectively. The O7A—O7Aiii (symmetry codes: (iii) 1 - x, 2 - y, 1 - z) distance was restrained to 2.56 (1) Å using the DFIX command of the program SHELXTL (Sheldrick, 2008) because of a strong correlation between positional parameters of the two components of the disorder.

H atoms attached to O5 (H5A and H5B) and lattice water (H7A, H7B, H7C, and H7D) were found in a difference Fourier map. The O—H and H—H distances within the water molecules were restrained to 0.83 (7) Å) and 1.35 (8) Å , respectively, by using the DFIX command for a stable refinement. Hydrogen atoms on the lattice water were not included in the structure factor calculation.

Four trifluoromethyl groups were found to show disorder. The geometries of the trifluoromethyl groups were constrained by using the SAME command. Anisotropic displacement parameters of the pairs of overlapping disordered atoms of the major and minor components of the disorder were made equal using the EADP constraints. The final occupancies of the disordered CF3 groups were found to be 0.81:0.19, 0.76:0.24, 0.90:0.10, and 0.86:0.14 for (C21A, F1A, F2A, F3A)/(C21B, F1B, F2B, F3B), (C25A, F4A, F5A, F6A)/(C25B, F4B, F5B, F6B), (C26A, F7A, F8A, F9A)/(C26B, F7B, F8B, F9B), and (C30A, F10A, F11A, F12A)/(C30B, F10B, F11B, F12B), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The minor component of the disordered CF3 groups and lattice water are omitted for clarity.
aquabis(1,1,1,5,5,5-hexafluoroacetylacetonato)[4'-(4-pyridyl)-2,2':6',2''- terpyridine]ytterbium(III) chloride methanol monosolvate monohydrate top
Crystal data top
[Yb(C5HF6O2)2(C20H14N4)(H2O)]Cl·CH4O·H2OZ = 2
Mr = 1001.03F(000) = 978
Triclinic, P1Dx = 1.747 Mg m3
a = 9.7559 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.4035 (7) ÅCell parameters from 4823 reflections
c = 16.5543 (10) Åθ = 2.6–28.9°
α = 98.870 (1)°µ = 2.63 mm1
β = 104.717 (1)°T = 223 K
γ = 93.559 (1)°Prism, colourless
V = 1903.5 (2) Å30.46 × 0.33 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
9671 independent reflections
Radiation source: fine focus sealed tube8205 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3333 pixels mm-1θmax = 28.7°, θmin = 1.7°
phi and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1316
Tmin = 0.53, Tmax = 0.68l = 2220
13523 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.030P)2 + 1.1P]
where P = (Fo2 + 2Fc2)/3
9671 reflections(Δ/σ)max = 0.001
587 parametersΔρmax = 1.02 e Å3
34 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Yb(C5HF6O2)2(C20H14N4)(H2O)]Cl·CH4O·H2Oγ = 93.559 (1)°
Mr = 1001.03V = 1903.5 (2) Å3
Triclinic, P1Z = 2
a = 9.7559 (6) ÅMo Kα radiation
b = 12.4035 (7) ŵ = 2.63 mm1
c = 16.5543 (10) ÅT = 223 K
α = 98.870 (1)°0.46 × 0.33 × 0.16 mm
β = 104.717 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
9671 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8205 reflections with I > 2σ(I)
Tmin = 0.53, Tmax = 0.68Rint = 0.021
13523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03634 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.02 e Å3
9671 reflectionsΔρmin = 0.88 e Å3
587 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O7A0.4270 (10)0.9463 (10)0.5369 (8)0.135 (6)0.584 (19)
H7A0.43770.93660.4890.203*0.58
H7B0.40450.90420.55480.203*0.58
O7B0.4211 (17)0.9784 (8)0.5886 (11)0.101 (6)0.416 (19)
H7C0.47440.98430.6330.151*0.42
H7D0.34320.97930.56720.151*0.42
F1A0.5633 (6)0.4015 (4)0.0987 (6)0.132 (3)0.809 (7)
F2A0.7562 (8)0.3375 (4)0.1479 (3)0.115 (2)0.809 (7)
F3A0.6812 (8)0.3306 (5)0.0145 (3)0.106 (2)0.809 (7)
C21A0.6903 (11)0.3909 (7)0.0894 (4)0.078 (2)0.809 (7)
F4A0.9969 (9)0.7609 (6)0.0307 (5)0.095 (2)0.760 (10)
F5A0.9299 (10)0.5959 (5)0.0973 (3)0.104 (2)0.760 (10)
F6A0.7780 (7)0.7104 (9)0.0868 (5)0.127 (3)0.760 (10)
C25A0.8965 (10)0.6797 (7)0.0462 (5)0.072 (2)0.760 (10)
F7A0.6123 (6)1.0312 (4)0.1179 (4)0.136 (3)0.901 (7)
F8A0.5579 (6)0.9439 (5)0.2082 (4)0.133 (2)0.901 (7)
F9A0.5449 (5)0.8597 (4)0.0849 (4)0.126 (2)0.901 (7)
C26A0.6202 (8)0.9367 (7)0.1460 (6)0.088 (2)0.901 (7)
F10A1.2675 (6)1.0106 (4)0.2103 (4)0.1137 (19)0.861 (6)
F11A1.1197 (5)1.1250 (3)0.1800 (3)0.0930 (14)0.861 (6)
F12A1.1272 (7)0.9944 (5)0.0843 (3)0.136 (3)0.861 (6)
C30A1.1366 (8)1.0194 (5)0.1657 (5)0.0693 (18)0.861 (6)
F1B0.547 (2)0.4106 (19)0.0297 (19)0.132 (3)0.191 (7)
F2B0.654 (4)0.3824 (19)0.1497 (14)0.115 (2)0.191 (7)
F3B0.724 (3)0.328 (3)0.0454 (16)0.106 (2)0.191 (7)
C21B0.672 (3)0.413 (3)0.0808 (18)0.078 (2)0.191 (7)
F4B1.023 (3)0.727 (2)0.0193 (17)0.095 (2)0.240 (10)
F5B0.844 (3)0.627 (2)0.1050 (12)0.104 (2)0.240 (10)
F6B0.808 (2)0.774 (2)0.0447 (14)0.127 (3)0.240 (10)
C25B0.889 (3)0.697 (2)0.0299 (18)0.072 (2)0.240 (10)
F7B0.643 (6)1.055 (4)0.168 (3)0.136 (3)0.099 (7)
F8B0.548 (6)0.892 (4)0.153 (4)0.133 (2)0.099 (7)
F9B0.615 (4)0.944 (4)0.054 (3)0.126 (2)0.099 (7)
C26B0.650 (6)0.951 (4)0.137 (3)0.088 (2)0.099 (7)
F10B1.237 (4)1.053 (3)0.215 (2)0.1137 (19)0.139 (6)
F11B1.095 (3)1.080 (2)0.109 (2)0.0930 (14)0.139 (6)
F12B1.203 (4)0.931 (3)0.102 (2)0.136 (3)0.139 (6)
C30B1.142 (5)0.998 (3)0.147 (2)0.0693 (18)0.139 (6)
C11.2599 (5)0.6952 (3)0.1920 (3)0.0523 (10)
H11.22930.75610.16760.063*
C21.3902 (5)0.6611 (3)0.1860 (3)0.0537 (10)
H21.44620.69760.15790.064*
C31.4353 (5)0.5733 (4)0.2220 (3)0.0537 (10)
H31.52370.54890.21950.064*
C41.3497 (4)0.5204 (3)0.2621 (3)0.0468 (9)
H41.37950.45980.28720.056*
C51.2205 (4)0.5574 (3)0.2650 (2)0.0361 (8)
C61.1229 (4)0.5037 (3)0.3055 (2)0.0342 (7)
C71.1385 (4)0.3992 (3)0.3247 (2)0.0388 (8)
H71.2130.36090.31230.047*
C81.0437 (4)0.3513 (3)0.3624 (2)0.0383 (8)
C90.9384 (4)0.4127 (3)0.3816 (2)0.0369 (8)
H90.87520.38450.40950.044*
C100.9266 (4)0.5166 (3)0.3593 (2)0.0338 (7)
C110.8142 (4)0.5847 (3)0.3771 (2)0.0347 (7)
C120.7307 (4)0.5584 (3)0.4284 (2)0.0417 (8)
H120.74210.49440.45220.05*
C130.6296 (5)0.6267 (3)0.4449 (3)0.0501 (10)
H130.57040.60920.47880.06*
C140.6188 (5)0.7210 (3)0.4099 (3)0.0519 (10)
H140.55340.770.42080.062*
C150.7043 (5)0.7420 (3)0.3593 (3)0.0474 (10)
H150.69550.80660.3360.057*
C161.1819 (5)0.0805 (3)0.3982 (3)0.0571 (12)
H161.26720.04810.4010.068*
C171.1783 (5)0.1875 (3)0.3838 (3)0.0505 (10)
H171.25920.22620.37680.061*
C181.0535 (4)0.2369 (3)0.3799 (2)0.0399 (8)
C190.9383 (5)0.1753 (3)0.3908 (3)0.0519 (10)
H190.85170.20550.38870.062*
C200.9520 (6)0.0688 (3)0.4049 (3)0.0594 (12)
H200.87310.02810.41260.071*
C220.7704 (5)0.5083 (3)0.0997 (3)0.0523 (10)
C230.8004 (6)0.5427 (4)0.0297 (3)0.0718 (15)
H230.76850.49740.02390.086*
C240.8767 (5)0.6429 (4)0.0383 (3)0.0515 (10)
C270.7744 (5)0.9089 (3)0.1768 (3)0.0569 (11)
C280.8842 (5)0.9693 (4)0.1609 (3)0.0655 (13)
H280.86371.02780.13140.079*
C291.0244 (5)0.9468 (3)0.1870 (3)0.0534 (11)
C310.4832 (7)0.7478 (6)0.7308 (4)0.0958 (19)
H31A0.55470.75180.78430.144*
H31B0.3970.70540.73190.144*
H31C0.46230.82130.72230.144*
Cl10.30493 (11)0.69937 (8)0.49683 (7)0.0517 (2)
N11.1748 (3)0.6454 (2)0.23092 (19)0.0405 (7)
N21.0163 (3)0.5603 (2)0.32052 (17)0.0329 (6)
N30.8006 (3)0.6758 (2)0.34053 (18)0.0376 (7)
N41.0714 (5)0.0212 (3)0.4082 (2)0.0552 (9)
O10.8032 (3)0.5596 (2)0.17364 (16)0.0442 (6)
O20.9332 (3)0.7075 (2)0.10503 (16)0.0512 (7)
O31.0696 (3)0.8734 (2)0.22719 (16)0.0476 (7)
O40.7822 (3)0.8267 (2)0.21397 (18)0.0505 (7)
O51.0781 (3)0.8027 (2)0.37801 (17)0.0458 (7)
H5A1.087 (5)0.867 (3)0.392 (3)0.069*
H5B1.134 (5)0.775 (4)0.405 (3)0.069*
O60.5339 (4)0.6980 (3)0.6653 (2)0.0727 (10)
H60.47370.69630.61950.109*
Yb10.953387 (18)0.714155 (11)0.248364 (9)0.03543 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O7A0.129 (9)0.068 (7)0.177 (13)0.022 (6)0.026 (8)0.055 (8)
O7B0.163 (13)0.047 (6)0.130 (12)0.040 (7)0.101 (11)0.015 (6)
F1A0.100 (4)0.105 (4)0.186 (8)0.051 (3)0.076 (5)0.023 (5)
F2A0.190 (7)0.054 (3)0.094 (3)0.032 (3)0.029 (4)0.021 (2)
F3A0.169 (6)0.074 (2)0.057 (3)0.061 (3)0.035 (3)0.024 (3)
C21A0.109 (6)0.064 (5)0.052 (4)0.040 (4)0.028 (3)0.009 (3)
F4A0.121 (4)0.105 (5)0.055 (3)0.038 (4)0.016 (3)0.036 (3)
F5A0.146 (7)0.118 (4)0.054 (2)0.003 (4)0.048 (4)0.003 (2)
F6A0.104 (4)0.196 (9)0.085 (5)0.001 (5)0.009 (4)0.098 (5)
C25A0.099 (5)0.081 (5)0.025 (4)0.027 (4)0.008 (3)0.004 (3)
F7A0.094 (4)0.102 (4)0.228 (8)0.039 (3)0.012 (4)0.117 (5)
F8A0.110 (4)0.158 (5)0.180 (6)0.089 (3)0.073 (4)0.092 (4)
F9A0.080 (3)0.119 (4)0.152 (5)0.005 (3)0.029 (3)0.044 (3)
C26A0.072 (5)0.078 (4)0.133 (6)0.026 (4)0.025 (4)0.075 (5)
F10A0.069 (3)0.105 (4)0.187 (5)0.001 (3)0.032 (3)0.092 (4)
F11A0.126 (3)0.047 (2)0.105 (3)0.020 (2)0.024 (3)0.032 (2)
F12A0.196 (7)0.123 (6)0.095 (4)0.066 (4)0.086 (4)0.010 (3)
C30A0.078 (4)0.058 (4)0.073 (5)0.010 (3)0.015 (3)0.031 (3)
F1B0.100 (4)0.105 (4)0.186 (8)0.051 (3)0.076 (5)0.023 (5)
F2B0.190 (7)0.054 (3)0.094 (3)0.032 (3)0.029 (4)0.021 (2)
F3B0.169 (6)0.074 (2)0.057 (3)0.061 (3)0.035 (3)0.024 (3)
C21B0.109 (6)0.064 (5)0.052 (4)0.040 (4)0.028 (3)0.009 (3)
F4B0.121 (4)0.105 (5)0.055 (3)0.038 (4)0.016 (3)0.036 (3)
F5B0.146 (7)0.118 (4)0.054 (2)0.003 (4)0.048 (4)0.003 (2)
F6B0.104 (4)0.196 (9)0.085 (5)0.001 (5)0.009 (4)0.098 (5)
C25B0.099 (5)0.081 (5)0.025 (4)0.027 (4)0.008 (3)0.004 (3)
F7B0.094 (4)0.102 (4)0.228 (8)0.039 (3)0.012 (4)0.117 (5)
F8B0.110 (4)0.158 (5)0.180 (6)0.089 (3)0.073 (4)0.092 (4)
F9B0.080 (3)0.119 (4)0.152 (5)0.005 (3)0.029 (3)0.044 (3)
C26B0.072 (5)0.078 (4)0.133 (6)0.026 (4)0.025 (4)0.075 (5)
F10B0.069 (3)0.105 (4)0.187 (5)0.001 (3)0.032 (3)0.092 (4)
F11B0.126 (3)0.047 (2)0.105 (3)0.020 (2)0.024 (3)0.032 (2)
F12B0.196 (7)0.123 (6)0.095 (4)0.066 (4)0.086 (4)0.010 (3)
C30B0.078 (4)0.058 (4)0.073 (5)0.010 (3)0.015 (3)0.031 (3)
C10.066 (3)0.045 (2)0.054 (3)0.006 (2)0.025 (2)0.0186 (19)
C20.062 (3)0.052 (2)0.052 (3)0.002 (2)0.024 (2)0.0137 (19)
C30.047 (2)0.053 (2)0.060 (3)0.0008 (19)0.015 (2)0.008 (2)
C40.045 (2)0.038 (2)0.055 (2)0.0025 (17)0.0080 (18)0.0101 (17)
C50.045 (2)0.0238 (16)0.0355 (18)0.0010 (14)0.0053 (15)0.0042 (13)
C60.043 (2)0.0243 (15)0.0320 (17)0.0026 (14)0.0032 (14)0.0056 (13)
C70.048 (2)0.0264 (16)0.042 (2)0.0099 (15)0.0103 (16)0.0068 (14)
C80.054 (2)0.0234 (16)0.0355 (18)0.0083 (15)0.0053 (16)0.0079 (13)
C90.050 (2)0.0264 (16)0.0368 (19)0.0054 (15)0.0126 (16)0.0111 (13)
C100.046 (2)0.0237 (15)0.0304 (17)0.0030 (14)0.0075 (15)0.0067 (12)
C110.046 (2)0.0241 (15)0.0325 (17)0.0049 (14)0.0059 (15)0.0069 (13)
C120.057 (2)0.0332 (18)0.0369 (19)0.0049 (16)0.0122 (17)0.0110 (15)
C130.057 (3)0.049 (2)0.051 (2)0.0112 (19)0.023 (2)0.0108 (18)
C140.060 (3)0.047 (2)0.054 (2)0.023 (2)0.019 (2)0.0112 (19)
C150.063 (3)0.0336 (19)0.049 (2)0.0200 (18)0.014 (2)0.0127 (16)
C160.071 (3)0.0290 (19)0.067 (3)0.018 (2)0.005 (2)0.0147 (18)
C170.062 (3)0.0288 (18)0.058 (3)0.0116 (18)0.008 (2)0.0122 (17)
C180.061 (2)0.0241 (16)0.0354 (19)0.0094 (16)0.0108 (17)0.0090 (13)
C190.072 (3)0.0307 (19)0.062 (3)0.0158 (19)0.026 (2)0.0194 (18)
C200.088 (4)0.031 (2)0.069 (3)0.012 (2)0.031 (3)0.0190 (19)
C220.056 (3)0.050 (2)0.044 (2)0.009 (2)0.0093 (19)0.0007 (18)
C230.095 (4)0.071 (3)0.037 (2)0.030 (3)0.013 (2)0.005 (2)
C240.059 (3)0.056 (3)0.037 (2)0.001 (2)0.0057 (18)0.0138 (18)
C270.067 (3)0.043 (2)0.067 (3)0.017 (2)0.013 (2)0.029 (2)
C280.075 (3)0.044 (2)0.081 (3)0.008 (2)0.010 (3)0.041 (2)
C290.072 (3)0.034 (2)0.051 (2)0.0040 (19)0.006 (2)0.0188 (17)
C310.079 (4)0.129 (5)0.077 (4)0.018 (4)0.014 (3)0.024 (4)
Cl10.0523 (6)0.0507 (6)0.0543 (6)0.0140 (5)0.0087 (5)0.0223 (4)
N10.053 (2)0.0318 (15)0.0399 (17)0.0038 (14)0.0136 (14)0.0126 (12)
N20.0403 (16)0.0218 (13)0.0337 (15)0.0062 (11)0.0027 (12)0.0068 (11)
N30.0490 (18)0.0259 (14)0.0387 (16)0.0081 (13)0.0097 (14)0.0095 (12)
N40.090 (3)0.0249 (15)0.050 (2)0.0142 (17)0.0127 (19)0.0116 (14)
O10.0527 (17)0.0392 (14)0.0368 (14)0.0025 (12)0.0065 (12)0.0065 (11)
O20.071 (2)0.0422 (15)0.0349 (14)0.0060 (13)0.0037 (13)0.0133 (11)
O30.0636 (18)0.0328 (13)0.0442 (15)0.0035 (12)0.0046 (13)0.0174 (11)
O40.0563 (18)0.0412 (15)0.0595 (18)0.0145 (13)0.0115 (14)0.0283 (13)
O50.0644 (19)0.0223 (12)0.0413 (15)0.0080 (12)0.0051 (13)0.0077 (10)
O60.059 (2)0.087 (2)0.070 (2)0.0292 (19)0.0039 (17)0.0225 (19)
Yb10.04699 (10)0.02374 (8)0.03358 (9)0.00377 (6)0.00364 (6)0.01108 (5)
Geometric parameters (Å, º) top
O7A—H7A0.818 (12)C8—C91.387 (5)
O7A—H7B0.689 (6)C8—C181.496 (4)
O7B—H7C0.775 (19)C9—C101.397 (4)
O7B—H7D0.754 (17)C9—H90.94
F1A—C21A1.299 (10)C10—N21.344 (4)
F2A—C21A1.313 (9)C10—C111.485 (5)
F3A—C21A1.325 (7)C11—N31.359 (4)
C21A—C221.573 (9)C11—C121.376 (5)
F4A—C25A1.307 (8)C12—C131.391 (5)
F5A—C25A1.348 (8)C12—H120.94
F6A—C25A1.293 (9)C13—C141.381 (6)
C25A—C241.589 (10)C13—H130.94
F7A—C26A1.327 (7)C14—C151.364 (6)
F8A—C26A1.317 (9)C14—H140.94
F9A—C26A1.309 (10)C15—N31.349 (5)
C26A—C271.540 (8)C15—H150.94
F10A—C30A1.323 (7)C16—N41.327 (6)
F11A—C30A1.323 (7)C16—C171.386 (5)
F12A—C30A1.313 (8)C16—H160.94
C30A—C291.518 (8)C17—C181.388 (6)
F1B—C21B1.30 (2)C17—H170.94
F2B—C21B1.31 (2)C18—C191.385 (6)
F3B—C21B1.324 (19)C19—C201.385 (5)
C21B—C221.41 (3)C19—H190.94
F4B—C25B1.306 (17)C20—N41.331 (6)
F5B—C25B1.352 (19)C20—H200.94
F6B—C25B1.296 (19)C22—O11.242 (5)
C25B—C241.42 (3)C22—C231.385 (6)
F7B—C26B1.33 (2)C23—C241.376 (6)
F8B—C26B1.30 (2)C23—H230.94
F9B—C26B1.31 (2)C24—O21.238 (5)
C26B—C271.40 (5)C27—O41.266 (4)
F10B—C30B1.32 (2)C27—C281.371 (6)
F11B—C30B1.31 (2)C28—C291.386 (7)
F12B—C30B1.30 (2)C28—H280.94
C30B—C291.61 (4)C29—O31.246 (4)
C1—N11.347 (5)C31—O61.380 (6)
C1—C21.387 (6)C31—H31A0.97
C1—H10.94C31—H31B0.97
C2—C31.363 (6)C31—H31C0.97
C2—H20.94N1—Yb12.438 (3)
C3—C41.385 (6)N2—Yb12.434 (3)
C3—H30.94N3—Yb12.464 (3)
C4—C51.378 (5)O1—Yb12.313 (2)
C4—H40.94O2—Yb12.319 (3)
C5—N11.353 (4)O3—Yb12.334 (3)
C5—C61.478 (5)O4—Yb12.262 (3)
C6—N21.343 (4)O5—Yb12.252 (3)
C6—C71.390 (4)O5—H5A0.78 (4)
C7—C81.391 (5)O5—H5B0.75 (4)
C7—H70.94O6—H60.83
H7A—O7A—H7B123 (2)C14—C15—H15118.0
H7C—O7B—H7D142.0 (16)N4—C16—C17123.5 (4)
F1A—C21A—F2A107.6 (7)N4—C16—H16118.3
F1A—C21A—F3A109.7 (8)C17—C16—H16118.3
F2A—C21A—F3A107.6 (8)C16—C17—C18119.1 (4)
F1A—C21A—C22108.9 (7)C16—C17—H17120.5
F2A—C21A—C22111.1 (6)C18—C17—H17120.5
F3A—C21A—C22111.9 (6)C19—C18—C17117.5 (3)
F6A—C25A—F4A108.7 (8)C19—C18—C8121.7 (4)
F6A—C25A—F5A107.9 (6)C17—C18—C8120.9 (4)
F4A—C25A—F5A107.8 (7)C18—C19—C20119.4 (4)
F6A—C25A—C24109.1 (7)C18—C19—H19120.3
F4A—C25A—C24112.3 (6)C20—C19—H19120.3
F5A—C25A—C24111.0 (7)N4—C20—C19123.2 (5)
F9A—C26A—F8A107.3 (7)N4—C20—H20118.4
F9A—C26A—F7A108.0 (7)C19—C20—H20118.4
F8A—C26A—F7A107.1 (7)O1—C22—C23127.1 (4)
F9A—C26A—C27110.8 (7)O1—C22—C21B117.2 (12)
F8A—C26A—C27110.5 (6)C23—C22—C21B114.8 (12)
F7A—C26A—C27113.0 (6)O1—C22—C21A113.4 (4)
F12A—C30A—F11A105.7 (5)C23—C22—C21A119.5 (4)
F12A—C30A—F10A109.7 (7)C24—C23—C22120.3 (4)
F11A—C30A—F10A105.7 (6)C24—C23—H23119.9
F12A—C30A—C29109.3 (5)C22—C23—H23119.9
F11A—C30A—C29113.3 (6)O2—C24—C23127.1 (4)
F10A—C30A—C29112.8 (5)O2—C24—C25B107.4 (11)
F1B—C21B—F2B107 (3)C23—C24—C25B125.1 (11)
F1B—C21B—F3B103 (2)O2—C24—C25A115.9 (4)
F2B—C21B—F3B103 (3)C23—C24—C25A117.0 (4)
F1B—C21B—C22120 (2)O4—C27—C28127.4 (4)
F2B—C21B—C22112 (2)O4—C27—C26B127 (2)
F3B—C21B—C22111 (3)C28—C27—C26B106 (2)
F6B—C25B—F4B113 (3)O4—C27—C26A112.4 (4)
F6B—C25B—F5B101 (2)C28—C27—C26A120.2 (4)
F4B—C25B—F5B107 (2)C27—C28—C29122.1 (4)
F6B—C25B—C24117 (2)C27—C28—H28118.9
F4B—C25B—C24108 (2)C29—C28—H28118.9
F5B—C25B—C24111 (2)O3—C29—C28127.0 (4)
F8B—C26B—F9B105 (3)O3—C29—C30A115.7 (5)
F8B—C26B—F7B108 (3)C28—C29—C30A117.2 (4)
F9B—C26B—F7B105 (3)O3—C29—C30B111.8 (11)
F8B—C26B—C27104 (4)C28—C29—C30B119.7 (11)
F9B—C26B—C27120 (4)O6—C31—H31A109.5
F7B—C26B—C27114 (4)O6—C31—H31B109.5
F12B—C30B—F11B113 (3)H31A—C31—H31B109.5
F12B—C30B—F10B111 (3)O6—C31—H31C109.5
F11B—C30B—F10B100 (3)H31A—C31—H31C109.5
F12B—C30B—C29118 (3)H31B—C31—H31C109.5
F11B—C30B—C29111 (3)C1—N1—C5117.3 (3)
F10B—C30B—C29102 (3)C1—N1—Yb1122.6 (3)
N1—C1—C2123.4 (4)C5—N1—Yb1120.0 (2)
N1—C1—H1118.3C6—N2—C10118.8 (3)
C2—C1—H1118.3C6—N2—Yb1119.5 (2)
C3—C2—C1118.4 (4)C10—N2—Yb1120.0 (2)
C3—C2—H2120.8C15—N3—C11116.8 (3)
C1—C2—H2120.8C15—N3—Yb1123.7 (2)
C2—C3—C4119.5 (4)C11—N3—Yb1119.5 (2)
C2—C3—H3120.3C16—N4—C20117.4 (3)
C4—C3—H3120.3C22—O1—Yb1136.0 (3)
C5—C4—C3119.3 (4)C24—O2—Yb1136.7 (3)
C5—C4—H4120.3C29—O3—Yb1131.4 (3)
C3—C4—H4120.3C27—O4—Yb1133.3 (3)
N1—C5—C4122.1 (3)Yb1—O5—H5A125 (4)
N1—C5—C6115.7 (3)Yb1—O5—H5B120 (4)
C4—C5—C6122.2 (3)H5A—O5—H5B113 (5)
N2—C6—C7122.0 (3)C31—O6—H6109.5
N2—C6—C5116.3 (3)O5—Yb1—O4101.21 (10)
C7—C6—C5121.7 (3)O5—Yb1—O1145.11 (10)
C6—C7—C8119.9 (3)O4—Yb1—O192.58 (10)
C6—C7—H7120.1O5—Yb1—O2142.31 (11)
C8—C7—H7120.1O4—Yb1—O278.53 (10)
C9—C8—C7117.6 (3)O1—Yb1—O271.66 (9)
C9—C8—C18121.3 (3)O5—Yb1—O373.80 (10)
C7—C8—C18121.1 (3)O4—Yb1—O374.24 (10)
C8—C9—C10119.9 (3)O1—Yb1—O3141.08 (9)
C8—C9—H9120.1O2—Yb1—O369.89 (9)
C10—C9—H9120.1O5—Yb1—N279.05 (9)
N2—C10—C9121.8 (3)O4—Yb1—N2143.97 (10)
N2—C10—C11116.3 (3)O1—Yb1—N271.28 (9)
C9—C10—C11121.9 (3)O2—Yb1—N2122.99 (9)
N3—C11—C12122.1 (3)O3—Yb1—N2137.52 (10)
N3—C11—C10115.7 (3)O5—Yb1—N187.59 (11)
C12—C11—C10122.2 (3)O4—Yb1—N1149.10 (10)
C11—C12—C13119.9 (3)O1—Yb1—N196.84 (10)
C11—C12—H12120.1O2—Yb1—N176.68 (10)
C13—C12—H12120.1O3—Yb1—N180.08 (10)
C14—C13—C12118.0 (4)N2—Yb1—N166.59 (10)
C14—C13—H13121.0O5—Yb1—N376.28 (11)
C12—C13—H13121.0O4—Yb1—N378.64 (10)
C15—C14—C13119.2 (4)O1—Yb1—N375.27 (9)
C15—C14—H14120.4O2—Yb1—N3138.51 (10)
C13—C14—H14120.4O3—Yb1—N3134.26 (9)
N3—C15—C14124.0 (4)N2—Yb1—N366.31 (9)
N3—C15—H15118.0N1—Yb1—N3132.23 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···Cl1i0.75 (4)2.31 (4)3.054 (3)175 (5)
O6—H6···Cl10.832.273.102 (3)177
O5—H5A···N4ii0.78 (4)1.92 (4)2.686 (4)167 (5)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Yb(C5HF6O2)2(C20H14N4)(H2O)]Cl·CH4O·H2O
Mr1001.03
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)9.7559 (6), 12.4035 (7), 16.5543 (10)
α, β, γ (°)98.870 (1), 104.717 (1), 93.559 (1)
V3)1903.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.46 × 0.33 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.53, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
13523, 9671, 8205
Rint0.021
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.081, 1.08
No. of reflections9671
No. of parameters587
No. of restraints34
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.02, 0.88

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2010), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···Cl1i0.75 (4)2.31 (4)3.054 (3)175.(5)
O6—H6···Cl10.832.273.102 (3)177.1
O5—H5A···N4ii0.78 (4)1.92 (4)2.686 (4)167.(5)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Coordination Programming" (No. 22108523) and "Mol­ecular Activation" (No. 23105537), Grant-in-Aid for Scientific Research (A) (No. 21245016) and (B) (No. 20350029), and the Global COE Program "Science for Future Mol­ecular Systems" from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MA also acknowledges financial support by the Tokuyama Science Foundation.

References

First citationAhrens, B., Cotton, S. A., Feeder, N., Noy, O. E., Raithby, P. R. & Teat, S. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2027–2030.  Web of Science CSD CrossRef Google Scholar
First citationBeves, J. E., Bray, D. J., Clegg, J. K., Constable, E. C., Housecroft, C. E., Jolliffe, K. A., Kepert, C. J., Lindoy, L. F., Neuburger, M., Price, D. J., Schaffner, S. & Schaper, F. (2008). Inorg. Chim. Acta, 361, 2582–2590.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J., Neuburger, M., Price, D. J. & Schaffner, S. (2007b). CrystEngComm, 9, 1073–1077.  Web of Science CSD CrossRef CAS Google Scholar
First citationBeves, J. E., Constable, E. C., Housecroft, C. E., Kepert, C. J. & Price, D. J. (2007a). CrystEngComm, 9, 456–459.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C. & Thompson, A. M. W. C. (1992). J. Chem. Soc. Dalton Trans. pp. 2947–2950.  CrossRef Web of Science Google Scholar
First citationConstable, E. C. & Thompson, A. M. W. C. (1994). J. Chem. Soc. Dalton Trans. pp. 1409–1418.  CrossRef Web of Science Google Scholar
First citationCrystalMaker (2010). CrystalMaker. CrystalMaker Software Limited, Yarnton, England.  Google Scholar
First citationFeng, H., Zhou, X.-P., Wu, T., Li, D., Yin, Y.-G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.  Web of Science CSD CrossRef CAS Google Scholar
First citationFukuda, Y., Nakao, A. & Hayashi, K. (2002). J. Chem. Soc. Dalton Trans. pp. 527–533.  Web of Science CSD CrossRef Google Scholar
First citationGou, L., Wu, Q.-R., Hu, H.-M., Qin, T., Xue, G.-L., Yang, M.-L. & Tang, Z. X. (2008). Polyhedron, 27, 1517–1526.  Web of Science CSD CrossRef CAS Google Scholar
First citationHayami, S., Hashiguchi, K., Juhász, G., Ohba, M., Okawa, H., Maeda, Y., Kato, K., Osaka, K., Takata, M. & Inoue, K. (2004). Inorg. Chem. 43, 4124–4126.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHayashi, K., Nagao, N., Harada, K., Haga, M. & Fukuda, F. (1998). Chem. Lett. 27, 1173–1174.  Web of Science CSD CrossRef Google Scholar
First citationHou, L., Li, D., Shi, W., Yin, Y. & Ng, S. W. (2005). Inorg. Chem. 44, 7825–7832.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X.-L., Shi, L.-X., Zhang, L.-Y., Wen, H.-M. & Chen, Z.-N. (2007). Inorg. Chem. 46, 10892–10900.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPrzychodzen, P., Pelka, R., Lewinski, K., Supel, J., Rams, M., Tomala, K. & Sieklucka, B. (2007). Inorg. Chem. 46, 8924–8938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStojanovic, M., Robinson, N. J., Chen, X., Smith, P. A. & Sykora, R. E. (2010). J. Solid State Chem. 183, 933–939.  Web of Science CrossRef CAS Google Scholar
First citationSun, S.-S. & Lees, A. J. (2001). Inorg. Chem. 40, 3154–3160.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSun, S.-S., Silva, A. S., Brinn, I. M. & Lees, A. J. (2000). Inorg. Chem. 39, 1344–1345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, H.-B., Zhang, L.-Y., Chen, X.-M., Li, X.-L. & Chen, Z.-N. (2009). Cryst. Growth Des. 9, 569–576.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Badger, P. D., Geib, S. J. & Petoud, S. (2007a). Inorg. Chem. 46, 6473–6482.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, S., Zhan, S., Li, M., Peng, R. & Li, D. (2007b). Inorg. Chem. 46, 4365–4367.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m29-m30
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds