metal-organic compounds
Bis(μ-di-2-pyridyl disulfide-κ3N,S:N′)di-μ3-iodido-di-μ2-iodido-tetracopper(I)
aSchool of Chemistry and Bioengineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
*Correspondence e-mail: wangyuhong@mail.usts.edu.cn
In the centrosymmetric tetranuclear title compound, [Cu4I4(C10H8N2S2)2], there are two different CuI atoms with tetrahedral coordination geometries. One is chelated by a pyridine N atom and an S-donor from one di-2-pyridyl disulfide ligand and coordinated by two I atoms, while the second CuI atom is coordinated by a pyridine-N and three I atoms. Iodine bridges between the CuI atoms form a tetranuclear structure.
Related literature
For the structures and luminescence properties of Cu(I) complexes, see: Caradoc-Davies & Hanton (2003); Ford et al. (1999); Rath et al. (1986); Song et al. (2003); Song, Sun & Yang (2011); Song, Sun, Yang & Yang (2011); Su et al. (1997). For metal complexes with di-2-pyridyl disulfide, see: Bell et al. (2000); Delgado et al. (2007); Kadooka et al. (1976); Niu et al. (2007); Wu et al. (2011).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2001); cell CrystalClear; data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681105152X/mw2029sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681105152X/mw2029Isup2.hkl
The ligand di-2-pyridyl disulfide (22.0 mg, 0.1 mmol) in CHCl3 (3 ml) was added to CuI (17.8 mg, 0.1 mmol) dissolved in MeCN (5 ml). The reaction mixture was kept in the dark and allowed to evaporate slowly. Yellow block-shaped single crystals suitable for X-ray analysis were obtained in 58% yield. Analysis found: C 20.39, H 1,40, N 4.84%; calculated for C20H16Cu4I4N4S4: C 19.98, H 1.34, N 4.66%.
H atoms were placed in calculated positions and included as riding contributions with C—H distances of 0.94Å (aromatic H) and with Uiso= 1.2Ueq(C).
Data collection: CrystalClear (Rigaku, 2001); cell
CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. View of (I) shown with 30% probability displacement ellipsoids and small spheres for the H atoms. |
[Cu4I4(C10H8N2S2)2] | F(000) = 2224 |
Mr = 1202.37 | Dx = 2.657 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 8826 reflections |
a = 10.460 (6) Å | θ = 3.0–27.5° |
b = 14.434 (8) Å | µ = 7.20 mm−1 |
c = 19.908 (12) Å | T = 223 K |
V = 3006 (3) Å3 | Block, yellow |
Z = 4 | 0.38 × 0.11 × 0.10 mm |
Rigaku Saturn diffractometer | 3410 independent reflections |
Radiation source: fine-focus sealed tube | 2944 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 14.63 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −9→13 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −11→18 |
Tmin = 0.171, Tmax = 0.533 | l = −23→25 |
10455 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.16 | w = 1/[σ2(Fo2) + (0.0286P)2] where P = (Fo2 + 2Fc2)/3 |
3410 reflections | (Δ/σ)max = 0.001 |
163 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.68 e Å−3 |
[Cu4I4(C10H8N2S2)2] | V = 3006 (3) Å3 |
Mr = 1202.37 | Z = 4 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 10.460 (6) Å | µ = 7.20 mm−1 |
b = 14.434 (8) Å | T = 223 K |
c = 19.908 (12) Å | 0.38 × 0.11 × 0.10 mm |
Rigaku Saturn diffractometer | 3410 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2944 reflections with I > 2σ(I) |
Tmin = 0.171, Tmax = 0.533 | Rint = 0.041 |
10455 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.087 | H-atom parameters constrained |
S = 1.16 | Δρmax = 0.73 e Å−3 |
3410 reflections | Δρmin = −0.68 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | 0.28885 (4) | 0.00696 (3) | 0.52344 (2) | 0.03779 (13) | |
I2 | 0.56758 (4) | 0.03336 (3) | 0.68154 (2) | 0.04152 (14) | |
Cu1 | 0.43879 (8) | 0.11605 (5) | 0.58888 (4) | 0.0440 (2) | |
Cu2 | 0.52112 (8) | −0.05428 (6) | 0.56063 (5) | 0.0430 (2) | |
S1 | 0.55004 (18) | 0.33204 (12) | 0.60075 (10) | 0.0472 (5) | |
S2 | 0.57511 (16) | 0.22524 (11) | 0.53450 (9) | 0.0381 (4) | |
N1 | 0.3452 (5) | 0.2256 (4) | 0.6339 (3) | 0.0409 (13) | |
N2 | 0.4533 (4) | 0.1941 (3) | 0.4210 (3) | 0.0300 (11) | |
C1 | 0.2348 (6) | 0.2116 (5) | 0.6675 (4) | 0.0504 (19) | |
H1 | 0.1960 | 0.1530 | 0.6644 | 0.061* | |
C2 | 0.1761 (7) | 0.2779 (6) | 0.7059 (4) | 0.058 (2) | |
H2 | 0.1002 | 0.2647 | 0.7293 | 0.069* | |
C3 | 0.2316 (7) | 0.3650 (6) | 0.7093 (4) | 0.057 (2) | |
H3 | 0.1933 | 0.4124 | 0.7347 | 0.069* | |
C4 | 0.3452 (7) | 0.3811 (5) | 0.6745 (4) | 0.0514 (19) | |
H4 | 0.3844 | 0.4397 | 0.6756 | 0.062* | |
C5 | 0.3986 (6) | 0.3093 (4) | 0.6386 (3) | 0.0400 (16) | |
C6 | 0.3900 (6) | 0.2177 (4) | 0.3649 (3) | 0.0374 (15) | |
H6 | 0.3637 | 0.1702 | 0.3357 | 0.045* | |
C7 | 0.3617 (6) | 0.3078 (4) | 0.3479 (4) | 0.0432 (17) | |
H7 | 0.3157 | 0.3215 | 0.3085 | 0.052* | |
C8 | 0.4027 (6) | 0.3779 (4) | 0.3903 (4) | 0.0424 (17) | |
H8 | 0.3860 | 0.4401 | 0.3796 | 0.051* | |
C9 | 0.4671 (6) | 0.3565 (4) | 0.4474 (4) | 0.0399 (16) | |
H9 | 0.4960 | 0.4031 | 0.4767 | 0.048* | |
C10 | 0.4893 (5) | 0.2629 (4) | 0.4615 (3) | 0.0307 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0346 (2) | 0.0420 (3) | 0.0368 (3) | −0.00164 (19) | −0.00135 (19) | −0.0036 (2) |
I2 | 0.0539 (3) | 0.0378 (2) | 0.0329 (3) | −0.0041 (2) | −0.0081 (2) | 0.00119 (19) |
Cu1 | 0.0558 (5) | 0.0339 (4) | 0.0423 (6) | 0.0019 (4) | −0.0071 (4) | −0.0047 (4) |
Cu2 | 0.0515 (5) | 0.0329 (4) | 0.0447 (6) | 0.0009 (4) | −0.0026 (4) | 0.0002 (4) |
S1 | 0.0593 (11) | 0.0411 (10) | 0.0411 (11) | −0.0087 (9) | −0.0065 (9) | −0.0111 (8) |
S2 | 0.0420 (9) | 0.0368 (9) | 0.0354 (10) | 0.0018 (8) | −0.0076 (8) | −0.0033 (7) |
N1 | 0.045 (3) | 0.041 (3) | 0.037 (4) | 0.008 (3) | −0.008 (3) | −0.001 (3) |
N2 | 0.034 (3) | 0.027 (3) | 0.029 (3) | 0.001 (2) | 0.003 (2) | 0.001 (2) |
C1 | 0.047 (4) | 0.059 (5) | 0.045 (5) | −0.002 (4) | −0.005 (3) | −0.004 (4) |
C2 | 0.049 (4) | 0.089 (6) | 0.036 (5) | 0.016 (4) | −0.009 (4) | −0.011 (4) |
C3 | 0.063 (5) | 0.060 (5) | 0.050 (5) | 0.028 (4) | −0.016 (4) | −0.015 (4) |
C4 | 0.071 (5) | 0.044 (4) | 0.039 (5) | 0.014 (4) | −0.011 (4) | −0.008 (3) |
C5 | 0.054 (4) | 0.037 (4) | 0.028 (4) | 0.006 (3) | −0.010 (3) | −0.003 (3) |
C6 | 0.037 (3) | 0.041 (4) | 0.033 (4) | 0.005 (3) | −0.009 (3) | −0.005 (3) |
C7 | 0.047 (4) | 0.039 (4) | 0.044 (4) | 0.017 (3) | −0.008 (3) | 0.004 (3) |
C8 | 0.049 (4) | 0.034 (3) | 0.044 (4) | 0.014 (3) | −0.007 (3) | 0.002 (3) |
C9 | 0.038 (3) | 0.039 (4) | 0.043 (4) | −0.004 (3) | 0.000 (3) | −0.007 (3) |
C10 | 0.029 (3) | 0.029 (3) | 0.034 (4) | 0.001 (3) | 0.000 (3) | −0.005 (3) |
I1—Cu1 | 2.5760 (13) | N2—Cu2i | 2.068 (5) |
I1—Cu2i | 2.6868 (15) | C1—C2 | 1.370 (10) |
I1—Cu2 | 2.6892 (16) | C1—H1 | 0.9400 |
I2—Cu1 | 2.5772 (13) | C2—C3 | 1.385 (11) |
I2—Cu2 | 2.7623 (17) | C2—H2 | 0.9400 |
Cu1—N1 | 2.064 (5) | C3—C4 | 1.395 (10) |
Cu1—S2 | 2.385 (2) | C3—H3 | 0.9400 |
Cu1—Cu2 | 2.6650 (18) | C4—C5 | 1.377 (9) |
Cu2—N2i | 2.068 (5) | C4—H4 | 0.9400 |
Cu2—I1i | 2.6868 (15) | C6—C7 | 1.377 (8) |
Cu2—Cu2i | 2.912 (2) | C6—H6 | 0.9400 |
S1—C5 | 1.785 (7) | C7—C8 | 1.386 (9) |
S1—S2 | 2.046 (3) | C7—H7 | 0.9400 |
S2—C10 | 1.792 (6) | C8—C9 | 1.357 (9) |
N1—C5 | 1.334 (8) | C8—H8 | 0.9400 |
N1—C1 | 1.350 (9) | C9—C10 | 1.399 (8) |
N2—C10 | 1.334 (7) | C9—H9 | 0.9400 |
N2—C6 | 1.341 (7) | ||
Cu1—I1—Cu2i | 73.10 (5) | C1—N1—Cu1 | 120.4 (5) |
Cu1—I1—Cu2 | 60.77 (4) | C10—N2—C6 | 117.0 (5) |
Cu2i—I1—Cu2 | 65.59 (5) | C10—N2—Cu2i | 125.6 (4) |
Cu1—I2—Cu2 | 59.76 (4) | C6—N2—Cu2i | 117.4 (4) |
N1—Cu1—S2 | 88.52 (17) | N1—C1—C2 | 123.7 (7) |
N1—Cu1—I1 | 113.53 (16) | N1—C1—H1 | 118.1 |
S2—Cu1—I1 | 122.57 (7) | C2—C1—H1 | 118.1 |
N1—Cu1—I2 | 106.96 (16) | C1—C2—C3 | 118.3 (8) |
S2—Cu1—I2 | 108.56 (6) | C1—C2—H2 | 120.9 |
I1—Cu1—I2 | 113.40 (5) | C3—C2—H2 | 120.9 |
N1—Cu1—Cu2 | 162.08 (17) | C2—C3—C4 | 118.9 (7) |
S2—Cu1—Cu2 | 108.70 (7) | C2—C3—H3 | 120.5 |
I1—Cu1—Cu2 | 61.71 (4) | C4—C3—H3 | 120.5 |
I2—Cu1—Cu2 | 63.57 (4) | C5—C4—C3 | 118.5 (7) |
N2i—Cu2—Cu1 | 154.75 (15) | C5—C4—H4 | 120.7 |
N2i—Cu2—I1i | 105.23 (13) | C3—C4—H4 | 120.7 |
Cu1—Cu2—I1i | 97.82 (4) | N1—C5—C4 | 123.2 (7) |
N2i—Cu2—I1 | 119.11 (13) | N1—C5—S1 | 120.5 (5) |
Cu1—Cu2—I1 | 57.52 (3) | C4—C5—S1 | 116.2 (6) |
I1i—Cu2—I1 | 114.41 (5) | N2—C6—C7 | 123.5 (6) |
N2i—Cu2—I2 | 105.64 (15) | N2—C6—H6 | 118.3 |
Cu1—Cu2—I2 | 56.67 (3) | C7—C6—H6 | 118.3 |
I1i—Cu2—I2 | 107.23 (5) | C6—C7—C8 | 118.2 (6) |
I1—Cu2—I2 | 104.38 (4) | C6—C7—H7 | 120.9 |
N2i—Cu2—Cu2i | 133.76 (15) | C8—C7—H7 | 120.9 |
Cu1—Cu2—Cu2i | 68.25 (5) | C9—C8—C7 | 119.9 (6) |
I1i—Cu2—Cu2i | 57.25 (4) | C9—C8—H8 | 120.0 |
I1—Cu2—Cu2i | 57.17 (3) | C7—C8—H8 | 120.0 |
I2—Cu2—Cu2i | 120.18 (6) | C8—C9—C10 | 118.0 (6) |
C5—S1—S2 | 104.3 (2) | C8—C9—H9 | 121.0 |
C10—S2—S1 | 103.3 (2) | C10—C9—H9 | 121.0 |
C10—S2—Cu1 | 105.6 (2) | N2—C10—C9 | 123.4 (6) |
S1—S2—Cu1 | 97.40 (10) | N2—C10—S2 | 114.0 (4) |
C5—N1—C1 | 117.3 (6) | C9—C10—S2 | 122.6 (5) |
C5—N1—Cu1 | 121.7 (5) | ||
Cu2i—I1—Cu1—N1 | 128.20 (18) | I1—Cu1—S2—C10 | 33.8 (2) |
Cu2—I1—Cu1—N1 | −160.76 (18) | I2—Cu1—S2—C10 | 169.2 (2) |
Cu2i—I1—Cu1—S2 | 24.03 (6) | Cu2—Cu1—S2—C10 | 101.6 (2) |
Cu2—I1—Cu1—S2 | 95.07 (7) | N1—Cu1—S2—S1 | 22.68 (17) |
Cu2i—I1—Cu1—I2 | −109.45 (5) | I1—Cu1—S2—S1 | 139.91 (8) |
Cu2—I1—Cu1—I2 | −38.41 (4) | I2—Cu1—S2—S1 | −84.72 (9) |
Cu2i—I1—Cu1—Cu2 | −71.04 (4) | Cu2—Cu1—S2—S1 | −152.27 (7) |
Cu2—I2—Cu1—N1 | 163.59 (17) | S2—Cu1—N1—C5 | −19.2 (5) |
Cu2—I2—Cu1—S2 | −102.17 (6) | I1—Cu1—N1—C5 | −144.4 (4) |
Cu2—I2—Cu1—I1 | 37.66 (4) | I2—Cu1—N1—C5 | 89.8 (5) |
N1—Cu1—Cu2—N2i | −11.1 (6) | Cu2—Cu1—N1—C5 | 145.1 (4) |
S2—Cu1—Cu2—N2i | 152.3 (3) | S2—Cu1—N1—C1 | 169.7 (5) |
I1—Cu1—Cu2—N2i | −90.1 (3) | I1—Cu1—N1—C1 | 44.5 (6) |
I2—Cu1—Cu2—N2i | 50.3 (3) | I2—Cu1—N1—C1 | −81.3 (5) |
N1—Cu1—Cu2—I1i | −167.0 (5) | Cu2—Cu1—N1—C1 | −26.0 (9) |
S2—Cu1—Cu2—I1i | −3.57 (6) | C5—N1—C1—C2 | −0.4 (11) |
I1—Cu1—Cu2—I1i | 114.03 (5) | Cu1—N1—C1—C2 | 171.2 (6) |
I2—Cu1—Cu2—I1i | −105.52 (5) | N1—C1—C2—C3 | 1.5 (12) |
N1—Cu1—Cu2—I1 | 79.0 (5) | C1—C2—C3—C4 | −0.9 (11) |
S2—Cu1—Cu2—I1 | −117.60 (7) | C2—C3—C4—C5 | −0.7 (11) |
I2—Cu1—Cu2—I1 | 140.45 (3) | C1—N1—C5—C4 | −1.4 (10) |
N1—Cu1—Cu2—I2 | −61.4 (5) | Cu1—N1—C5—C4 | −172.8 (5) |
S2—Cu1—Cu2—I2 | 101.95 (7) | C1—N1—C5—S1 | 175.7 (5) |
I1—Cu1—Cu2—I2 | −140.45 (3) | Cu1—N1—C5—S1 | 4.3 (7) |
N1—Cu1—Cu2—Cu2i | 143.0 (5) | C3—C4—C5—N1 | 1.9 (11) |
S2—Cu1—Cu2—Cu2i | −53.58 (6) | C3—C4—C5—S1 | −175.3 (5) |
I1—Cu1—Cu2—Cu2i | 64.02 (4) | S2—S1—C5—N1 | 16.5 (6) |
I2—Cu1—Cu2—Cu2i | −155.53 (5) | S2—S1—C5—C4 | −166.2 (5) |
Cu1—I1—Cu2—N2i | 150.78 (17) | C10—N2—C6—C7 | 0.1 (9) |
Cu2i—I1—Cu2—N2i | −125.65 (17) | Cu2i—N2—C6—C7 | 177.3 (5) |
Cu2i—I1—Cu2—Cu1 | 83.57 (5) | N2—C6—C7—C8 | 1.2 (11) |
Cu1—I1—Cu2—I1i | −83.57 (5) | C6—C7—C8—C9 | −1.0 (10) |
Cu2i—I1—Cu2—I1i | 0.0 | C7—C8—C9—C10 | −0.3 (10) |
Cu1—I1—Cu2—I2 | 33.31 (3) | C6—N2—C10—C9 | −1.6 (9) |
Cu2i—I1—Cu2—I2 | 116.88 (6) | Cu2i—N2—C10—C9 | −178.5 (4) |
Cu1—I1—Cu2—Cu2i | −83.57 (5) | C6—N2—C10—S2 | −179.2 (4) |
Cu1—I2—Cu2—N2i | −160.06 (14) | Cu2i—N2—C10—S2 | 4.0 (6) |
Cu1—I2—Cu2—I1i | 88.08 (5) | C8—C9—C10—N2 | 1.7 (10) |
Cu1—I2—Cu2—I1 | −33.68 (3) | C8—C9—C10—S2 | 179.1 (5) |
Cu1—I2—Cu2—Cu2i | 26.43 (5) | S1—S2—C10—N2 | −157.5 (4) |
C5—S1—S2—C10 | 83.7 (3) | Cu1—S2—C10—N2 | −55.7 (5) |
C5—S1—S2—Cu1 | −24.3 (2) | S1—S2—C10—C9 | 25.0 (6) |
N1—Cu1—S2—C10 | −83.4 (3) | Cu1—S2—C10—C9 | 126.7 (5) |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu4I4(C10H8N2S2)2] |
Mr | 1202.37 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 223 |
a, b, c (Å) | 10.460 (6), 14.434 (8), 19.908 (12) |
V (Å3) | 3006 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.20 |
Crystal size (mm) | 0.38 × 0.11 × 0.10 |
Data collection | |
Diffractometer | Rigaku Saturn diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.171, 0.533 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10455, 3410, 2944 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.087, 1.16 |
No. of reflections | 3410 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.73, −0.68 |
Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors thank Suzhou University of Science and Technology for financial support.
References
Bell, N. A., Gelbrich, T., Hursthouse, M. B., Light, M. E. & Wilson, A. (2000). Polyhedron, 19, 2539–2546. Web of Science CSD CrossRef CAS Google Scholar
Caradoc-Davies, P. L. & Hanton, L. R. (2003). Dalton Trans. pp. 1754–1758. Web of Science CSD CrossRef Google Scholar
Delgado, S., Molina-Ontoria, A., Medina, M. E., Pastor, C. J., Jimenez-Aparicio, R. & Priego, J. L. (2007). Polyhedron, 26, 2817–2828. Web of Science CSD CrossRef CAS Google Scholar
Ford, P. C., Cariati, E. & Bourassa, J. (1999). Chem. Rev. 99, 3625–3648. Web of Science CrossRef PubMed CAS Google Scholar
Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan. Google Scholar
Kadooka, M. M., Warner, L. G. & Seff, K. (1976). J. Am. Chem. Soc. 98, 7569–7578. CSD CrossRef CAS PubMed Web of Science Google Scholar
Niu, Y., Zhang, N., Hou, H., Zhu, Y., Tang, M. & Ng, S. W. (2007). J. Mol. Struct. 827, 195–200. Web of Science CSD CrossRef CAS Google Scholar
Rath, N. P., Holt, E. M. & Tanimura, K. (1986). J. Chem. Soc. Dalton Trans. pp. 2303–2310. CSD CrossRef Web of Science Google Scholar
Rigaku (2001). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, R.-F., Sun, Y.-Y. & Yang, J. (2011). J. Inorg. Organomet. Polym. 21, 143–149. Web of Science CrossRef CAS Google Scholar
Song, R.-F., Sun, Y.-Y., Yang, J. & Yang, X.-Y. (2011). J. Inorg. Organomet. Polym. 21, 237–243. Web of Science CSD CrossRef CAS Google Scholar
Song, R.-F., Xie, Y.-B., Li, J.-R. & Bu, X.-H. (2003). CrystEngComm, 7, 249–254. Web of Science CrossRef Google Scholar
Su, C. Y., Kang, B.-S. & Sun, J. (1997). Chem. Lett. pp. 821–822. CSD CrossRef Web of Science Google Scholar
Wu, S., Jiang, W., Li, F. & Liu, L. (2011). Acta Cryst. E67, m285. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Polynuclear CuI compounds with luminescent properties have been designed and synthesized by reaction of CuI cations and suitable bridging ligands (Ford et al., 1999). Flexible heterocyclic ligands containing nitrogen donors can form metal complexes with considerable structural diversity and reports of CuI complexes with such ligands have increased in recent years (Caradoc-Davies & Hanton, 2003; Rath et al., 1986; Song et al., 2003; Song, Sun & Yang, 2011; Song, Sun, Yang & Yang, 2011; Song, Sun, & Yang, 2011; Su et al., 1997). di-2-pyridyl disulfide is a interesting heterocyclic ligand. A number of metal complexes of it and related ligands have been reported (Bell et al., 2000; Delgado et al., 2007; Kadooka et al., 1976; Niu et al., 2007; Wu et al., 2011). The present study details the structure of a CuI adduct of di-2-pyridyl disulfide.
The title compound, (I), is a tetranuclear complex, [Cu4I4(L)2] having crystallographically-imposed centrosymmetry (Fig. 1). In the unique ligand, S(2) and N(1) chelate to Cu(1) while N(2) coordinates to Cu(2A). Doubly-bridging I2 and triply-bridging I1 serve to complete the formation of the tetranuclear core in which each copper adopts approximately tetrahedral geometry. Cu(1) is coordinated by a pyridine N atom and an S donor from one L ligand and two iodine atoms while Cu(2) is coordinated by a pyridine N atom from the second L ligand and three iodine atoms. The bond angles around Cu(2) range from 104.38 (4) to 114.42 (5)° and are normal for a slightly distorted tetrahedral geometry while Cu(1) exists in a more distorted tetrahedral environment with the angles around Cu(1) in the range 88.58 (17) to 122.55 (7)°. All the Cu—N and Cu—S bond distances are comparable with those of other tetrameric clusters (Rath et al., 1986; Song et al., 2003; Su et al., 1997). The Cu—I bond lengths show significant differences depending on the Cu(I) environment. Cu(2) bonds to three iodine atoms with Cu—I bond distances ranging from 2.6864 (15) to 2.7623 (17) Å, while Cu(1) bonds to two iodine atoms with equivalent shorter Cu—I bond distances averaging 2.5764 (14) Å. The Cu···Cu distance of 2.6648 (18) Å is shorter than the sum of their van der Waals radii (2.83 Å), indicating the existence of Cu···Cu interactions. Such short Cu···Cu separations have been observed in some complexes such as [Cu4I4(quin)4] [2.582 (10)Å](Rath et al., 1986), [Cu4I4(MPTQ)2] [2.607 (1)Å] (Su et al., 1997), [Cu4I4(C19H36N2S2)2]n [2.734 (2)Å] (Song, Sun & Yang, 2011), [Cu4I4(C15H12N2S)2] [2.743 (1)Å] (Song et al., 2003) and [CuI(bbbm)]n [2.7683 (9)Å] (Niu et al., 2007).
The tetrameric Cu4I4 core adopts a distorted chair-like structure which is defined by three Cu—I edges from different Cu2I2 moieties: the strictly planar Cu(2)—I(1A)—Cu(2A)—I(1) unit and the non-planar Cu(1)—I(2)—Cu(2)—I(1) and symmetry-related Cu(1A)—I( A)—Cu(2A)—I(1A) units. Similar results were also found in related tetranuclear complexes (Rath et al., 1986; Song et al., 2003; Su et al., 1997).