organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(2-Formyl­thio­phen-3-yl)(hy­dr­oxy)meth­yl]thio­phene-2-carbaldehyde

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China, and bSchool of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: liguijuan@mail.ccut.edu.cn

(Received 14 November 2011; accepted 6 December 2011; online 21 December 2011)

In the title compound, C11H8O3S2, the dihedral angle between the mean planes of the two thio­phene rings is 65.10 (10)°. Intra­molecular C—H⋯O inter­actions form S(6) and S(7) ring motifs. In the crystal, chains along the a axis are formed by C—H⋯O inter­actions. Adjacent chains are connected into a three-dimensional network by C—H⋯O and O—H⋯O inter­actions.

Related literature

For details and applications of thio­phene-based aldehydes, see: Basu & Das (2011[Basu, A. & Das, G. (2011). Inorg. Chim. Acta, 372, 394-399.]); Guarín et al. (2007[Guarín, S. A. P., Bourgeaux, M., Dufresne, S. & Skene, W. G. (2007). J. Org. Chem. 72, 2631-2643.]); Herbivo et al. (2009[Herbivo, C., Comel, A., Kirsch, G. & Raposo, M. M. M. (2009). Tetrahedron, 65, 2079-2086.]); Jain et al. (2010[Jain, P., Ferrence, G. M. & Lash, T. D. (2010). J. Org. Chem. 75, 6563-6573.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For optical applications of formyl thio­phene derivatives, see: Raposo & Kirsch (2003[Raposo, M. M. M. & Kirsch, G. (2003). Tetrahedron, 59, 4891-4899.]); Raposo et al. (2004[Raposo, M. M. M., Fonseca, A. M. C. & Kirsch, G. (2004). Tetrahedron, 60, 4071-4078.]). For related Schiff base compounds reported by our group, see: Su et al. (2007a[Su, Q., Wu, Q.-L., Li, G.-H., Gao, W. & Mu, Y. (2007a). Acta Cryst. E63, o2052-o2053.],b[Su, Q., Wu, Q.-L., Li, G.-H., Liu, X.-M. & Mu, Y. (2007b). Polyhedron, 26, 5053-5060.],c[Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007c). Eur. J. Inorg. Chem. pp. 4168-4175.], 2009[Su, Q., Wu, Q.-L., Ye, L. & Mu, Y. (2009). Acta Cryst. E65, o2537.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8O3S2

  • Mr = 252.29

  • Monoclinic, P 21 /c

  • a = 7.6227 (18) Å

  • b = 10.136 (2) Å

  • c = 14.272 (3) Å

  • β = 101.998 (4)°

  • V = 1078.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.886, Tmax = 0.906

  • 6687 measured reflections

  • 2122 independent reflections

  • 1798 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.03

  • 2122 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.98 2.43 3.101 (3) 125
C11—H11⋯O2 0.93 2.50 3.261 (3) 139
C4—H4⋯O1i 0.93 2.55 3.377 (3) 149
C9—H9⋯O2ii 0.93 2.57 3.458 (3) 160
C10—H10⋯O3ii 0.93 2.55 3.397 (3) 152
O1—H1⋯O3iii 0.82 2.03 2.825 (2) 162
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiophene aldehydes and their homologues are an important class of organic compounds. Some of them can be used as precursors for syntheses of azomethines (also named Schiff) (Guarín et al., 2007; Basu et al., 2011) thiacarbaporphyrins (Jain et al., 2010), and dicyanovinyl-derivatives (Raposo et al., 2003, 2004) for optical applications. We are interested in the structures and properties of Schiff base ligands and their metal complexes (Su, Wu, Li, et al. 2007a, 2007b; Su, Gao, et al. 2007c; Su et al. 2009). Herein, a new thiophene dialdehyde, of which the aldehyde group can easily react with all kinds of arylamines to form Schiff-bases, was synthesized and the crystal structure of the title compound, (I) (Fig. 1), is reported.

In the title molecule, Fig. 1, the angle between the mean planes of the two thiophene rings is 65.1°. The two aldehyde groups are nearly coplanar with the thiophene rings to which they are attached. The C3–C2–C1–C5, C6–C2–C3–C4, C6–C8–C9–C10 and C9–C8–C7–C11 torsion angles are -174.3 (2), -178.46 (19), 178.91 (18) and 178.7 (2)°, respectively. Both S(6) and S(7) ring motifs (Bernstein et al., 1995) are formed due to intramolecular C—H···O interactions (Fig. 2 and Table 1). In the crystal there exist intermolecular C—H···O interactions with the graph-set motifs R21(8) and R22(13) (Bernstein et al., 1995) which form one-dimensional chains along the a axis (Fig. 2a and Table 1). The adjacent chains are connected into a 3-dimensional network by intermolecular C4—H4···O1 and O1—H1···O3 interactions (Fig. 2b and Table 1).

Related literature top

For details and applications of thiophene-based aldehydes, see: Basu & Das (2011); Guarín et al. (2007); Herbivo et al. (2009); Jain et al. (2010). For hydrogen-bonding motifs, see: Bernstein et al. (1995). For optical applications of formyl thiophene derivatives, see: Raposo & Kirsch (2003); Raposo et al. (2004). For related Schiff base compounds reported by our group, see: Su et al. (2007a,b,c, 2009).

Experimental top

Compound (I) was synthesized from thiophene-3-carbaldehyde, n-BuLi, 3-bromothiophene and ethyl formate via a one-pot reaction (manuscript in preparation). It was crystallized slowly from ethanol at 298 K.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and carbonyl carbons) and 0.98 (methine) Å, and allowed to ride on their parent atoms in the riding model approximation with Uiso(H) = 1.2 Ueq(C). The atom H1 was located in a difference map and included as a riding contribution with O—H adjusted to 0.82 Å and with UUiso(H) = 1.2 UUeq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of (I). (a) shows the 1-D chain formed by intramolecular and intermolecular C—H···O interactions. (b) shows the 3-D network formed by 1-D chains through further intermolecular C4—H4···O1 and O1—H1···O3 interactions. Hydrogen bonds are indicated by dashed lines.
3-[(2-Formylthiophen-3-yl)(hydroxy)methyl]thiophene-2-carbaldehyde top
Crystal data top
C11H8O3S2F(000) = 520
Mr = 252.29Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2097 reflections
a = 7.6227 (18) Åθ = 2.5–26.1°
b = 10.136 (2) ŵ = 0.48 mm1
c = 14.272 (3) ÅT = 293 K
β = 101.998 (4)°Block, yellow
V = 1078.7 (4) Å30.26 × 0.24 × 0.21 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2122 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 9.00 pixels mm-1θmax = 26.1°, θmin = 2.5°
phi and ω scansh = 89
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1012
Tmin = 0.886, Tmax = 0.906l = 1717
6687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.3301P]
where P = (Fo2 + 2Fc2)/3
2122 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C11H8O3S2V = 1078.7 (4) Å3
Mr = 252.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6227 (18) ŵ = 0.48 mm1
b = 10.136 (2) ÅT = 293 K
c = 14.272 (3) Å0.26 × 0.24 × 0.21 mm
β = 101.998 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2122 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1798 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.906Rint = 0.025
6687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
2122 reflectionsΔρmin = 0.17 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18693 (8)0.05474 (6)0.40611 (4)0.0483 (2)
S20.35779 (8)0.71529 (6)0.45073 (4)0.04438 (19)
O10.2719 (2)0.41275 (16)0.18884 (10)0.0461 (4)
H10.21890.36050.14900.069*
O30.0407 (2)0.72325 (18)0.41728 (12)0.0549 (5)
C20.2269 (3)0.2727 (2)0.32022 (14)0.0333 (5)
O20.1559 (2)0.3386 (2)0.33753 (15)0.0696 (6)
C10.1038 (3)0.2063 (2)0.36192 (15)0.0364 (5)
C80.2905 (3)0.5135 (2)0.33862 (14)0.0328 (5)
C110.0174 (3)0.6327 (2)0.37609 (15)0.0434 (5)
H110.06440.57590.33880.052*
C70.2056 (3)0.6090 (2)0.38216 (14)0.0356 (5)
C50.0793 (3)0.2385 (3)0.36692 (18)0.0480 (6)
H50.14250.17690.39510.058*
C90.4790 (3)0.5276 (2)0.36272 (15)0.0391 (5)
H90.55820.47160.34070.047*
C40.3810 (3)0.0795 (2)0.36802 (17)0.0487 (6)
H40.47400.01840.37590.058*
C60.1976 (3)0.4072 (2)0.27314 (14)0.0344 (5)
H60.06880.42600.25600.041*
C100.5322 (3)0.6320 (2)0.42159 (16)0.0435 (5)
H100.65170.65530.44360.052*
C30.3852 (3)0.1982 (2)0.32482 (16)0.0424 (5)
H30.48250.22760.30060.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0545 (4)0.0366 (4)0.0535 (4)0.0026 (3)0.0109 (3)0.0055 (3)
S20.0443 (3)0.0373 (3)0.0493 (4)0.0010 (2)0.0045 (2)0.0050 (3)
O10.0513 (10)0.0534 (10)0.0367 (8)0.0124 (8)0.0166 (7)0.0050 (7)
O30.0456 (10)0.0604 (12)0.0575 (10)0.0198 (8)0.0077 (8)0.0096 (9)
C20.0316 (11)0.0347 (12)0.0339 (11)0.0004 (8)0.0072 (8)0.0061 (9)
O20.0489 (11)0.0614 (13)0.1079 (16)0.0157 (9)0.0376 (10)0.0192 (11)
C10.0396 (11)0.0329 (12)0.0374 (11)0.0024 (9)0.0094 (9)0.0012 (9)
C80.0331 (11)0.0305 (11)0.0348 (10)0.0013 (8)0.0073 (8)0.0064 (8)
C110.0395 (12)0.0456 (14)0.0435 (12)0.0073 (10)0.0050 (10)0.0002 (10)
C70.0346 (11)0.0351 (12)0.0355 (11)0.0012 (9)0.0040 (8)0.0025 (9)
C50.0430 (13)0.0479 (15)0.0586 (15)0.0019 (11)0.0229 (11)0.0016 (12)
C90.0322 (11)0.0417 (13)0.0451 (12)0.0005 (9)0.0118 (9)0.0047 (10)
C40.0418 (13)0.0418 (14)0.0599 (15)0.0112 (10)0.0047 (11)0.0057 (11)
C60.0306 (10)0.0379 (12)0.0358 (11)0.0001 (9)0.0094 (8)0.0012 (9)
C100.0326 (11)0.0455 (14)0.0513 (13)0.0065 (10)0.0061 (9)0.0060 (11)
C30.0327 (11)0.0430 (13)0.0519 (13)0.0018 (10)0.0098 (10)0.0056 (11)
Geometric parameters (Å, º) top
S1—C41.698 (3)C8—C91.414 (3)
S1—C11.730 (2)C8—C61.503 (3)
S2—C101.698 (2)C11—C71.439 (3)
S2—C71.730 (2)C11—H110.9300
O1—C61.434 (2)C5—H50.9300
O1—H10.8200C9—C101.359 (3)
O3—C111.222 (3)C9—H90.9300
C2—C11.386 (3)C4—C31.355 (3)
C2—C31.414 (3)C4—H40.9300
C2—C61.515 (3)C6—H60.9800
O2—C51.201 (3)C10—H100.9300
C1—C51.450 (3)C3—H30.9300
C8—C71.383 (3)
C4—S1—C191.70 (11)C1—C5—H5117.4
C10—S2—C791.10 (11)C10—C9—C8112.8 (2)
C6—O1—H1109.5C10—C9—H9123.6
C1—C2—C3111.6 (2)C8—C9—H9123.6
C1—C2—C6125.23 (18)C3—C4—S1112.42 (18)
C3—C2—C6123.17 (19)C3—C4—H4123.8
C2—C1—C5131.0 (2)S1—C4—H4123.8
C2—C1—S1111.02 (16)O1—C6—C8106.03 (16)
C5—C1—S1117.75 (17)O1—C6—C2111.10 (17)
C7—C8—C9111.52 (19)C8—C6—C2111.21 (16)
C7—C8—C6125.27 (18)O1—C6—H6109.5
C9—C8—C6123.21 (19)C8—C6—H6109.5
O3—C11—C7123.5 (2)C2—C6—H6109.5
O3—C11—H11118.2C9—C10—S2112.97 (17)
C7—C11—H11118.2C9—C10—H10123.5
C8—C7—C11130.1 (2)S2—C10—H10123.5
C8—C7—S2111.65 (15)C4—C3—C2113.3 (2)
C11—C7—S2118.27 (17)C4—C3—H3123.4
O2—C5—C1125.2 (2)C2—C3—H3123.4
O2—C5—H5117.4
C3—C2—C1—C5174.3 (2)C7—C8—C9—C100.8 (3)
C6—C2—C1—C54.5 (4)C6—C8—C9—C10178.91 (18)
C3—C2—C1—S10.4 (2)C1—S1—C4—C30.90 (19)
C6—C2—C1—S1179.10 (16)C7—C8—C6—O1129.0 (2)
C4—S1—C1—C20.71 (16)C9—C8—C6—O150.6 (2)
C4—S1—C1—C5174.72 (19)C7—C8—C6—C2110.1 (2)
C9—C8—C7—C11178.7 (2)C9—C8—C6—C270.2 (2)
C6—C8—C7—C111.0 (4)C1—C2—C6—O1141.08 (19)
C9—C8—C7—S20.6 (2)C3—C2—C6—O137.5 (3)
C6—C8—C7—S2179.07 (15)C1—C2—C6—C8101.1 (2)
O3—C11—C7—C8178.5 (2)C3—C2—C6—C880.3 (2)
O3—C11—C7—S20.5 (3)C8—C9—C10—S20.6 (3)
C10—S2—C7—C80.24 (17)C7—S2—C10—C90.21 (18)
C10—S2—C7—C11178.60 (18)S1—C4—C3—C20.9 (3)
C2—C1—C5—O24.2 (4)C1—C2—C3—C40.3 (3)
S1—C1—C5—O2178.5 (2)C6—C2—C3—C4178.46 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.982.433.101 (3)125
C11—H11···O20.932.503.261 (3)139
C4—H4···O1i0.932.553.377 (3)149
C9—H9···O2ii0.932.573.458 (3)160
C10—H10···O3ii0.932.553.397 (3)152
O1—H1···O3iii0.822.032.825 (2)162
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H8O3S2
Mr252.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6227 (18), 10.136 (2), 14.272 (3)
β (°) 101.998 (4)
V3)1078.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.26 × 0.24 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.886, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
6687, 2122, 1798
Rint0.025
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.03
No. of reflections2122
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.982.433.101 (3)125
C11—H11···O20.932.503.261 (3)139
C4—H4···O1i0.932.553.377 (3)149
C9—H9···O2ii0.932.573.458 (3)160
C10—H10···O3ii0.932.553.397 (3)152
O1—H1···O3iii0.822.032.825 (2)162
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y1/2, z+1/2.
 

References

First citationBasu, A. & Das, G. (2011). Inorg. Chim. Acta, 372, 394–399.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuarín, S. A. P., Bourgeaux, M., Dufresne, S. & Skene, W. G. (2007). J. Org. Chem. 72, 2631–2643.  Web of Science PubMed Google Scholar
First citationHerbivo, C., Comel, A., Kirsch, G. & Raposo, M. M. M. (2009). Tetrahedron, 65, 2079–2086.  Web of Science CrossRef CAS Google Scholar
First citationJain, P., Ferrence, G. M. & Lash, T. D. (2010). J. Org. Chem. 75, 6563–6573.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRaposo, M. M. M., Fonseca, A. M. C. & Kirsch, G. (2004). Tetrahedron, 60, 4071–4078.  Web of Science CrossRef CAS Google Scholar
First citationRaposo, M. M. M. & Kirsch, G. (2003). Tetrahedron, 59, 4891–4899.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007c). Eur. J. Inorg. Chem. pp. 4168–4175.  Web of Science CSD CrossRef Google Scholar
First citationSu, Q., Wu, Q.-L., Li, G.-H., Gao, W. & Mu, Y. (2007a). Acta Cryst. E63, o2052–o2053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, Q., Wu, Q.-L., Li, G.-H., Liu, X.-M. & Mu, Y. (2007b). Polyhedron, 26, 5053–5060.  Web of Science CSD CrossRef CAS Google Scholar
First citationSu, Q., Wu, Q.-L., Ye, L. & Mu, Y. (2009). Acta Cryst. E65, o2537.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds