metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m12-m13

Bis(μ-N-benzyl-N-furfuryldi­thio­carbamato)-1:2κ3S,S′:S′;2:1κ3S,S′:S′-bis­­[(N-benzyl-N-furfuryldi­thio­carbamato-κ2S,S′)cadmium]

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 2 November 2011; accepted 29 November 2011; online 3 December 2011)

In the centrosymmetric title compound, [Cd2(C13H12NOS2)4], pairs of dithio­carbamate ligands exhibit different structural functions. Each of the terminal ligands is bidentately coordinated to one CdII atom and forms a planar four-membered CS2Cd chelate ring, whereas pairs of the tridentate bridging ligands link two neighbouring CdII atoms, forming extended eight-membered C2S4Cd2 tricyclic units whose geometry can be approximated by a chair conformation. The coordination polyhedron of the CdII atoms is a distorted square-pyramid. The five-membered furan ring and the benzene ring are disordered over two sets of sites with an occupancy ratio of 0.62 (8):0.38 (8).

Related literature

For related structures, see: Ivanov et al. (2006[Ivanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). Inorg. Chim. Acta, 359, 3855-3864.]); Onwudiwe & Ajibade (2010[Onwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431-1436.]); Yin et al. (2004[Yin, X., Zhang, W., Zhang, Q., Fan, J., Lai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 139-140.]). For the solid state structural chemistry of group XII 1,1-dithiol­ates, see: Tiekink (2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]). Metal dithio­carbamate complexes can act as single source precursors in the synthesis of novel metal sulfide nanomaterials, see: Ajibade et al. (2011[Ajibade, P. A., Onwudiwe, D. C. & Moloto, M. J. (2011). Polyhedron, 30, 246-218.]); Bera et al. (2010[Bera, P., Kim, C. H. & Seok, S. I. (2010). Solid State Sci. 12, 532-535.]); Thomas et al. (2011[Thomas, P. J., Fan, D. & O'Brien, P. (2011). J. Colloid. Interface Sci. 354, 210-218.]). For the effect of organic substituents on the deposition temperature and deposition mechanisms, see: Pickett & O'Brien (2001[Pickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467-479.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C13H12NOS2)4]

  • Mr = 1274.22

  • Monoclinic, P 21 /n

  • a = 10.7922 (3) Å

  • b = 14.7253 (6) Å

  • c = 16.9352 (6) Å

  • β = 97.383 (3)°

  • V = 2669.00 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 298 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.976, Tmax = 1.000

  • 25547 measured reflections

  • 5392 independent reflections

  • 4546 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.067

  • S = 1.04

  • 5392 reflections

  • 337 parameters

  • 50 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.] and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The solid state structural chemistry of the group XII 1,1-dithiolates is rich and fascinating in that different structural motifs are found ranging from monomeric, dimeric, tetrameric, linear polymeric and layered structures or three-dimensional networks (Tiekink, 2003). There has been recent interest in the metal dithiocarbamate complexes, which can act as single source precursors in the synthesis of novel metal sulfide nanomaterials (Ajibade et al., 2011; Bera et al., 2010; Thomas et al., 2011). The effect of organic substituents on the deposition temperature and deposition mechanisms have been carried out (Pickett et al., 2001). This study shows that the use of dithiocarbamates as single source precursors depends on the nature of the organic substituents of the dithiocarbamate. In view of these importance we report here the first crystal structure of a dinuclear cadmium(II) dithiocarbamate complex with fufuryl substituent. The four sulfur atoms and the cadmium atom are almost coplanar. The bond angles around the cadmium atom are in the range of 67.18 (2)° to 153.03 (3). The Cd—S bond lengths range are 2.5479 (9) to 2.7952 (7) Å and are in good agreement with those reported for other Cd-dithiocarbamate complexes (Ivanov et al., 2006; Onwudiwe et al., 2010; Yin et al., 2004). The Cd—Cd distance, which indirectly reflects the strength of the binuclear structure, is 3.751 Å.

Related literature top

For related structures, see: Ivanov et al. (2006); Onwudiwe & Ajibade (2010); Yin et al. (2004). For the solid state structural chemistry of group XII 1,1-dithiolates, see: Tiekink (2003). Metal dithiocarbamate complexes can act as single source precursors in the synthesis of novel metal sulfide nanomaterials, see: Ajibade et al. (2011); Bera et al. (2010); Thomas et al. (2011). For the effect of organic substituents on the deposition temperature and deposition mechanisms, see: Pickett & O'Brien (2001).

Experimental top

N-Benzyl-1-(furan-2-yl)methanamine (4 mmol, 0.75 g) in ethanol was mixed with carbon disulfide (4 mmol, 0.3 ml) under ice cold condition. To the resultant yellow dithiocarbamic acid solution, Cd(CH3COO)2 2H2O (2 mmol, 0.533 g) in water was added with constant stirring. The solid which precipitated was washed several times with cold water and then dried. Crystals were obtained by the slow evaporation from the solution of title compound in acetonitrile:dichloro- methane (3:1) solvent mixture (m.p. 419 K).

Refinement top

All H atoms were positioned with idealized geometry and were refined isotropic using a riding model with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C]. The five-membered ring (C19, O20,C21—C23 and benzene ring (C25—C30) weare disordered and were refined using a split model and site occupancy factors of 0.62 (8) and 0.38 (8) using restraints. The atoms of lower occupancy were refined only isotropic.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. Disordered atoms are connected by full and open bonds. Symmetry codes: i = -x, -y, -z.
Bis(µ-N-benzyl-N-furfuryldithiocarbamato)- 1:2κ3S,S':S';2:1κ3S,S':S'- bis[(N-benzyl-N-furfuryldithiocarbamato- κ2S,S')cadmium] top
Crystal data top
[Cd2(C13H12NOS2)4]F(000) = 1288
Mr = 1274.22Dx = 1.586 Mg m3
Monoclinic, P21/nMelting point: 419 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.7922 (3) ÅCell parameters from 12062 reflections
b = 14.7253 (6) Åθ = 3.2–26.3°
c = 16.9352 (6) ŵ = 1.16 mm1
β = 97.383 (3)°T = 298 K
V = 2669.00 (16) Å3Block, light brown
Z = 20.3 × 0.2 × 0.2 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5392 independent reflections
Radiation source: fine-focus sealed tube4546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1049 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1817
Tmin = 0.976, Tmax = 1.000l = 2120
25547 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0273P)2 + 1.097P]
where P = (Fo2 + 2Fc2)/3
5392 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.46 e Å3
50 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Cd2(C13H12NOS2)4]V = 2669.00 (16) Å3
Mr = 1274.22Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.7922 (3) ŵ = 1.16 mm1
b = 14.7253 (6) ÅT = 298 K
c = 16.9352 (6) Å0.3 × 0.2 × 0.2 mm
β = 97.383 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5392 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4546 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 1.000Rint = 0.022
25547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02950 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
5392 reflectionsΔρmin = 0.28 e Å3
337 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.?

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.670295 (16)0.028510 (14)0.522299 (11)0.06295 (8)
S10.88674 (6)0.07350 (5)0.59816 (4)0.06729 (18)
S20.81187 (6)0.11058 (5)0.53613 (4)0.06472 (17)
S30.59547 (7)0.17993 (5)0.45861 (4)0.0771 (2)
S40.50106 (6)0.00655 (4)0.38421 (4)0.05548 (15)
C10.9192 (2)0.03999 (17)0.59042 (13)0.0524 (5)
N21.02666 (17)0.07420 (14)0.62640 (11)0.0550 (5)
C31.0579 (3)0.17180 (19)0.62477 (17)0.0728 (7)
H310.98430.20530.60240.087*
H321.12180.18070.59010.087*
C41.1031 (3)0.20907 (18)0.70417 (17)0.0672 (7)
O51.0175 (2)0.21963 (15)0.75623 (14)0.0909 (6)
C61.0816 (5)0.2554 (2)0.8242 (2)0.1140 (13)
H61.04570.26960.86970.137*
C71.1996 (5)0.2669 (3)0.8169 (3)0.1199 (14)
H71.26110.29020.85500.144*
C81.2153 (3)0.2363 (2)0.7378 (2)0.0991 (11)
H81.28920.23560.71490.119*
C91.1264 (2)0.01506 (18)0.66416 (15)0.0599 (6)
H911.11900.04360.63800.072*
H921.20620.04080.65530.072*
C101.1270 (2)0.00068 (16)0.75214 (14)0.0532 (5)
C111.0226 (3)0.01013 (18)0.79009 (16)0.0637 (6)
H110.94730.02730.76100.076*
C121.0282 (3)0.0055 (2)0.87086 (19)0.0818 (9)
H120.95760.00320.89620.098*
C131.1369 (4)0.0336 (3)0.9134 (2)0.0993 (11)
H131.14050.04510.96770.119*
C141.2398 (4)0.0447 (3)0.8763 (2)0.1085 (12)
H141.31380.06490.90520.130*
C151.2363 (3)0.0266 (2)0.79688 (19)0.0826 (9)
H151.30860.03280.77280.099*
C160.4963 (2)0.12557 (17)0.38686 (13)0.0542 (6)
N170.42190 (17)0.17205 (13)0.33298 (11)0.0534 (5)
C180.3283 (2)0.12900 (18)0.27374 (13)0.0570 (6)
H18A0.24650.15430.27830.068*
H18B0.32530.06440.28430.068*
C190.3587 (2)0.14361 (17)0.19195 (14)0.0577 (6)
O200.4689 (6)0.1278 (6)0.1716 (3)0.098 (2)0.62
C210.4628 (9)0.1535 (6)0.0916 (4)0.127 (3)0.62
H210.53090.15760.06340.152*0.62
C220.3435 (12)0.1714 (7)0.0617 (5)0.146 (6)0.62
H220.31340.18560.00920.175*0.62
C230.2689 (5)0.1636 (4)0.1307 (3)0.0649 (16)*0.62
H230.18330.17060.13130.078*0.62
C26'0.4898 (17)0.1293 (13)0.1865 (9)0.078 (5)*0.38
H26'0.54600.11390.23080.094*0.38
C27'0.5280 (10)0.1396 (9)0.1110 (7)0.089 (4)*0.38
H27'0.61040.12850.10340.107*0.38
C28'0.4457 (9)0.1654 (8)0.0511 (7)0.092 (4)*0.38
H28'0.47190.16810.00100.110*0.38
C29'0.3347 (10)0.1865 (11)0.0564 (8)0.074 (4)*0.38
H29'0.28100.20610.01230.089*0.38
C30'0.2989 (8)0.1800 (6)0.1242 (5)0.056 (2)*0.38
H30'0.22010.20370.12820.067*0.38
C240.4277 (2)0.27224 (17)0.32614 (15)0.0608 (6)*
H24A0.43220.28810.27100.073*
H24B0.50360.29380.35750.073*
C250.3191 (2)0.31939 (17)0.35312 (15)0.0596 (6)
C260.3238 (6)0.3228 (5)0.4336 (4)0.0671 (15)0.62
H260.38740.29600.46810.081*0.62
C270.2212 (6)0.3718 (4)0.4610 (3)0.0777 (14)0.62
H270.21660.37850.51510.093*0.62
C280.1301 (7)0.4085 (5)0.4051 (4)0.0790 (17)0.62
H280.06530.44030.42360.095*0.62
C290.1289 (7)0.4014 (5)0.3283 (5)0.076 (2)0.62
H290.06680.42880.29310.091*0.62
C300.2188 (8)0.3541 (6)0.3026 (5)0.070 (3)*0.62
H300.21510.34330.24820.084*0.62
O20'0.2870 (11)0.3447 (8)0.4318 (7)0.116 (4)*0.38
C21'0.1741 (16)0.3940 (15)0.4210 (11)0.118 (8)*0.38
H21'0.13070.41730.46050.141*0.38
C22'0.143 (2)0.400 (2)0.3427 (12)0.168 (12)*0.38
H22'0.06950.42770.31920.202*0.38
C23'0.2357 (12)0.3591 (9)0.2969 (7)0.061 (4)*0.38
H23'0.23690.36020.24210.073*0.38
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04729 (11)0.07969 (15)0.06005 (12)0.00253 (9)0.00010 (8)0.01815 (9)
S10.0565 (4)0.0598 (4)0.0811 (5)0.0032 (3)0.0080 (3)0.0110 (3)
S20.0555 (3)0.0749 (4)0.0621 (4)0.0052 (3)0.0016 (3)0.0080 (3)
S30.0778 (5)0.0687 (4)0.0755 (5)0.0147 (4)0.0255 (4)0.0130 (3)
S40.0529 (3)0.0606 (4)0.0525 (3)0.0008 (3)0.0049 (3)0.0080 (3)
C10.0465 (12)0.0664 (15)0.0452 (12)0.0041 (11)0.0098 (9)0.0064 (10)
N20.0491 (10)0.0646 (13)0.0506 (11)0.0028 (9)0.0035 (8)0.0021 (9)
C30.0701 (17)0.0738 (18)0.0729 (18)0.0165 (14)0.0038 (13)0.0170 (14)
C40.0653 (16)0.0570 (15)0.0790 (18)0.0081 (13)0.0074 (14)0.0039 (13)
O50.0887 (14)0.0842 (14)0.1023 (17)0.0057 (12)0.0218 (13)0.0044 (13)
C60.169 (4)0.074 (2)0.100 (3)0.003 (3)0.020 (3)0.025 (2)
C70.144 (4)0.086 (3)0.119 (3)0.031 (3)0.024 (3)0.020 (2)
C80.078 (2)0.097 (2)0.119 (3)0.0280 (19)0.0005 (19)0.014 (2)
C90.0426 (12)0.0744 (17)0.0618 (15)0.0023 (11)0.0036 (10)0.0039 (12)
C100.0508 (13)0.0499 (13)0.0572 (14)0.0050 (10)0.0001 (11)0.0042 (10)
C110.0641 (16)0.0651 (16)0.0622 (16)0.0047 (13)0.0093 (12)0.0003 (12)
C120.104 (2)0.0724 (19)0.0727 (19)0.0168 (17)0.0251 (18)0.0034 (15)
C130.131 (3)0.103 (3)0.0619 (19)0.016 (2)0.003 (2)0.0065 (17)
C140.102 (3)0.139 (3)0.077 (2)0.011 (2)0.017 (2)0.017 (2)
C150.0620 (17)0.108 (2)0.075 (2)0.0077 (16)0.0048 (14)0.0061 (17)
C160.0465 (12)0.0640 (15)0.0519 (13)0.0065 (11)0.0055 (10)0.0094 (11)
N170.0505 (10)0.0560 (11)0.0518 (11)0.0042 (9)0.0014 (8)0.0112 (9)
C180.0475 (12)0.0655 (15)0.0556 (14)0.0041 (11)0.0032 (10)0.0065 (11)
C190.0644 (15)0.0539 (14)0.0535 (13)0.0033 (12)0.0022 (11)0.0052 (11)
O200.075 (3)0.159 (5)0.062 (3)0.004 (3)0.018 (3)0.005 (3)
C210.169 (10)0.149 (8)0.077 (5)0.033 (8)0.070 (6)0.020 (5)
C220.307 (17)0.075 (5)0.045 (3)0.031 (6)0.025 (5)0.016 (3)
C250.0688 (15)0.0532 (14)0.0565 (15)0.0112 (12)0.0068 (12)0.0050 (11)
C260.069 (3)0.068 (3)0.070 (3)0.003 (3)0.026 (3)0.000 (2)
C270.078 (3)0.078 (3)0.083 (4)0.003 (3)0.035 (3)0.012 (3)
C280.082 (4)0.062 (3)0.096 (5)0.009 (3)0.020 (4)0.002 (3)
C290.059 (3)0.053 (3)0.114 (5)0.016 (2)0.002 (3)0.006 (3)
Geometric parameters (Å, º) top
Cd1—S22.5479 (7)C18—H18B0.9700
Cd1—S32.5618 (8)C19—O201.300 (7)
Cd1—S12.6028 (7)C19—C30'1.353 (8)
Cd1—S4i2.6355 (6)C19—C231.358 (6)
Cd1—S42.7949 (6)C19—C26'1.445 (19)
S1—C11.716 (3)O20—C211.400 (9)
S2—C11.730 (2)C21—C221.347 (12)
S3—C161.711 (2)C21—H210.9300
S4—C161.754 (3)C22—C231.507 (11)
S4—Cd1i2.6355 (6)C22—H220.9300
C1—N21.337 (3)C23—H230.9300
N2—C91.466 (3)C26'—C27'1.400 (15)
N2—C31.477 (3)C26'—H26'0.9300
C3—C41.476 (4)C27'—C28'1.316 (13)
C3—H310.9700C27'—H27'0.9300
C3—H320.9700C28'—C29'1.252 (13)
C4—C81.333 (4)C28'—H28'0.9300
C4—O51.365 (3)C29'—C30'1.260 (12)
O5—C61.369 (4)C29'—H29'0.9300
C6—C71.306 (6)C30'—H30'0.9300
C6—H60.9300C24—C251.483 (4)
C7—C81.443 (5)C24—H24A0.9700
C7—H70.9300C24—H24B0.9700
C8—H80.9300C25—C23'1.356 (13)
C9—C101.504 (3)C25—C261.359 (6)
C9—H910.9700C25—C301.388 (8)
C9—H920.9700C25—O20'1.468 (14)
C10—C111.374 (4)C26—C271.446 (9)
C10—C151.378 (4)C26—H260.9300
C11—C121.381 (4)C27—C281.384 (11)
C11—H110.9300C27—H270.9300
C12—C131.359 (5)C28—C291.303 (9)
C12—H120.9300C28—H280.9300
C13—C141.355 (5)C29—C301.314 (9)
C13—H130.9300C29—H290.9300
C14—C151.366 (5)C30—H300.9300
C14—H140.9300O20'—C21'1.410 (14)
C15—H150.9300C21'—C22'1.330 (16)
C16—N171.325 (3)C21'—H21'0.9300
N17—C181.473 (3)C22'—C23'1.475 (17)
N17—C241.482 (3)C22'—H22'0.9300
C18—C191.480 (3)C23'—H23'0.9300
C18—H18A0.9700
S2—Cd1—S3153.02 (3)O20—C19—C30'101.5 (5)
S2—Cd1—S170.71 (2)O20—C19—C23115.1 (4)
S3—Cd1—S1101.57 (2)C30'—C19—C2318.3 (4)
S2—Cd1—S4i104.24 (2)O20—C19—C26'11.8 (8)
S3—Cd1—S4i102.47 (2)C30'—C19—C26'111.6 (7)
S1—Cd1—S4i114.07 (2)C23—C19—C26'126.3 (7)
S2—Cd1—S4107.67 (2)O20—C19—C18122.8 (3)
S3—Cd1—S467.15 (2)C30'—C19—C18135.4 (4)
S1—Cd1—S4153.00 (2)C23—C19—C18121.6 (3)
S4i—Cd1—S492.662 (19)C26'—C19—C18112.1 (6)
C1—S1—Cd183.88 (8)C19—O20—C21106.1 (6)
C1—S2—Cd185.33 (8)C22—C21—O20109.9 (7)
C16—S3—Cd191.52 (9)C22—C21—H21125.0
C16—S4—Cd1i98.92 (8)O20—C21—H21125.0
C16—S4—Cd183.18 (8)C21—C22—C23105.8 (6)
Cd1i—S4—Cd187.338 (19)C21—C22—H22127.1
N2—C1—S1120.37 (18)C23—C22—H22127.1
N2—C1—S2119.87 (19)C19—C23—C22102.0 (5)
S1—C1—S2119.76 (13)C19—C23—H23129.0
C1—N2—C9121.3 (2)C22—C23—H23129.0
C1—N2—C3123.0 (2)C27'—C26'—C19116.6 (12)
C9—N2—C3115.4 (2)C27'—C26'—H26'121.7
C4—C3—N2113.2 (2)C19—C26'—H26'121.7
C4—C3—H31108.9C28'—C27'—C26'119.1 (12)
N2—C3—H31108.9C28'—C27'—H27'120.4
C4—C3—H32108.9C26'—C27'—H27'120.4
N2—C3—H32108.9C29'—C28'—C27'125.0 (11)
H31—C3—H32107.7C29'—C28'—H28'117.5
C8—C4—O5110.0 (3)C27'—C28'—H28'117.5
C8—C4—C3132.6 (3)C28'—C29'—C30'117.0 (12)
O5—C4—C3117.4 (2)C28'—C29'—H29'121.5
C4—O5—C6106.0 (3)C30'—C29'—H29'121.5
C7—C6—O5111.4 (4)C29'—C30'—C19129.3 (9)
C7—C6—H6124.3C29'—C30'—H30'115.3
O5—C6—H6124.3C19—C30'—H30'115.3
C6—C7—C8106.2 (3)N17—C24—C25113.5 (2)
C6—C7—H7126.9N17—C24—H24A108.9
C8—C7—H7126.9C25—C24—H24A108.9
C4—C8—C7106.4 (3)N17—C24—H24B108.9
C4—C8—H8126.8C25—C24—H24B108.9
C7—C8—H8126.8H24A—C24—H24B107.7
N2—C9—C10115.2 (2)C23'—C25—C26128.6 (6)
N2—C9—H91108.5C23'—C25—C309.5 (8)
C10—C9—H91108.5C26—C25—C30122.0 (5)
N2—C9—H92108.5C23'—C25—O20'108.3 (7)
C10—C9—H92108.5C26—C25—O20'20.3 (5)
H91—C9—H92107.5C30—C25—O20'102.1 (6)
C11—C10—C15117.9 (3)C23'—C25—C24117.7 (6)
C11—C10—C9123.4 (2)C26—C25—C24113.4 (4)
C15—C10—C9118.7 (2)C30—C25—C24124.5 (4)
C10—C11—C12120.8 (3)O20'—C25—C24133.4 (5)
C10—C11—H11119.6C25—C26—C27114.1 (6)
C12—C11—H11119.6C25—C26—H26122.9
C13—C12—C11120.1 (3)C27—C26—H26122.9
C13—C12—H12120.0C28—C27—C26118.8 (5)
C11—C12—H12120.0C28—C27—H27120.6
C14—C13—C12119.5 (3)C26—C27—H27120.6
C14—C13—H13120.2C29—C28—C27124.5 (6)
C12—C13—H13120.2C29—C28—H28117.7
C13—C14—C15120.9 (3)C27—C28—H28117.7
C13—C14—H14119.6C28—C29—C30117.4 (7)
C15—C14—H14119.6C28—C29—H29121.3
C14—C15—C10120.8 (3)C30—C29—H29121.3
C14—C15—H15119.6C29—C30—C25122.8 (7)
C10—C15—H15119.6C29—C30—H30118.6
N17—C16—S3121.03 (19)C25—C30—H30118.6
N17—C16—S4121.03 (18)C21'—O20'—C25108.3 (10)
S3—C16—S4117.88 (13)C22'—C21'—O20'105.7 (15)
C16—N17—C18123.3 (2)C22'—C21'—H21'127.2
C16—N17—C24122.7 (2)O20'—C21'—H21'127.2
C18—N17—C24114.03 (18)C21'—C22'—C23'113.1 (15)
N17—C18—C19111.06 (19)C21'—C22'—H22'123.5
N17—C18—H18A109.4C23'—C22'—H22'123.5
C19—C18—H18A109.4C25—C23'—C22'104.1 (11)
N17—C18—H18B109.4C25—C23'—H23'127.9
C19—C18—H18B109.4C22'—C23'—H23'127.9
H18A—C18—H18B108.0
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C13H12NOS2)4]
Mr1274.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.7922 (3), 14.7253 (6), 16.9352 (6)
β (°) 97.383 (3)
V3)2669.00 (16)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.976, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
25547, 5392, 4546
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.04
No. of reflections5392
No. of parameters337
No. of restraints50
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

 

Acknowledgements

RK acknowledges the Department of Science & Technology for single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu for financial support.

References

First citationAjibade, P. A., Onwudiwe, D. C. & Moloto, M. J. (2011). Polyhedron, 30, 246–218.  Web of Science CrossRef CAS Google Scholar
First citationBera, P., Kim, C. H. & Seok, S. I. (2010). Solid State Sci. 12, 532–535.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIvanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). Inorg. Chim. Acta, 359, 3855–3864.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOnwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431–1436.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467–479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, P. J., Fan, D. & O'Brien, P. (2011). J. Colloid. Interface Sci. 354, 210–218.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationYin, X., Zhang, W., Zhang, Q., Fan, J., Lai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 139–140.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m12-m13
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds