metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(4-methyl­piperazine-1-carbo­di­thio­ato-κ2S,S′)bis­­(pyridine-κN)cadmium

aDepartment of Chemistry, Annamalai University, Annamalainagar 608 002, India, and bX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 25 November 2011; accepted 20 December 2011; online 23 December 2011)

In the title complex, [Cd(C6H11N2S2)2(C5H5N)2], the CdII ion is hexa­coordinated by two N atoms from two pyridine ligands and by four S atoms from two dithio­carbamate ligands in a distorted octa­hedral geometry. The CdII ion lies on a twofold axis. The piperazine ring is in chair conformation and its least-squares plane makes a dihedral angle of 81.4 (1)° with that of the pyridine ring.

Related literature

For background to and applications of dithio­carbamates, see: Bessergenev et al. (1997[Bessergenev, V. G., Ivanova, E. N., Kovalevskaya, Y. A., Vasilieva, I. G., Varand, V. L., Zemskova, S. M., Larinov, S. V., Kolesov, B. A., Ayupov, B. M. & Logvinenko, V. A. (1997). Thin Solid Films, 32, 1403-1410.]); Havel (1975[Havel, H. J. (1975). Semiconductors/Semimetals, Solar Cells, Vol. 11, New York: Academic Press.]); Valarmathi et al. (2011[Valarmathi, P., Thirumaran, S., Ragi, P. & Ciattini, S. (2011). J. Coord. Chem. 64, 4157-4167.]); Pickett & O'Brien (2001[Pickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467-479.]). For related structures, see: Ivanov et al. (2006[Ivanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). Inorg. Chim. Acta, 359, 3855-3864.]); Onwudiwe & Ajibade (2010[Onwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431-1436.]); Yin et al. (2004[Yin, X., Zhang, W., Zhang, Q., Fan, J., Lai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 139-140.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C6H11N2S2)2(C5H5N)2]

  • Mr = 621.18

  • Monoclinic, C 2/c

  • a = 17.7065 (7) Å

  • b = 8.7806 (6) Å

  • c = 20.6171 (8) Å

  • β = 122.276 (5)°

  • V = 2710.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.645, Tmax = 1.000

  • 24135 measured reflections

  • 2383 independent reflections

  • 2088 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.057

  • S = 1.07

  • 2383 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The use of nitrogen donor adducts of cadmium dithiocarbamate complexes as convenient synthetic precursors for cadmium sulfide nanoparticles (Bessergenev et al., 1997; Havel, 1975, Pickett & O'Brien 2001; Valarmathi et al., 2011), attract continued attention to adducts of cadmium dithiocarbamates. As part of an on-going structural studies of nitrogen donor adducts of cadmium dithiocarbamates, the analysis of the title compound, (I), was undertaken. The bond angles around the cadmium atom are in the range of 67.56 (2) to 171.50 (3)°. The Cd—S bond lengths are: CD1—S1 = 2.6621 (7); CD1—S2 = to 2.6803 (7) Å and are in good agreement with those reported for other Cd- dithiocarbonato complexes (Ivanov et al., 2006; Onwudiwe et al., 2010; Yin et al., 2004). The piperazine ring has a chair conformation. The asymmetry parameters are: ΔCs(N2)=0.72; ΔC2(N2—C3)= 0.73. The dihedral angle between the best least squares planes through piperazine and pyridine rings is 81.4 (1)°.

Related literature top

For background to and applications of dithiocarbamates, see: Bessergenev et al. (1997); Havel (1975); Valarmathi et al. (2011); Pickett & O'Brien (2001). For related structures, see: Ivanov et al. (2006); Onwudiwe et al. (2010); Yin et al. (2004).

Experimental top

Cd(4-mpzdtc)2] (1 mmol, 0.483 g) was dissolved in 50 ml of warm pyridine. The yellow solution obtained was filtered and kept for evaporation. After few days, single crystals suitable for X-ray structural analysis were obtained (m.p. 552–554 K).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq for methyl H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The thermal ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii. Symmetry code = -x, y, -z + 1/2.
cis-Bis(4-methylpiperazine-1-carbodithioato- κ2S,S')bis(pyridine-κN)cadmium top
Crystal data top
[Cd(C6H11N2S2)2(C5H5N)2]F(000) = 1272
Mr = 621.18Dx = 1.522 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 11642 reflections
a = 17.7065 (7) Åθ = 3.5–29.1°
b = 8.7806 (6) ŵ = 1.14 mm1
c = 20.6171 (8) ÅT = 293 K
β = 122.276 (5)°Block, white
V = 2710.1 (2) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2383 independent reflections
Radiation source: fine-focus sealed tube2088 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.8°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1010
Tmin = 0.645, Tmax = 1.000l = 2424
24135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0157P)2 + 4.0129P]
where P = (Fo2 + 2Fc2)/3
2383 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cd(C6H11N2S2)2(C5H5N)2]V = 2710.1 (2) Å3
Mr = 621.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.7065 (7) ŵ = 1.14 mm1
b = 8.7806 (6) ÅT = 293 K
c = 20.6171 (8) Å0.3 × 0.2 × 0.2 mm
β = 122.276 (5)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2383 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
2088 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 1.000Rint = 0.047
24135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
2383 reflectionsΔρmin = 0.30 e Å3
151 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.14900 (3)0.25000.04703 (10)
S10.08961 (5)0.12653 (8)0.17998 (4)0.05259 (19)
S20.07368 (5)0.05272 (9)0.13462 (4)0.0550 (2)
C10.01848 (16)0.0220 (3)0.12909 (13)0.0415 (6)
N20.03409 (14)0.1100 (3)0.08483 (12)0.0472 (5)
C30.01499 (18)0.2496 (3)0.04814 (16)0.0552 (7)
H3A0.03160.25180.00490.066*
H3B0.06920.25320.04900.066*
C40.04322 (18)0.3850 (3)0.09059 (16)0.0537 (7)
H4A0.05690.38490.14280.064*
H4B0.01090.47800.06600.064*
N50.12635 (14)0.3821 (3)0.09173 (12)0.0486 (5)
C60.17350 (18)0.2393 (3)0.12557 (16)0.0535 (7)
H6A0.22720.23610.12390.064*
H6B0.19130.23540.17890.064*
C70.11636 (19)0.1028 (3)0.08401 (17)0.0552 (7)
H7A0.14870.01010.10890.066*
H7B0.10180.10190.03150.066*
C80.1830 (2)0.5113 (4)0.13378 (18)0.0658 (8)
H8A0.23630.50780.13230.099*
H8B0.15140.60420.11070.099*
H8C0.19880.50700.18610.099*
N90.09469 (14)0.3546 (3)0.16984 (11)0.0476 (5)
C100.13114 (18)0.3577 (4)0.09431 (15)0.0561 (7)
H100.11660.28080.07180.067*
C110.1891 (2)0.4693 (4)0.04841 (17)0.0701 (9)
H110.21410.46650.00430.084*
C120.2098 (2)0.5841 (4)0.0804 (2)0.0707 (9)
H120.24920.66080.05010.085*
C130.1715 (2)0.5845 (4)0.1582 (2)0.0702 (9)
H130.18330.66250.18210.084*
C140.1153 (2)0.4675 (4)0.20016 (17)0.0625 (8)
H140.09020.46740.25290.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.05092 (17)0.05401 (19)0.03837 (15)0.0000.02532 (13)0.000
S10.0537 (4)0.0546 (4)0.0574 (4)0.0160 (3)0.0350 (4)0.0129 (3)
S20.0477 (4)0.0652 (5)0.0606 (4)0.0153 (3)0.0346 (4)0.0175 (4)
C10.0434 (14)0.0443 (15)0.0351 (13)0.0004 (12)0.0198 (11)0.0044 (11)
N20.0480 (12)0.0535 (14)0.0487 (12)0.0072 (10)0.0317 (11)0.0095 (10)
C30.0494 (16)0.066 (2)0.0482 (16)0.0072 (14)0.0247 (14)0.0184 (14)
C40.0593 (17)0.0576 (18)0.0497 (16)0.0190 (14)0.0330 (14)0.0141 (13)
N50.0534 (13)0.0503 (14)0.0459 (12)0.0031 (11)0.0291 (11)0.0021 (10)
C60.0502 (16)0.0602 (18)0.0599 (17)0.0077 (14)0.0360 (14)0.0033 (15)
C70.0668 (18)0.0536 (17)0.0679 (19)0.0057 (14)0.0511 (16)0.0017 (14)
C80.0697 (19)0.060 (2)0.0642 (19)0.0003 (16)0.0330 (16)0.0036 (16)
N90.0469 (12)0.0577 (14)0.0362 (11)0.0016 (11)0.0208 (10)0.0025 (11)
C100.0576 (17)0.072 (2)0.0430 (15)0.0001 (16)0.0295 (14)0.0007 (15)
C110.065 (2)0.096 (3)0.0455 (17)0.0059 (19)0.0269 (16)0.0226 (18)
C120.0588 (19)0.072 (2)0.081 (2)0.0091 (17)0.0365 (18)0.034 (2)
C130.078 (2)0.0545 (19)0.080 (2)0.0082 (17)0.0436 (19)0.0018 (17)
C140.071 (2)0.063 (2)0.0449 (16)0.0074 (16)0.0251 (15)0.0054 (15)
Geometric parameters (Å, º) top
Cd1—N9i2.417 (2)C6—C71.506 (4)
Cd1—N92.417 (2)C6—H6A0.9700
Cd1—S1i2.6621 (7)C6—H6B0.9700
Cd1—S12.6621 (7)C7—H7A0.9700
Cd1—S22.6803 (7)C7—H7B0.9700
Cd1—S2i2.6803 (7)C8—H8A0.9600
S1—C11.725 (3)C8—H8B0.9600
S2—C11.717 (2)C8—H8C0.9600
C1—N21.333 (3)N9—C141.323 (3)
N2—C31.459 (3)N9—C101.330 (3)
N2—C71.467 (3)C10—C111.368 (4)
C3—C41.510 (4)C10—H100.9300
C3—H3A0.9700C11—C121.359 (5)
C3—H3B0.9700C11—H110.9300
C4—N51.460 (3)C12—C131.368 (4)
C4—H4A0.9700C12—H120.9300
C4—H4B0.9700C13—C141.369 (4)
N5—C81.455 (4)C13—H130.9300
N5—C61.460 (3)C14—H140.9300
N9i—Cd1—N983.36 (10)C4—N5—C6109.7 (2)
N9i—Cd1—S1i94.66 (5)N5—C6—C7111.9 (2)
N9—Cd1—S1i91.69 (5)N5—C6—H6A109.2
N9i—Cd1—S191.69 (5)C7—C6—H6A109.2
N9—Cd1—S194.66 (5)N5—C6—H6B109.2
S1i—Cd1—S1171.50 (3)C7—C6—H6B109.2
N9i—Cd1—S2158.69 (5)H6A—C6—H6B107.9
N9—Cd1—S293.18 (5)N2—C7—C6109.2 (2)
S1i—Cd1—S2106.48 (2)N2—C7—H7A109.8
S1—Cd1—S267.56 (2)C6—C7—H7A109.8
N9i—Cd1—S2i93.18 (5)N2—C7—H7B109.8
N9—Cd1—S2i158.69 (5)C6—C7—H7B109.8
S1i—Cd1—S2i67.56 (2)H7A—C7—H7B108.3
S1—Cd1—S2i106.48 (2)N5—C8—H8A109.5
S2—Cd1—S2i97.27 (4)N5—C8—H8B109.5
C1—S1—Cd186.15 (8)H8A—C8—H8B109.5
C1—S2—Cd185.73 (9)N5—C8—H8C109.5
N2—C1—S2120.42 (19)H8A—C8—H8C109.5
N2—C1—S1120.25 (18)H8B—C8—H8C109.5
S2—C1—S1119.31 (15)C14—N9—C10117.0 (2)
C1—N2—C3123.9 (2)C14—N9—Cd1120.15 (18)
C1—N2—C7123.6 (2)C10—N9—Cd1122.80 (19)
C3—N2—C7110.5 (2)N9—C10—C11122.7 (3)
N2—C3—C4109.1 (2)N9—C10—H10118.6
N2—C3—H3A109.9C11—C10—H10118.6
C4—C3—H3A109.9C12—C11—C10119.5 (3)
N2—C3—H3B109.9C12—C11—H11120.2
C4—C3—H3B109.9C10—C11—H11120.2
H3A—C3—H3B108.3C11—C12—C13118.5 (3)
N5—C4—C3111.5 (2)C11—C12—H12120.7
N5—C4—H4A109.3C13—C12—H12120.7
C3—C4—H4A109.3C12—C13—C14118.5 (3)
N5—C4—H4B109.3C12—C13—H13120.8
C3—C4—H4B109.3C14—C13—H13120.8
H4A—C4—H4B108.0N9—C14—C13123.7 (3)
C8—N5—C4111.4 (2)N9—C14—H14118.2
C8—N5—C6110.4 (2)C13—C14—H14118.2
N9i—Cd1—S1—C1178.45 (10)C8—N5—C6—C7179.3 (2)
N9—Cd1—S1—C198.07 (10)C4—N5—C6—C756.2 (3)
S1i—Cd1—S1—C140.12 (8)C1—N2—C7—C6105.6 (3)
S2—Cd1—S1—C16.55 (8)C3—N2—C7—C659.0 (3)
S2i—Cd1—S1—C184.63 (9)N5—C6—C7—N257.5 (3)
N9i—Cd1—S2—C120.45 (18)N9i—Cd1—N9—C1449.4 (2)
N9—Cd1—S2—C1100.31 (10)S1i—Cd1—N9—C1445.1 (2)
S1i—Cd1—S2—C1166.98 (8)S1—Cd1—N9—C14140.6 (2)
S1—Cd1—S2—C16.58 (8)S2—Cd1—N9—C14151.7 (2)
S2i—Cd1—S2—C198.30 (9)S2i—Cd1—N9—C1432.3 (3)
Cd1—S2—C1—N2170.5 (2)N9i—Cd1—N9—C10133.4 (2)
Cd1—S2—C1—S110.81 (13)S1i—Cd1—N9—C10132.1 (2)
Cd1—S1—C1—N2170.4 (2)S1—Cd1—N9—C1042.2 (2)
Cd1—S1—C1—S210.87 (14)S2—Cd1—N9—C1025.5 (2)
S2—C1—N2—C39.9 (3)S2i—Cd1—N9—C10144.91 (17)
S1—C1—N2—C3171.4 (2)C14—N9—C10—C111.4 (4)
S2—C1—N2—C7172.5 (2)Cd1—N9—C10—C11175.9 (2)
S1—C1—N2—C78.8 (3)N9—C10—C11—C121.2 (5)
C1—N2—C3—C4105.1 (3)C10—C11—C12—C130.2 (5)
C7—N2—C3—C459.5 (3)C11—C12—C13—C141.3 (5)
N2—C3—C4—N558.5 (3)C10—N9—C14—C130.3 (4)
C3—C4—N5—C8179.0 (2)Cd1—N9—C14—C13177.1 (2)
C3—C4—N5—C656.5 (3)C12—C13—C14—N91.1 (5)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C6H11N2S2)2(C5H5N)2]
Mr621.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.7065 (7), 8.7806 (6), 20.6171 (8)
β (°) 122.276 (5)
V3)2710.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.14
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.645, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
24135, 2383, 2088
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.07
No. of reflections2383
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

 

Acknowledgements

RK acknowledges the Department of Science & Technology for the diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. He is also thankful to the University of Jammu, Jammu, for financial support.

References

First citationBessergenev, V. G., Ivanova, E. N., Kovalevskaya, Y. A., Vasilieva, I. G., Varand, V. L., Zemskova, S. M., Larinov, S. V., Kolesov, B. A., Ayupov, B. M. & Logvinenko, V. A. (1997). Thin Solid Films, 32, 1403–1410.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHavel, H. J. (1975). Semiconductors/Semimetals, Solar Cells, Vol. 11, New York: Academic Press.  Google Scholar
First citationIvanov, A. V., Gerasimenko, A. V., Konzelko, A. A., Ivanov, M. A., Antzutkin, O. N. & Forsling, W. (2006). Inorg. Chim. Acta, 359, 3855–3864.  Web of Science CSD CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOnwudiwe, D. C. & Ajibade, P. A. (2010). Polyhedron, 29, 1431–1436.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPickett, N. L. & O'Brien, P. (2001). Chem. Rec. 1, 467–479.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValarmathi, P., Thirumaran, S., Ragi, P. & Ciattini, S. (2011). J. Coord. Chem. 64, 4157–4167.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, X., Zhang, W., Zhang, Q., Fan, J., Lai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 139–140.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds