organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hex­yl[4-(di­methyl­amino)­phen­yl]phosphine selenide

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: zhphasha@uj.ac.za, mullera@uj.ac.za

(Received 25 November 2011; accepted 15 December 2011; online 23 December 2011)

In the title mol­ecule, C20H32NPSe, the P atom has a distorted tetra­hedral environment resulting in an effective cone angle of 172°. Weak inter­molecular C—H⋯Se inter­actions are observed.

Related literature

For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For background on cone angles, see: Bunten et al. (2002[Bunten, K. A., Chen, L., Fernandez, A. L. & Poë, A. J. (2002). Coord. Chem. Rev. 233-234, 41-51.]); Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • C20H32NPSe

  • Mr = 396.4

  • Monoclinic, P 21 /c

  • a = 12.3860 (16) Å

  • b = 6.8331 (8) Å

  • c = 24.113 (3) Å

  • β = 97.050 (3)°

  • V = 2025.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 100 K

  • 0.29 × 0.12 × 0.05 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.604, Tmax = 0.910

  • 31168 measured reflections

  • 5008 independent reflections

  • 4192 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.02

  • 5008 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Se1i 1.00 2.71 3.6546 (15) 157
C19—H19A⋯Se1i 0.99 3.04 3.8836 (18) 143
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The study of the transition metal phosphorous bond spans over several decades using various techniques such as crystallography, multi nuclear NMR and IR (Roodt et al., 2003). As part of this systematic investigation we have extended this study to selenium derivatives of the phosphorus ligands (see Muller et al., 2008). This way there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The 1J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported as part of the above continuing study, the single-crystal structure of the phosphorus containing compound, SePCy2(4-N{CH3}2-C6H4) where Cy = C6H11, is reported here.

Molecules of the title compound (see Fig. 1) adopts a distorted tetrahedral arrangement about phosphorous atom with average C—P—C and Se—P—C angles of 107.1° and 111.9° respectively. Describing the steric demand of phosphane ligands has been the topic of many studies and a variety of models have been developed (Bunten et al., 2002). The Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å) we calculated an effective cone angle (Otto, 2001) of 171.5°. Weak intermolecular C—H···Se interactions (Table 1) are observed in the crystal lattice.

Related literature top

For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2006, 2008). For background on cone angles, see: Bunten et al. (2002); Tolman (1977); Otto (2001).

Experimental top

Dicyclohexyl(4-(N,N-dimethylamino)phenyl)phosphine and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the dicyclohexyl(4-(N,N-dimethylamino)phenyl)phosphine (11.5 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å (methine), 0.99 Å (methylene), 0.98 Å (methyl) and 0.95 Å (aromatic). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. A solvent accesible void of 62 Å3 was detected by the checkcif routine. The residual electron density at this position is quite small and several attemps to refine a solvent molecule at this position failed, and was therefore left empty.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : View of the title compound with labelling and displacement ellipsoids drawn at a 50% probability level.
Dicyclohexyl[4-(dimethylamino)phenyl]phosphine selenide top
Crystal data top
C20H32NPSeF(000) = 832
Mr = 396.4Dx = 1.3 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9647 reflections
a = 12.3860 (16) Åθ = 2.2–28.2°
b = 6.8331 (8) ŵ = 1.93 mm1
c = 24.113 (3) ÅT = 100 K
β = 97.050 (3)°Plate, colourless
V = 2025.3 (4) Å30.29 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5008 independent reflections
Graphite monochromator4192 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.033
ϕ and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1616
Tmin = 0.604, Tmax = 0.910k = 97
31168 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0282P)2 + 1.2459P]
where P = (Fo2 + 2Fc2)/3
5008 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C20H32NPSeV = 2025.3 (4) Å3
Mr = 396.4Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3860 (16) ŵ = 1.93 mm1
b = 6.8331 (8) ÅT = 100 K
c = 24.113 (3) Å0.29 × 0.12 × 0.05 mm
β = 97.050 (3)°
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5008 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4192 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.910Rint = 0.033
31168 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
5008 reflectionsΔρmin = 0.24 e Å3
210 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 30 s/frame. A total of 1671 frames were collected with a frame width of 0.5° covering up to θ = 28.29° with 99.8% completeness accomplished. Analytical data: 1H NMR (CDCl3, 400 MHz) δ 7.68, 6.69 (m, 4H), 2.99 (s, 6H), 2.19–1.13 (m, 22H); 13C {H} NMR (CDCl3, 100 MHz) δ 152.2, 134.2, 111.0 (Ar); 40.0 (Me); 36.72, 26.36 (Cy); 31P {H} NMR (CDCl3, 160 MHz):δ = 52.9 (t, 1JSe—P = 687 Hz, 1P).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.198411 (13)0.25268 (2)0.085698 (7)0.01880 (5)
P10.17385 (3)0.54119 (5)0.114465 (16)0.01278 (8)
C20.30292 (12)0.4535 (2)0.21383 (6)0.0180 (3)
H20.28820.32090.20370.022*
N10.45558 (12)0.7312 (2)0.32915 (6)0.0252 (3)
C10.26027 (12)0.6017 (2)0.17787 (6)0.0139 (3)
C30.36616 (13)0.4943 (2)0.26382 (7)0.0198 (3)
H30.39310.38980.28760.024*
C40.39116 (12)0.6884 (2)0.28002 (6)0.0179 (3)
C50.34835 (12)0.8385 (2)0.24342 (6)0.0175 (3)
H50.36380.97130.25310.021*
C60.28439 (12)0.7956 (2)0.19382 (6)0.0149 (3)
H60.25630.89940.17010.018*
C70.46054 (15)0.9295 (3)0.35068 (7)0.0279 (4)
H7A0.49031.01630.3240.042*
H7B0.50740.93310.38650.042*
H7C0.38720.97320.35610.042*
C80.49523 (14)0.5753 (3)0.36689 (7)0.0269 (4)
H8A0.43420.51780.38350.04*
H8B0.54850.62810.39650.04*
H8C0.52980.47440.34620.04*
C90.03310 (12)0.5742 (2)0.12921 (6)0.0144 (3)
H90.01530.54430.09390.017*
C100.00619 (13)0.7830 (2)0.14649 (7)0.0189 (3)
H10A0.05290.81870.18130.023*
H10B0.02120.87610.11690.023*
C110.11370 (13)0.7973 (3)0.15585 (8)0.0242 (4)
H11A0.12860.93050.16920.029*
H11B0.160.77630.11990.029*
C120.14340 (14)0.6474 (3)0.19833 (7)0.0234 (3)
H12A0.22240.65480.2010.028*
H12B0.10420.67880.23550.028*
C130.11435 (13)0.4399 (2)0.18195 (7)0.0201 (3)
H13A0.16020.40210.1470.024*
H13B0.12950.34750.21170.024*
C140.00578 (12)0.4261 (2)0.17331 (6)0.0178 (3)
H14A0.0220.29210.16110.021*
H14B0.05170.45220.20910.021*
C150.19907 (12)0.7244 (2)0.06209 (6)0.0138 (3)
H150.18850.85680.07830.017*
C160.11808 (12)0.7031 (2)0.00891 (6)0.0170 (3)
H16A0.12220.56850.00590.02*
H16B0.04330.72440.01820.02*
C170.14214 (13)0.8499 (2)0.03583 (6)0.0194 (3)
H17A0.09140.82730.07030.023*
H17B0.13010.98440.02260.023*
C180.25890 (13)0.8306 (3)0.04903 (7)0.0236 (3)
H18A0.26940.69970.06510.028*
H18B0.27290.93020.07710.028*
C190.33917 (13)0.8580 (3)0.00356 (7)0.0211 (3)
H19A0.33290.99280.01790.025*
H19B0.41430.840.00560.025*
C200.31696 (12)0.7111 (2)0.04871 (6)0.0172 (3)
H20A0.36730.73670.08310.021*
H20B0.33120.5770.03590.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.02229 (8)0.00922 (8)0.02423 (9)0.00091 (6)0.00027 (6)0.00182 (6)
P10.01404 (17)0.00898 (16)0.01457 (17)0.00026 (14)0.00125 (13)0.00036 (14)
C20.0184 (7)0.0145 (7)0.0201 (7)0.0009 (6)0.0014 (6)0.0038 (6)
N10.0244 (7)0.0300 (8)0.0187 (7)0.0028 (6)0.0079 (5)0.0012 (6)
C10.0128 (6)0.0141 (7)0.0143 (7)0.0005 (5)0.0009 (5)0.0011 (6)
C30.0185 (7)0.0208 (8)0.0190 (7)0.0004 (6)0.0020 (6)0.0064 (6)
C40.0124 (7)0.0253 (8)0.0153 (7)0.0016 (6)0.0014 (5)0.0014 (6)
C50.0168 (7)0.0160 (7)0.0191 (7)0.0021 (6)0.0001 (6)0.0008 (6)
C60.0145 (7)0.0143 (7)0.0156 (7)0.0005 (5)0.0002 (5)0.0021 (5)
C70.0258 (9)0.0357 (10)0.0203 (8)0.0039 (8)0.0047 (7)0.0057 (7)
C80.0219 (8)0.0409 (11)0.0166 (8)0.0064 (8)0.0028 (6)0.0033 (7)
C90.0143 (7)0.0131 (7)0.0147 (7)0.0011 (5)0.0029 (5)0.0007 (5)
C100.0173 (7)0.0141 (7)0.0251 (8)0.0014 (6)0.0020 (6)0.0008 (6)
C110.0189 (8)0.0210 (8)0.0332 (9)0.0038 (6)0.0048 (7)0.0009 (7)
C120.0219 (8)0.0242 (9)0.0248 (8)0.0023 (7)0.0054 (6)0.0063 (7)
C130.0213 (8)0.0198 (8)0.0197 (7)0.0053 (6)0.0048 (6)0.0033 (6)
C140.0198 (7)0.0145 (7)0.0188 (7)0.0022 (6)0.0014 (6)0.0013 (6)
C150.0168 (7)0.0103 (7)0.0133 (6)0.0007 (5)0.0016 (5)0.0009 (5)
C160.0168 (7)0.0174 (7)0.0154 (7)0.0020 (6)0.0038 (6)0.0011 (6)
C170.0215 (8)0.0199 (8)0.0157 (7)0.0001 (6)0.0026 (6)0.0024 (6)
C180.0243 (8)0.0317 (9)0.0145 (7)0.0002 (7)0.0019 (6)0.0036 (7)
C190.0189 (7)0.0260 (9)0.0184 (7)0.0035 (6)0.0019 (6)0.0031 (7)
C200.0155 (7)0.0194 (8)0.0159 (7)0.0006 (6)0.0015 (5)0.0007 (6)
Geometric parameters (Å, º) top
Se1—P12.1241 (5)C11—C121.525 (2)
P1—C11.8034 (15)C11—H11A0.99
P1—C151.8321 (15)C11—H11B0.99
P1—C91.8354 (15)C12—C131.527 (2)
C2—C31.383 (2)C12—H12A0.99
C2—C11.394 (2)C12—H12B0.99
C2—H20.95C13—C141.531 (2)
N1—C41.376 (2)C13—H13A0.99
N1—C81.447 (2)C13—H13B0.99
N1—C71.450 (2)C14—H14A0.99
C1—C61.401 (2)C14—H14B0.99
C3—C41.406 (2)C15—C161.535 (2)
C3—H30.95C15—C201.536 (2)
C4—C51.413 (2)C15—H151
C5—C61.383 (2)C16—C171.529 (2)
C5—H50.95C16—H16A0.99
C6—H60.95C16—H16B0.99
C7—H7A0.98C17—C181.524 (2)
C7—H7B0.98C17—H17A0.99
C7—H7C0.98C17—H17B0.99
C8—H8A0.98C18—C191.524 (2)
C8—H8B0.98C18—H18A0.99
C8—H8C0.98C18—H18B0.99
C9—C101.534 (2)C19—C201.531 (2)
C9—C141.536 (2)C19—H19A0.99
C9—H91C19—H19B0.99
C10—C111.532 (2)C20—H20A0.99
C10—H10A0.99C20—H20B0.99
C10—H10B0.99
C1—P1—C15107.10 (7)H11A—C11—H11B107.9
C1—P1—C9106.66 (7)C11—C12—C13111.49 (13)
C15—P1—C9107.20 (7)C11—C12—H12A109.3
C1—P1—Se1113.31 (5)C13—C12—H12A109.3
C15—P1—Se1111.45 (5)C11—C12—H12B109.3
C9—P1—Se1110.79 (5)C13—C12—H12B109.3
C3—C2—C1121.75 (15)H12A—C12—H12B108
C3—C2—H2119.1C12—C13—C14110.87 (13)
C1—C2—H2119.1C12—C13—H13A109.5
C4—N1—C8120.06 (15)C14—C13—H13A109.5
C4—N1—C7120.11 (14)C12—C13—H13B109.5
C8—N1—C7117.82 (14)C14—C13—H13B109.5
C2—C1—C6117.66 (13)H13A—C13—H13B108.1
C2—C1—P1120.06 (12)C13—C14—C9110.75 (13)
C6—C1—P1122.26 (11)C13—C14—H14A109.5
C2—C3—C4120.95 (14)C9—C14—H14A109.5
C2—C3—H3119.5C13—C14—H14B109.5
C4—C3—H3119.5C9—C14—H14B109.5
N1—C4—C3121.62 (15)H14A—C14—H14B108.1
N1—C4—C5121.10 (15)C16—C15—C20111.07 (12)
C3—C4—C5117.27 (14)C16—C15—P1111.22 (10)
C6—C5—C4121.14 (15)C20—C15—P1110.56 (10)
C6—C5—H5119.4C16—C15—H15107.9
C4—C5—H5119.4C20—C15—H15107.9
C5—C6—C1121.22 (14)P1—C15—H15107.9
C5—C6—H6119.4C17—C16—C15111.31 (12)
C1—C6—H6119.4C17—C16—H16A109.4
N1—C7—H7A109.5C15—C16—H16A109.4
N1—C7—H7B109.5C17—C16—H16B109.4
H7A—C7—H7B109.5C15—C16—H16B109.4
N1—C7—H7C109.5H16A—C16—H16B108
H7A—C7—H7C109.5C18—C17—C16111.28 (13)
H7B—C7—H7C109.5C18—C17—H17A109.4
N1—C8—H8A109.5C16—C17—H17A109.4
N1—C8—H8B109.5C18—C17—H17B109.4
H8A—C8—H8B109.5C16—C17—H17B109.4
N1—C8—H8C109.5H17A—C17—H17B108
H8A—C8—H8C109.5C19—C18—C17110.77 (13)
H8B—C8—H8C109.5C19—C18—H18A109.5
C10—C9—C14110.55 (12)C17—C18—H18A109.5
C10—C9—P1114.22 (10)C19—C18—H18B109.5
C14—C9—P1110.38 (10)C17—C18—H18B109.5
C10—C9—H9107.1H18A—C18—H18B108.1
C14—C9—H9107.1C18—C19—C20110.82 (13)
P1—C9—H9107.1C18—C19—H19A109.5
C11—C10—C9110.26 (13)C20—C19—H19A109.5
C11—C10—H10A109.6C18—C19—H19B109.5
C9—C10—H10A109.6C20—C19—H19B109.5
C11—C10—H10B109.6H19A—C19—H19B108.1
C9—C10—H10B109.6C19—C20—C15111.66 (12)
H10A—C10—H10B108.1C19—C20—H20A109.3
C12—C11—C10111.95 (14)C15—C20—H20A109.3
C12—C11—H11A109.2C19—C20—H20B109.3
C10—C11—H11A109.2C15—C20—H20B109.3
C12—C11—H11B109.2H20A—C20—H20B108
C10—C11—H11B109.2
C3—C2—C1—C60.5 (2)C15—P1—C9—C14179.60 (10)
C3—C2—C1—P1177.56 (12)Se1—P1—C9—C1458.59 (11)
C15—P1—C1—C2147.03 (12)C14—C9—C10—C1156.78 (17)
C9—P1—C1—C298.45 (13)P1—C9—C10—C11178.02 (11)
Se1—P1—C1—C223.72 (14)C9—C10—C11—C1255.47 (18)
C15—P1—C1—C634.97 (14)C10—C11—C12—C1354.77 (19)
C9—P1—C1—C679.55 (14)C11—C12—C13—C1454.96 (18)
Se1—P1—C1—C6158.28 (11)C12—C13—C14—C956.65 (17)
C1—C2—C3—C40.8 (2)C10—C9—C14—C1357.86 (16)
C8—N1—C4—C32.9 (2)P1—C9—C14—C13174.79 (10)
C7—N1—C4—C3166.45 (16)C1—P1—C15—C16172.11 (10)
C8—N1—C4—C5177.77 (15)C9—P1—C15—C1657.95 (12)
C7—N1—C4—C514.2 (2)Se1—P1—C15—C1663.44 (11)
C2—C3—C4—N1178.82 (15)C1—P1—C15—C2064.01 (11)
C2—C3—C4—C50.5 (2)C9—P1—C15—C20178.16 (10)
N1—C4—C5—C6179.44 (15)Se1—P1—C15—C2060.45 (11)
C3—C4—C5—C60.1 (2)C20—C15—C16—C1753.87 (17)
C4—C5—C6—C10.4 (2)P1—C15—C16—C17177.46 (11)
C2—C1—C6—C50.1 (2)C15—C16—C17—C1855.73 (18)
P1—C1—C6—C5178.14 (11)C16—C17—C18—C1957.24 (18)
C1—P1—C9—C1060.15 (12)C17—C18—C19—C2057.01 (19)
C15—P1—C9—C1054.31 (12)C18—C19—C20—C1555.75 (18)
Se1—P1—C9—C10176.11 (9)C16—C15—C20—C1954.09 (16)
C1—P1—C9—C1465.15 (12)P1—C15—C20—C19178.06 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Se1i12.713.6546 (15)157
C19—H19A···Se1i0.993.043.8836 (18)143
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H32NPSe
Mr396.4
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.3860 (16), 6.8331 (8), 24.113 (3)
β (°) 97.050 (3)
V3)2025.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.29 × 0.12 × 0.05
Data collection
DiffractometerBruker APEX DUO 4K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.604, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
31168, 5008, 4192
Rint0.033
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.02
No. of reflections5008
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.24

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···Se1i12.713.6546 (15)157.1
C19—H19A···Se1i0.993.043.8836 (18)143.3
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Research funds of the University of Johannesburg is gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunten, K. A., Chen, L., Fernandez, A. L. & Poë, A. J. (2002). Coord. Chem. Rev. 233–234, 41–51.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds