metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m59-m60

catena-Poly[zinc-tris­­(μ-di­methyl­carbamato-κ2O:O′)-zinc-μ-(2-phenyl­benzimidazolido-κ2N:N′]

aPO Box 5800, MS 1411, Sandia National Laboratories, Albuquerque, NM 87185, USA, and bPO Box 5800, MS 1415, Sandia National Laboratories, Albuquerque, NM 87185, USA
*Correspondence e-mail: marodri@sandia.gov

(Received 3 November 2011; accepted 9 December 2011; online 17 December 2011)

The crystal structure of the title compound, [Zn2(C13H9N2)(C3H6NO2)3]n, displays a long chiral chain. This is composed of zinc-dimer clusters capped by dimethyl­carbamate ligands, which lie on crystallographic twofold rotation axes and are polymerically linked in one dimension by 2-phenyl­benzimidadole (2–PBImi) organic ligands. The two Zn2+ ions defining the dimetal cluster are crystallographically independent, but display very similar coordination modes and tetra­hedral geometry. As such, each Zn2+ ion is coordinated on one side by the N-donor imidazole linker, while the other three available coordination sites are fully occupied by the O atoms from the capping dimethyl­carbamates. The chirality of the chain extends along the c axis, generating a rather long 52.470 (11) Å cell axis. Inter­estingly, the chiral material crystallizes from completely achiral precursors. A twofold axis and 31 screw axis serve to generate the long asymmetric unit.

Related literature

For the structure of another zinc–adeninate compound, see: An et al. (2009[An, J. Y., Fiorella, R. P., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8401-8403.]). This structure, formed with adenine, contains a similar but not identical ligand as that of the 2-PBImi mol­ecule. Inter­estingly, this Zn-adeninate structure also displays the presence of dimethyl­carbamate, but in the case of the zinc-adeninate it is not a bridging mol­ecule between Zn2+ cations, but is terminally tethered to the Zn2+ ions. The dimethyl­carbamate capping mol­ecules formed in situ during the synthesis; there is precedence for such in situ reactions (An et al. 2009[An, J. Y., Fiorella, R. P., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8401-8403.]; Dell'Amico et al. 2003[Dell'Amico, D. B., Calderazzo, F., Labella, L. & Marchetti, F. (2003). Inorg. Chim. Acta, 350, 661-664.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C13H9N2)(C3H6NO2)3]

  • Mr = 588.23

  • Trigonal, P 31 21

  • a = 9.0521 (13) Å

  • c = 52.470 (11) Å

  • V = 3723.4 (11) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.98 mm−1

  • T = 188 K

  • 0.20 × 0.19 × 0.15 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.681, Tmax = 0.742

  • 26966 measured reflections

  • 4386 independent reflections

  • 4132 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.059

  • S = 1.09

  • 4386 reflections

  • 333 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1754 Friedel pairs

  • Flack parameter: 0.011 (12)

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT, SMART and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SMART and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XSHELL (Bruker, 2007[Bruker (2007). SAINT, SMART and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

This manuscript documents possibly the first reported structure of the linker 2-phenylbenzimidazole (2–PBImi), as well as a coordination polymer derived from this molecule. The 2-PBImi molecule was investigated as a possible linker molecule for the synthesis of metal-organic framworks (MOFs). As a result of this research, the title compound was observed. This polymeric chain structure is derived from two tetrahedral metal centers that are capped by three dimethylcarbamates, resulting in a very rare (novel) molecular building block (MBB). There are a few published examples that display similar environments (see An, et al., 2009), but none display identical coodination. The dimethylcarbamate capping molecules formed in situ during the synthesis; there is precedence for such in situ reactions (An, et al. 2009; Dell'Amico, et al. 2003).

Figure 1 shows the MBB for the chain. A cluster composed of two Zn cations bridged by three dimethylcarbamate molecules is bracketed on either side by 2-PBImi linkers to complete the tetrahedrally coordinated Zn1 cations. A twofold axis (coincident with the a axis direction) is also shown to illustrate how the atoms in the MBB are related by symmetry. Atoms with asterisks indicate symmetry equivalent atoms within the MBB. Zn2 is also shown extending from the 2-PBImi molecule. The Zn2 metal center also binds to a second set of three dimethylcarbamate molecules. This is illustrated in Figure 2. The second set of dimethylcarbamates, which bridge the Zn2 metal center, are crystallographically unique but structurally similar to those bound to Zn1 (asterisks indicate symmetry equivalent atoms). Figure 3 shows a ball and stick representation of an individual polymer chain to illustrate the chiral behavior of the molecule. The chain propagates along the c axis direction. The observation of chirality (the compound crystallizes in the space group P3121) is interesting because the structure crystallized from achiral precursors Zn(CH3COO2)2.2H2O and 2–PBImi. Presumably the sample crystallizes as a equal fraction mixture of P3121 and P3221 symmetry.

The structure is charge-neutral. The metal to 2-PBImi ligand ratio is 2:1 because each 2-PBImi ligand is shared by the two zinc cations. Therefore, each MBB requires an additional 3- for charge balance. This is accomodated by the three dimethylcarbamate anionic molecules which cap the metals. The structure repeats itself every sixth zinc cluster, resulting in the long 52.470 (11) Å c axis.

Related literature top

For the structure of another zinc–adeninate compound, see: An et al. (2009). This structure, formed with adenine, contains a similar but not identical ligand as that of the 2-PBImi molecule. Interestingly, this Zn-adeninate structure also displays the presence of dimethylcarbamate, but in the case of the zinc-adeninate it is not a bridging molecule between Zn metal atoms, but is terminally tethered to the Zn cations. The dimethylcarbamate capping molecules formed in situ during the synthesis; there is precedence for such in situ reactions (An, et al. 2009; Dell'Amico, et al. 2003).

Experimental top

The reaction mixture containing Zn(CH3COO2)2.2H2O (0.008 g, 0.0436 mmol) and 2–PBImi (2-phenylbenzimidazole, 0.066 g, 0.3398 mmol) in 3 mL of N,N'-dimethylformamide (DMF) was placed in a convection oven at 115° C for 72 h inside capped scintillation vials. The capped vials were removed from the oven, and allowed to stand at room temperature over a period of approximately two weeks, after which time pale yellow block-shaped crystals formed.

Refinement top

Hydrogen positions were derived and refined using the riding model within the SHELXTL and XSHELL software. Hydrogen atoms were fixed at 0.93 Å and 0.96 Å for aromatic and methyl type C—H bonds, respectively. The Flack (1983) parameter was calculated using 1754 Friedel pairs. The fraction of Friedel pairs measured was approximately 0.67.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XSHELL (Bruker, 2007) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular building block (MBB) for the title compound, with labels and 50% probability displacement ellipsoids for non-H atoms. A twofold rotation axis extends through the polymeric chain parallel to the N4—C14 bond (and coincident with the a axis) and relates atoms by symmetry. For clarity of the MBB, dimethylcarbamate molecules attached to the Zn2 metal center have been removed. Atom labels containing asterisks indicate symmetry equivalent atoms.
[Figure 2] Fig. 2. Capped stick image of the entire asymmetric unit for the title compound. This plot shows the second set of demethylcarbamate molecules which coordinate to the Zn2 atom. Atom labels containing asterisks indicate symmetry equivalent atoms.
[Figure 3] Fig. 3. A ball-and-stick representation of a single chiral chain for the title compound. The chain propagates in the c axis direction.
catena-Poly[zinc-tris(µ-dimethylcarbamato-κ2O:O')- zinc-µ-(2-phenylbenzimidazolido-κ2N:N'] top
Crystal data top
[Zn2(C13H9N2)(C3H6NO2)3]Dx = 1.574 Mg m3
Mr = 588.23Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 200 reflections
Hall symbol: P 31 2"θ = 1–25.0°
a = 9.0521 (13) ŵ = 1.98 mm1
c = 52.470 (11) ÅT = 188 K
V = 3723.4 (11) Å3Prism, colourless
Z = 60.20 × 0.19 × 0.15 mm
F(000) = 1812
Data collection top
Bruker APEX CCD
diffractometer
4386 independent reflections
Radiation source: fine-focus sealed tube4132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.681, Tmax = 0.742k = 1010
26966 measured reflectionsl = 6262
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0139P)2 + 2.9151P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4386 reflectionsΔρmax = 0.25 e Å3
333 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1754 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (12)
Crystal data top
[Zn2(C13H9N2)(C3H6NO2)3]Z = 6
Mr = 588.23Mo Kα radiation
Trigonal, P3121µ = 1.98 mm1
a = 9.0521 (13) ÅT = 188 K
c = 52.470 (11) Å0.20 × 0.19 × 0.15 mm
V = 3723.4 (11) Å3
Data collection top
Bruker APEX CCD
diffractometer
4386 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 1996)
4132 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.742Rint = 0.044
26966 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.25 e Å3
S = 1.09Δρmin = 0.24 e Å3
4386 reflectionsAbsolute structure: Flack (1983), 1754 Friedel pairs
333 parametersAbsolute structure parameter: 0.011 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.61691 (5)0.56462 (5)0.031021 (7)0.02259 (10)
Zn20.88114 (5)0.62957 (5)0.139747 (7)0.02319 (10)
O10.5750 (3)0.3622 (3)0.01178 (4)0.0358 (6)
O20.8274 (3)0.7528 (3)0.01830 (4)0.0354 (6)
O30.5961 (3)0.4199 (3)0.03014 (4)0.0338 (6)
O40.7517 (3)0.4560 (3)0.16515 (4)0.0436 (7)
O50.9058 (3)0.5436 (3)0.20106 (4)0.0392 (7)
O60.8978 (4)0.8375 (3)0.15205 (5)0.0457 (8)
N10.6497 (3)0.5170 (3)0.06693 (4)0.0211 (6)
N20.7528 (3)0.5425 (3)0.10704 (5)0.0213 (6)
N30.5940 (4)0.1848 (4)0.01588 (5)0.0345 (8)
N41.0043 (5)1.0043 (5)0.00000.0365 (11)
N50.6591 (4)0.2963 (4)0.20013 (5)0.0329 (7)
N61.00001.1032 (5)0.16670.0411 (12)
C10.7521 (5)0.8882 (5)0.07206 (7)0.0370 (9)
H10.64280.82150.06550.042 (11)*
C20.8316 (6)1.0654 (5)0.07046 (8)0.0474 (11)
H20.77661.11720.06270.042 (10)*
C30.9932 (6)1.1629 (5)0.08049 (9)0.0562 (12)
H31.04621.28130.07980.051 (11)*
C41.0773 (6)1.0865 (5)0.09152 (7)0.0464 (11)
H41.18701.15360.09790.053 (13)*
C50.9985 (5)0.9104 (5)0.09305 (6)0.0338 (9)
H51.05500.85950.10050.029 (10)*
C60.8346 (5)0.8100 (4)0.08340 (6)0.0252 (7)
C70.7473 (4)0.6227 (4)0.08569 (6)0.0220 (7)
C80.6498 (4)0.3696 (4)0.10177 (6)0.0229 (7)
C90.6048 (5)0.2254 (5)0.11655 (6)0.0317 (8)
H90.64660.23510.13300.055 (12)*
C100.4971 (5)0.0683 (5)0.10609 (7)0.0403 (10)
H100.46490.02950.11570.041 (11)*
C110.4348 (5)0.0531 (5)0.08119 (7)0.0391 (9)
H110.36300.05490.07450.030 (9)*
C120.4772 (5)0.1935 (4)0.06647 (7)0.0320 (9)
H120.43460.18240.05000.030 (9)*
C130.5861 (4)0.3535 (4)0.07689 (6)0.0240 (7)
C140.8556 (5)0.8556 (5)0.00000.0238 (11)
C151.1260 (5)1.0518 (6)0.02054 (7)0.0562 (13)
H15A1.07260.97790.03490.084*
H15B1.16491.16770.02540.084*
H15C1.22131.04120.01500.084*
C160.5881 (4)0.3284 (4)0.01132 (6)0.0274 (8)
C170.5966 (6)0.1272 (6)0.04163 (7)0.0547 (13)
H17A0.59950.20860.05360.082*
H17B0.49610.01860.04440.082*
H17C0.69600.11620.04380.082*
C180.5903 (7)0.0760 (6)0.00490 (8)0.0587 (13)
H18A0.65510.14570.01900.088*
H18B0.63880.00860.00080.088*
H18C0.47440.00210.01010.088*
C190.7772 (4)0.4385 (4)0.18828 (6)0.0234 (7)
C200.5019 (5)0.1739 (6)0.18801 (8)0.0565 (13)
H20A0.48780.22090.17240.085*
H20B0.40780.14750.19920.085*
H20C0.50530.07170.18440.085*
C210.6793 (6)0.2625 (6)0.22652 (8)0.0561 (12)
H21A0.79030.34670.23240.084*
H21B0.66710.15120.22790.084*
H21C0.59360.26720.23670.084*
C221.00000.9526 (5)0.16670.0290 (12)
C230.8890 (7)1.1336 (6)0.15050 (9)0.0641 (14)
H23A0.83781.04470.13800.096*
H23B0.95411.24170.14210.096*
H23C0.80131.13460.16070.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0257 (2)0.0255 (2)0.01562 (18)0.01208 (19)0.00268 (16)0.00245 (17)
Zn20.0258 (2)0.0255 (2)0.01727 (18)0.01204 (18)0.00601 (17)0.00255 (17)
O10.0619 (18)0.0346 (15)0.0162 (12)0.0280 (14)0.0006 (12)0.0010 (11)
O20.0279 (14)0.0389 (16)0.0295 (13)0.0093 (13)0.0012 (11)0.0153 (12)
O30.0531 (18)0.0337 (14)0.0236 (13)0.0285 (13)0.0013 (12)0.0060 (11)
O40.0392 (16)0.0460 (17)0.0177 (13)0.0003 (13)0.0042 (11)0.0034 (12)
O50.0289 (14)0.0438 (17)0.0234 (13)0.0020 (13)0.0076 (11)0.0032 (12)
O60.065 (2)0.0420 (17)0.0432 (16)0.0371 (16)0.0322 (15)0.0236 (13)
N10.0237 (15)0.0214 (15)0.0150 (12)0.0089 (12)0.0049 (11)0.0008 (11)
N20.0255 (15)0.0233 (16)0.0140 (13)0.0114 (13)0.0020 (11)0.0008 (11)
N30.053 (2)0.0324 (18)0.0274 (16)0.0284 (17)0.0003 (14)0.0015 (14)
N40.0324 (18)0.0324 (18)0.027 (2)0.003 (2)0.0074 (11)0.0074 (11)
N50.0287 (18)0.0302 (18)0.0310 (17)0.0083 (15)0.0013 (13)0.0035 (14)
N60.048 (3)0.0290 (18)0.053 (3)0.0238 (15)0.019 (2)0.0094 (12)
C10.038 (2)0.034 (2)0.039 (2)0.0182 (19)0.0060 (19)0.0007 (18)
C20.056 (3)0.033 (2)0.056 (3)0.024 (2)0.008 (2)0.005 (2)
C30.069 (3)0.018 (2)0.073 (3)0.015 (2)0.009 (3)0.001 (2)
C40.047 (3)0.032 (2)0.042 (2)0.006 (2)0.011 (2)0.003 (2)
C50.036 (2)0.031 (2)0.0310 (19)0.0140 (19)0.0028 (17)0.0045 (17)
C60.032 (2)0.0218 (18)0.0216 (16)0.0135 (16)0.0013 (15)0.0028 (15)
C70.0218 (17)0.0267 (19)0.0179 (15)0.0124 (16)0.0007 (13)0.0016 (15)
C80.0258 (18)0.0242 (19)0.0212 (17)0.0143 (16)0.0003 (14)0.0013 (14)
C90.043 (2)0.033 (2)0.0199 (17)0.0193 (19)0.0058 (16)0.0012 (16)
C100.058 (3)0.026 (2)0.031 (2)0.017 (2)0.0017 (18)0.0065 (17)
C110.042 (2)0.027 (2)0.037 (2)0.0088 (19)0.005 (2)0.0027 (18)
C120.035 (2)0.025 (2)0.0264 (19)0.0077 (17)0.0073 (16)0.0012 (15)
C130.0241 (18)0.0249 (19)0.0170 (16)0.0077 (16)0.0013 (14)0.0007 (14)
C140.026 (2)0.026 (2)0.023 (2)0.015 (2)0.0012 (10)0.0012 (10)
C150.034 (3)0.065 (3)0.039 (2)0.001 (2)0.012 (2)0.006 (2)
C160.025 (2)0.026 (2)0.0276 (19)0.0097 (17)0.0011 (15)0.0037 (15)
C170.089 (4)0.061 (3)0.031 (2)0.051 (3)0.005 (2)0.011 (2)
C180.101 (4)0.050 (3)0.046 (3)0.054 (3)0.015 (3)0.013 (2)
C190.0269 (19)0.0233 (18)0.0231 (18)0.0150 (17)0.0023 (15)0.0000 (15)
C200.041 (3)0.044 (3)0.049 (3)0.006 (2)0.006 (2)0.000 (2)
C210.054 (3)0.066 (3)0.047 (3)0.029 (3)0.008 (2)0.028 (2)
C220.025 (3)0.022 (2)0.040 (3)0.0127 (14)0.002 (2)0.0010 (12)
C230.098 (4)0.066 (3)0.060 (3)0.065 (3)0.026 (3)0.016 (3)
Geometric parameters (Å, º) top
Zn1—O21.932 (2)C3—C41.386 (6)
Zn1—O3i1.942 (2)C3—H30.9300
Zn1—O11.956 (2)C4—C51.385 (5)
Zn1—N11.988 (2)C4—H40.9300
Zn2—O61.923 (3)C5—C61.391 (5)
Zn2—O5ii1.933 (2)C5—H50.9300
Zn2—O41.944 (2)C6—C71.474 (4)
Zn2—N22.000 (3)C8—C91.393 (5)
O1—C161.270 (4)C8—C131.405 (4)
O2—C141.271 (3)C9—C101.374 (5)
O3—C161.267 (4)C9—H90.9300
O3—Zn1i1.942 (2)C10—C111.402 (5)
O4—C191.260 (4)C10—H100.9300
O5—C191.266 (4)C11—C121.368 (5)
O5—Zn2ii1.933 (2)C11—H110.9300
O6—C221.251 (3)C12—C131.393 (5)
N1—C71.349 (4)C12—H120.9300
N1—C131.394 (4)C14—O2i1.271 (3)
N2—C71.349 (4)C15—H15A0.9600
N2—C81.391 (4)C15—H15B0.9600
N3—C161.349 (4)C15—H15C0.9600
N3—C171.452 (4)C17—H17A0.9600
N3—C181.458 (5)C17—H17B0.9600
N4—C141.346 (6)C17—H17C0.9600
N4—C15i1.444 (4)C18—H18A0.9600
N4—C151.445 (4)C18—H18B0.9600
N5—C191.346 (4)C18—H18C0.9600
N5—C201.443 (5)C20—H20A0.9600
N5—C211.450 (5)C20—H20B0.9600
N6—C221.363 (6)C20—H20C0.9600
N6—C23ii1.442 (5)C21—H21A0.9600
N6—C231.442 (5)C21—H21B0.9600
C1—C61.393 (5)C21—H21C0.9600
C1—C21.394 (5)C22—O6ii1.251 (3)
C1—H10.9300C23—H23A0.9600
C2—C31.380 (6)C23—H23B0.9600
C2—H20.9300C23—H23C0.9600
O2—Zn1—O3i115.83 (11)C8—C9—H9121.0
O2—Zn1—O1106.95 (11)C9—C10—C11121.1 (3)
O3i—Zn1—O1111.27 (11)C9—C10—H10119.4
O2—Zn1—N1109.29 (10)C11—C10—H10119.4
O3i—Zn1—N1107.59 (10)C12—C11—C10121.5 (4)
O1—Zn1—N1105.43 (10)C12—C11—H11119.2
O6—Zn2—O5ii116.22 (13)C10—C11—H11119.2
O6—Zn2—O4106.34 (12)C11—C12—C13117.9 (3)
O5ii—Zn2—O4110.93 (12)C11—C12—H12121.0
O6—Zn2—N2114.79 (11)C13—C12—H12121.0
O5ii—Zn2—N2102.32 (10)C12—C13—N1131.2 (3)
O4—Zn2—N2105.86 (11)C12—C13—C8120.9 (3)
C16—O1—Zn1136.1 (2)N1—C13—C8107.9 (3)
C14—O2—Zn1130.9 (2)O2—C14—O2i124.4 (4)
C16—O3—Zn1i129.2 (2)O2—C14—N4117.8 (2)
C19—O4—Zn2133.4 (2)O2i—C14—N4117.8 (2)
C19—O5—Zn2ii135.6 (2)N4—C15—H15A109.5
C22—O6—Zn2133.2 (3)N4—C15—H15B109.5
C7—N1—C13104.8 (2)H15A—C15—H15B109.5
C7—N1—Zn1130.8 (2)N4—C15—H15C109.5
C13—N1—Zn1123.9 (2)H15A—C15—H15C109.5
C7—N2—C8104.8 (3)H15B—C15—H15C109.5
C7—N2—Zn2132.1 (2)O3—C16—O1124.6 (3)
C8—N2—Zn2123.0 (2)O3—C16—N3118.3 (3)
C16—N3—C17121.8 (3)O1—C16—N3117.1 (3)
C16—N3—C18121.3 (3)N3—C17—H17A109.5
C17—N3—C18116.9 (3)N3—C17—H17B109.5
C14—N4—C15i122.0 (2)H17A—C17—H17B109.5
C14—N4—C15122.0 (2)N3—C17—H17C109.5
C15i—N4—C15116.0 (5)H17A—C17—H17C109.5
C19—N5—C20122.6 (3)H17B—C17—H17C109.5
C19—N5—C21121.3 (3)N3—C18—H18A109.5
C20—N5—C21116.0 (3)N3—C18—H18B109.5
C22—N6—C23ii122.6 (2)H18A—C18—H18B109.5
C22—N6—C23122.6 (2)N3—C18—H18C109.5
C23ii—N6—C23114.8 (5)H18A—C18—H18C109.5
C6—C1—C2120.7 (4)H18B—C18—H18C109.5
C6—C1—H1119.6O4—C19—O5125.0 (3)
C2—C1—H1119.6O4—C19—N5117.2 (3)
C3—C2—C1119.0 (4)O5—C19—N5117.8 (3)
C3—C2—H2120.5N5—C20—H20A109.5
C1—C2—H2120.5N5—C20—H20B109.5
C2—C3—C4120.7 (4)H20A—C20—H20B109.5
C2—C3—H3119.6N5—C20—H20C109.5
C4—C3—H3119.6H20A—C20—H20C109.5
C5—C4—C3120.2 (4)H20B—C20—H20C109.5
C5—C4—H4119.9N5—C21—H21A109.5
C3—C4—H4119.9N5—C21—H21B109.5
C4—C5—C6119.9 (4)H21A—C21—H21B109.5
C4—C5—H5120.0N5—C21—H21C109.5
C6—C5—H5120.0H21A—C21—H21C109.5
C5—C6—C1119.4 (3)H21B—C21—H21C109.5
C5—C6—C7120.3 (3)O6—C22—O6ii124.9 (5)
C1—C6—C7120.3 (3)O6—C22—N6117.6 (2)
N1—C7—N2114.3 (3)O6ii—C22—N6117.6 (2)
N1—C7—C6122.7 (3)N6—C23—H23A109.5
N2—C7—C6122.9 (3)N6—C23—H23B109.5
N2—C8—C9131.4 (3)H23A—C23—H23B109.5
N2—C8—C13108.1 (3)N6—C23—H23C109.5
C9—C8—C13120.5 (3)H23A—C23—H23C109.5
C10—C9—C8118.1 (3)H23B—C23—H23C109.5
C10—C9—H9121.0
O2—Zn1—O1—C1641.4 (4)C7—N2—C8—C130.2 (4)
O3i—Zn1—O1—C1686.0 (4)Zn2—N2—C8—C13177.1 (2)
N1—Zn1—O1—C16157.7 (3)N2—C8—C9—C10179.2 (3)
O3i—Zn1—O2—C1436.3 (3)C13—C8—C9—C100.1 (5)
O1—Zn1—O2—C1488.3 (3)C8—C9—C10—C110.4 (6)
N1—Zn1—O2—C14158.0 (2)C9—C10—C11—C120.7 (6)
O6—Zn2—O4—C1962.3 (4)C10—C11—C12—C130.5 (6)
O5ii—Zn2—O4—C1964.9 (4)C11—C12—C13—N1179.2 (4)
N2—Zn2—O4—C19175.1 (3)C11—C12—C13—C80.2 (5)
O5ii—Zn2—O6—C2237.6 (3)C7—N1—C13—C12179.3 (4)
O4—Zn2—O6—C2286.4 (3)Zn1—N1—C13—C127.3 (6)
N2—Zn2—O6—C22156.9 (3)C7—N1—C13—C80.2 (4)
O2—Zn1—N1—C733.4 (3)Zn1—N1—C13—C8173.6 (2)
O3i—Zn1—N1—C793.2 (3)N2—C8—C13—C12179.5 (3)
O1—Zn1—N1—C7148.0 (3)C9—C8—C13—C120.1 (5)
O2—Zn1—N1—C13138.1 (3)N2—C8—C13—N10.3 (4)
O3i—Zn1—N1—C1395.4 (3)C9—C8—C13—N1179.2 (3)
O1—Zn1—N1—C1323.5 (3)Zn1—O2—C14—O2i19.90 (16)
O6—Zn2—N2—C739.0 (3)Zn1—O2—C14—N4160.10 (16)
O5ii—Zn2—N2—C787.8 (3)C15i—N4—C14—O2177.0 (3)
O4—Zn2—N2—C7156.0 (3)C15—N4—C14—O23.0 (3)
O6—Zn2—N2—C8144.5 (2)C15i—N4—C14—O2i3.0 (3)
O5ii—Zn2—N2—C888.7 (3)C15—N4—C14—O2i177.0 (3)
O4—Zn2—N2—C827.5 (3)Zn1i—O3—C16—O18.1 (5)
C6—C1—C2—C30.6 (6)Zn1i—O3—C16—N3172.0 (2)
C1—C2—C3—C41.4 (7)Zn1—O1—C16—O318.9 (6)
C2—C3—C4—C51.2 (7)Zn1—O1—C16—N3161.0 (3)
C3—C4—C5—C60.2 (6)C17—N3—C16—O34.6 (6)
C4—C5—C6—C10.6 (5)C18—N3—C16—O3178.3 (4)
C4—C5—C6—C7178.0 (3)C17—N3—C16—O1175.5 (4)
C2—C1—C6—C50.4 (6)C18—N3—C16—O11.7 (6)
C2—C1—C6—C7178.2 (3)Zn2—O4—C19—O51.1 (6)
C13—N1—C7—N20.1 (4)Zn2—O4—C19—N5178.3 (3)
Zn1—N1—C7—N2172.8 (2)Zn2ii—O5—C19—O47.3 (6)
C13—N1—C7—C6177.6 (3)Zn2ii—O5—C19—N5172.1 (3)
Zn1—N1—C7—C69.7 (5)C20—N5—C19—O45.1 (5)
C8—N2—C7—N10.0 (4)C21—N5—C19—O4178.3 (4)
Zn2—N2—C7—N1176.9 (2)C20—N5—C19—O5175.5 (4)
C8—N2—C7—C6177.5 (3)C21—N5—C19—O51.1 (5)
Zn2—N2—C7—C65.6 (5)Zn2—O6—C22—O6ii15.56 (19)
C5—C6—C7—N1140.8 (3)Zn2—O6—C22—N6164.44 (19)
C1—C6—C7—N140.7 (5)C23ii—N6—C22—O6179.5 (3)
C5—C6—C7—N241.9 (5)C23—N6—C22—O60.5 (3)
C1—C6—C7—N2136.6 (3)C23ii—N6—C22—O6ii0.5 (3)
C7—N2—C8—C9179.1 (4)C23—N6—C22—O6ii179.5 (3)
Zn2—N2—C8—C93.6 (5)
Symmetry codes: (i) y, x, z; (ii) x+2, x+y+1, z+1/3.

Experimental details

Crystal data
Chemical formula[Zn2(C13H9N2)(C3H6NO2)3]
Mr588.23
Crystal system, space groupTrigonal, P3121
Temperature (K)188
a, c (Å)9.0521 (13), 52.470 (11)
V3)3723.4 (11)
Z6
Radiation typeMo Kα
µ (mm1)1.98
Crystal size (mm)0.20 × 0.19 × 0.15
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionNumerical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.681, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
26966, 4386, 4132
Rint0.044
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.059, 1.09
No. of reflections4386
No. of parameters333
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.24
Absolute structureFlack (1983), 1754 Friedel pairs
Absolute structure parameter0.011 (12)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), XSHELL (Bruker, 2007) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank Charles Campana of Bruker AXS, Inc. for his assistance with this structure, and Timothy J. Boyle (Sandia) for his help with the chemical scheme. This work was supported by the US DOE-NE/FCRD-SWG. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE—AC04–94 A L85000.

References

First citationAn, J. Y., Fiorella, R. P., Geib, S. J. & Rosi, N. L. (2009). J. Am. Chem. Soc. 131, 8401–8403.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SAINT, SMART and XSHELL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDell'Amico, D. B., Calderazzo, F., Labella, L. & Marchetti, F. (2003). Inorg. Chim. Acta, 350, 661–664.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m59-m60
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds