organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o194-o195

N-{3-[2-(4-Fluoro­phen­­oxy)eth­yl]-2,4-dioxo-1,3-di­aza­spiro­[4.5]decan-7-yl}-4-meth­­oxy­benzene­sulfonamide

aDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, cDepartment of Physics, AVK College for Women, Hassan 573 201, Karnataka, India, dDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India, and eDepartment of P.G. Studies in Physics, L V D College, Raichur 584 103, Karnataka, India
*Correspondence e-mail: vinduvahinim@yahoo.in

(Received 14 November 2011; accepted 15 December 2011; online 21 December 2011)

In the title compound, C23H26FN3O6S, the two terminal aromatic rings form a dihedral angle of 49.26 (12)°. The cyclo­hexane ring adopts a chair conformation and the five-membered ring is essentially planar, with a maximum deviation from planarity of 0.0456 (19) Å. The dihedral angles between the five-membered ring and the meth­oxy­benzene and fluoro­benzene rings are 33.56 (11) and 81.94 (12)°, respectively. The crystal structure displays N—H⋯O hydrogen bonds as well as weak inter­molecular C—H⋯O inter­actions.

Related literature

For the biological activity of related compounds, see: Cartwright et al. (2007[Cartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027-7035.]); Collins (2000[Collins, I. (2000). J. Chem. Soc. Perkin Trans. 1 pp. 2845-2861.]); Warshakoon et al. (2006[Warshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). Bioorg. Med. Chem. Lett. 16, 5598-5601.]) and for their pharmaceutical activity, see: Kiselyov et al. (2006[Kiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726-1730.]); Sakthivel & Cook (2005[Sakthivel, K. & Cook, P. D. (2005). Tetrahedron Lett. 46, 3883-3887.]); Eldrup et al. (2004[Eldrup, A. B., et al. (2004). J. Med. Chem. 47, 5284-5297.]); Bamford et al. (2005[Bamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402-3406.]); Puerstinger et al. (2006[Puerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). Bioorg. Med. Chem. Lett. 16, 5345-5349.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26FN3O6S

  • Mr = 491.53

  • Monoclinic, P 21 /c

  • a = 11.926 (5) Å

  • b = 11.025 (5) Å

  • c = 18.508 (5) Å

  • β = 97.271 (5)°

  • V = 2413.9 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED . Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.771, Tmax = 1.000

  • 21931 measured reflections

  • 4240 independent reflections

  • 3435 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.04

  • 4240 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O5i 0.86 2.08 2.924 (2) 168
N11—H11⋯O6ii 0.86 2.39 2.991 (3) 127
C20—H20A⋯O4iii 0.97 2.51 3.377 (3) 148
C31—H31⋯O4iv 0.93 2.48 3.327 (3) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED . Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED . Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

One of the challenges of medicinal chemistry is the promotion of structural diversity, which can be achieved by the attachment of pharmacophoric groups to a given molecular scaffold using combinatorial chemistry. An example of such a process includes di- and tri-substituted hydantoins, which have been widely used in biological screenings, resulting in numerous pharmaceutical applications (Cartwright et al., 2007; Collins, 2000; Warshakoon et al.,2006). Hydantion analogues have shown versatile therapeutic applications and some of them have been approved as drugs. For example, Fosphenytoin as a sodium channel antagonist is used for the treatment of epilepsy. Phenytoin has antiarrhythmic, anticonvulsant, and antineuralgic activities. Ethotoin and Mephenytoin both show anticonvulsant effects. Nilutamide is used in the treatment of prostate cancer (Kiselyov et al., 2006; Sakthivel & Cook, 2005; Eldrup et al., 2004; Bamford et al., 2005; Puerstinger et al., 2006).

The asymmetric unit of N-{3-[2-(4-fluorophenoxy)ethyl]-2,4-dioxo-1, 3-diazaspiro[4.5]dec-8-yl}-4-methoxy benzenesulfonamide, C23H26FN3O6S, contains just one molecule (Fig. 1). The two terminal benzene rings (C13···C18) and (C29···C34) form a dihedral angle of 49.26 (12)°. The cyclohexane (C19···C24) ring adopts a chair conformation, and the five-membered imidazolidine ring is essentially flat (max. deviation from mean plane = 0.0456 (19) Å). The dihedral angles between the five-membered ring and the methoxybenzene and fluorobenzene rings are 33.56 (11)° and 81.94 (12)°, respectively. The crystal structure displays intermolecular hydrogen bonds involving N10—H10···O5 and N11—H11···O6, as well as weak intermolecular C20—H20A···O4 and C31—H31···O4 interactions (Table 1). The packing of the molecules is depicted in Fig. 2.

Related literature top

For the biological activity of related compounds, see: Cartwright et al. (2007); Collins (2000); Warshakoon et al. (2006) and for their pharmaceutical activity, see: Kiselyov et al. (2006); Sakthivel & Cook (2005); Eldrup et al. (2004); Bamford et al. (2005); Puerstinger et al. (2006).

Experimental top

A mixture of tert-butyl (4-oxocyclohexyl)carbamate (2 g, 9.37 mmol) and ammonium carbonate (1.08 g, 11.2 mmol) were taken in ethanol and water, respectively. A solution of sodium cyanide (2 g, 9.37 mmol) in water was added dropwise and the reaction mixture was stirred at RT for 24 hrs. A mixture of anhydrous potassium carbonate (1.28 g, 9.31 mmol) and 1-(2-bromoethoxy)-4-fluorobenzene (1.53 g, 6.9 mmol) in DMF (20 ml) was refluxed, and the solid was filtered, washed with water and dried in vacuum to give hydantoin. The tert-butyl dicarbonate (BOC) was de-protected using dioxane-HCl and it was basified to give the free amine. A mixture of the product (0.2 g, 0.622 mmol), triethylamine (0.075 g, 0.74 mmol) and sulfonyl chloride (0.115 g, 0.56 mmol) in dichloromethane (10 ml) was stirred at room temperature. After completion of the reaction (checked by TLC), the result was concentrated in vacuum to give the title compound (163 mg, 54%), which was recrystallized using 1:1 hexane: ethyl acetate as solvent.

Refinement top

All H atoms were positioned at calculated positions with N—H = 0.86°, C—H = 0.98° for methine, C—H = 0.97° for methylene H, C—H = 0.93° for aromatic H and C—H = 0.96° for methyl H and refined a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C,N) for the other hydrogen atoms.

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2010); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing of the molecules in the title compound, viewed down the a axis.
N-{3-[2-(4-Fluorophenoxy)ethyl]-2,4-dioxo-1,3-diazaspiro[4.5]decan- 7-yl}-4-methoxybenzenesulfonamide top
Crystal data top
C23H26FN3O6SF(000) = 1032
Mr = 491.53Dx = 1.352 Mg m3
Monoclinic, P21/cMelting point: 454 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.926 (5) ÅCell parameters from 4240 reflections
b = 11.025 (5) Åθ = 2.2–25.0°
c = 18.508 (5) ŵ = 0.19 mm1
β = 97.271 (5)°T = 293 K
V = 2413.9 (16) Å3Prism, colourless
Z = 40.20 × 0.15 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4240 independent reflections
Radiation source: fine-focus sealed tube3435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
k = 1310
Tmin = 0.771, Tmax = 1.000l = 2022
21931 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.7995P]
where P = (Fo2 + 2Fc2)/3
4240 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C23H26FN3O6SV = 2413.9 (16) Å3
Mr = 491.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.926 (5) ŵ = 0.19 mm1
b = 11.025 (5) ÅT = 293 K
c = 18.508 (5) Å0.20 × 0.15 × 0.12 mm
β = 97.271 (5)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4240 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
3435 reflections with I > 2σ(I)
Tmin = 0.771, Tmax = 1.000Rint = 0.035
21931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 0.48 e Å3
4240 reflectionsΔρmin = 0.50 e Å3
307 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Colourless solid: Yield: 103 mg, 67%); mp: 454k; IR cm-1 (KBr) 3359 (N—H), 1340 (S=O); Anal. Calcd For C23H26FN3O6S: C, 56.20; H, 5.33; N, 8.55%, Found, C, 55.09; H, 5.35; N, 8.45%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.47387 (4)0.20854 (4)0.01227 (2)0.03209 (16)
F21.00980 (18)0.1496 (2)0.04785 (12)0.1244 (9)
O30.80071 (13)0.03367 (15)0.26846 (9)0.0512 (4)
O40.70270 (13)0.38222 (13)0.31425 (10)0.0552 (5)
O50.56248 (13)0.00010 (12)0.32549 (8)0.0412 (4)
O60.48854 (13)0.12205 (13)0.06840 (7)0.0426 (4)
O70.40333 (13)0.31161 (13)0.02950 (8)0.0434 (4)
O80.91812 (15)0.39441 (16)0.11131 (11)0.0691 (6)
N90.65657 (14)0.18207 (14)0.33157 (9)0.0351 (4)
N100.53633 (14)0.29687 (14)0.26198 (9)0.0354 (4)
H100.50360.36040.24230.042*
N110.42293 (14)0.13132 (14)0.04977 (8)0.0327 (4)
H110.40170.05750.04140.039*
C121.0152 (2)0.3203 (3)0.1158 (2)0.0834 (10)
H12A1.08000.36610.13630.125*
H12B1.02610.29300.06790.125*
H12C1.00560.25160.14620.125*
C130.81799 (19)0.3448 (2)0.08321 (13)0.0463 (5)
C140.7260 (2)0.4222 (2)0.07640 (15)0.0580 (7)
H140.73530.50240.09160.070*
C150.6212 (2)0.3816 (2)0.04736 (13)0.0473 (6)
H150.55950.43390.04310.057*
C160.60774 (17)0.26262 (18)0.02452 (10)0.0338 (4)
C170.69896 (18)0.18514 (18)0.03223 (12)0.0399 (5)
H170.68940.10480.01740.048*
C180.80392 (19)0.22515 (19)0.06158 (12)0.0442 (5)
H180.86510.17220.06690.053*
C190.41262 (16)0.18727 (16)0.12110 (10)0.0287 (4)
H190.43330.27310.11920.034*
C200.29275 (16)0.17830 (19)0.13882 (11)0.0362 (5)
H20A0.26910.09410.13690.043*
H20B0.24270.22300.10290.043*
C210.28410 (17)0.2295 (2)0.21439 (11)0.0395 (5)
H21A0.29940.31590.21440.047*
H21B0.20770.21820.22600.047*
C220.36675 (17)0.16844 (19)0.27258 (11)0.0361 (5)
H22A0.36240.20740.31910.043*
H22B0.34560.08400.27690.043*
C230.48732 (16)0.17553 (16)0.25459 (10)0.0289 (4)
C240.49523 (16)0.12453 (17)0.17834 (10)0.0286 (4)
H24A0.57160.13530.16650.034*
H24B0.47920.03830.17800.034*
C250.57017 (17)0.10571 (17)0.30816 (10)0.0311 (4)
C260.63708 (18)0.29892 (17)0.30243 (11)0.0367 (5)
C270.76450 (18)0.1454 (2)0.37032 (12)0.0441 (5)
H27A0.75440.07240.39810.053*
H27B0.79260.20870.40430.053*
C280.84957 (19)0.1217 (2)0.31867 (13)0.0458 (6)
H28A0.86550.19570.29350.055*
H28B0.91960.09160.34490.055*
C290.85919 (18)0.00587 (18)0.21384 (12)0.0396 (5)
C300.97395 (19)0.0047 (2)0.21463 (14)0.0531 (6)
H301.01720.04420.25290.064*
C311.0247 (2)0.0442 (3)0.15802 (17)0.0681 (8)
H311.10240.03830.15760.082*
C320.9586 (3)0.1007 (3)0.10314 (16)0.0697 (8)
C330.8452 (2)0.1123 (3)0.10093 (14)0.0603 (7)
H330.80260.15200.06250.072*
C340.79498 (19)0.0639 (2)0.15697 (12)0.0445 (5)
H340.71710.07010.15660.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (3)0.0306 (3)0.0236 (3)0.0057 (2)0.0004 (2)0.00054 (19)
F20.0994 (16)0.175 (2)0.1085 (16)0.0153 (15)0.0523 (13)0.0535 (16)
O30.0437 (9)0.0566 (10)0.0553 (10)0.0118 (7)0.0141 (8)0.0204 (8)
O40.0466 (10)0.0331 (8)0.0815 (12)0.0075 (7)0.0092 (8)0.0083 (8)
O50.0548 (9)0.0280 (8)0.0388 (8)0.0002 (6)0.0021 (7)0.0041 (6)
O60.0604 (10)0.0421 (8)0.0248 (7)0.0048 (7)0.0039 (7)0.0062 (6)
O70.0495 (9)0.0380 (8)0.0398 (8)0.0113 (7)0.0049 (7)0.0062 (6)
O80.0452 (10)0.0561 (11)0.1003 (15)0.0045 (8)0.0131 (10)0.0252 (10)
N90.0392 (10)0.0283 (8)0.0354 (9)0.0025 (7)0.0046 (8)0.0064 (7)
N100.0425 (10)0.0230 (8)0.0383 (10)0.0022 (7)0.0043 (8)0.0016 (7)
N110.0451 (10)0.0271 (8)0.0256 (8)0.0028 (7)0.0033 (7)0.0059 (6)
C120.0443 (16)0.0728 (19)0.126 (3)0.0066 (14)0.0180 (17)0.0291 (19)
C130.0416 (13)0.0453 (12)0.0501 (14)0.0021 (10)0.0018 (10)0.0093 (11)
C140.0518 (15)0.0392 (12)0.0798 (18)0.0044 (11)0.0039 (13)0.0195 (12)
C150.0448 (13)0.0353 (12)0.0599 (15)0.0106 (10)0.0008 (11)0.0076 (10)
C160.0409 (11)0.0325 (10)0.0283 (10)0.0043 (9)0.0065 (9)0.0020 (8)
C170.0442 (12)0.0285 (10)0.0469 (13)0.0041 (9)0.0056 (10)0.0014 (9)
C180.0410 (12)0.0382 (12)0.0526 (14)0.0107 (10)0.0034 (10)0.0002 (10)
C190.0367 (11)0.0249 (9)0.0242 (9)0.0002 (8)0.0022 (8)0.0033 (7)
C200.0321 (11)0.0398 (11)0.0356 (11)0.0041 (9)0.0001 (9)0.0002 (9)
C210.0332 (11)0.0441 (12)0.0424 (12)0.0063 (9)0.0088 (9)0.0015 (10)
C220.0404 (12)0.0389 (11)0.0304 (10)0.0021 (9)0.0093 (9)0.0013 (9)
C230.0355 (11)0.0234 (9)0.0273 (10)0.0003 (8)0.0023 (8)0.0019 (7)
C240.0305 (10)0.0274 (9)0.0276 (10)0.0017 (8)0.0028 (8)0.0023 (7)
C250.0402 (11)0.0288 (10)0.0242 (10)0.0021 (8)0.0034 (8)0.0042 (8)
C260.0397 (12)0.0286 (10)0.0408 (12)0.0019 (9)0.0013 (9)0.0073 (8)
C270.0452 (13)0.0442 (12)0.0389 (12)0.0065 (10)0.0103 (10)0.0079 (10)
C280.0397 (12)0.0417 (12)0.0533 (14)0.0008 (10)0.0052 (10)0.0076 (10)
C290.0412 (12)0.0351 (11)0.0434 (12)0.0014 (9)0.0086 (10)0.0045 (9)
C300.0383 (13)0.0600 (15)0.0608 (15)0.0006 (11)0.0054 (11)0.0004 (12)
C310.0419 (14)0.082 (2)0.084 (2)0.0089 (14)0.0229 (14)0.0029 (17)
C320.0637 (18)0.086 (2)0.0642 (18)0.0148 (15)0.0266 (15)0.0129 (15)
C330.0612 (17)0.0694 (17)0.0505 (15)0.0038 (13)0.0083 (13)0.0111 (13)
C340.0404 (12)0.0468 (13)0.0464 (13)0.0008 (10)0.0065 (10)0.0011 (10)
Geometric parameters (Å, º) top
S1—O71.4258 (15)C19—C201.510 (3)
S1—O61.4370 (15)C19—C241.519 (3)
S1—N111.6092 (17)C19—H190.9800
S1—C161.759 (2)C20—C211.524 (3)
F2—C321.367 (3)C20—H20A0.9700
O3—C291.370 (3)C20—H20B0.9700
O3—C281.417 (3)C21—C221.522 (3)
O4—C261.209 (2)C21—H21A0.9700
O5—C251.214 (2)C21—H21B0.9700
O8—C131.356 (3)C22—C231.518 (3)
O8—C121.411 (3)C22—H22A0.9700
N9—C251.358 (3)C22—H22B0.9700
N9—C261.405 (3)C23—C251.518 (3)
N9—C271.449 (3)C23—C241.533 (3)
N10—C261.333 (3)C24—H24A0.9700
N10—C231.459 (2)C24—H24B0.9700
N10—H100.8600C27—C281.502 (3)
N11—C191.476 (2)C27—H27A0.9700
N11—H110.8600C27—H27B0.9700
C12—H12A0.9600C28—H28A0.9700
C12—H12B0.9600C28—H28B0.9700
C12—H12C0.9600C29—C301.372 (3)
C13—C181.383 (3)C29—C341.378 (3)
C13—C141.383 (3)C30—C311.384 (4)
C14—C151.372 (3)C30—H300.9300
C14—H140.9300C31—C321.356 (4)
C15—C161.382 (3)C31—H310.9300
C15—H150.9300C32—C331.354 (4)
C16—C171.376 (3)C33—C341.370 (3)
C17—C181.373 (3)C33—H330.9300
C17—H170.9300C34—H340.9300
C18—H180.9300
O7—S1—O6119.32 (9)C20—C21—H21B109.2
O7—S1—N11108.41 (9)H21A—C21—H21B107.9
O6—S1—N11104.85 (9)C23—C22—C21111.63 (16)
O7—S1—C16107.30 (10)C23—C22—H22A109.3
O6—S1—C16108.50 (10)C21—C22—H22A109.3
N11—S1—C16108.01 (9)C23—C22—H22B109.3
C29—O3—C28119.76 (17)C21—C22—H22B109.3
C13—O8—C12117.8 (2)H22A—C22—H22B108.0
C25—N9—C26111.34 (16)N10—C23—C25100.59 (15)
C25—N9—C27125.11 (17)N10—C23—C22113.94 (16)
C26—N9—C27122.64 (18)C25—C23—C22112.77 (16)
C26—N10—C23112.96 (15)N10—C23—C24110.60 (15)
C26—N10—H10123.5C25—C23—C24107.72 (15)
C23—N10—H10123.5C22—C23—C24110.69 (16)
C19—N11—S1119.92 (13)C19—C24—C23111.41 (15)
C19—N11—H11120.0C19—C24—H24A109.3
S1—N11—H11120.0C23—C24—H24A109.3
O8—C12—H12A109.5C19—C24—H24B109.3
O8—C12—H12B109.5C23—C24—H24B109.3
H12A—C12—H12B109.5H24A—C24—H24B108.0
O8—C12—H12C109.5O5—C25—N9126.13 (18)
H12A—C12—H12C109.5O5—C25—C23126.45 (18)
H12B—C12—H12C109.5N9—C25—C23107.39 (16)
O8—C13—C18124.4 (2)O4—C26—N10129.17 (19)
O8—C13—C14115.9 (2)O4—C26—N9123.75 (19)
C18—C13—C14119.8 (2)N10—C26—N9107.08 (17)
C15—C14—C13120.5 (2)N9—C27—C28111.25 (18)
C15—C14—H14119.7N9—C27—H27A109.4
C13—C14—H14119.7C28—C27—H27A109.4
C14—C15—C16119.6 (2)N9—C27—H27B109.4
C14—C15—H15120.2C28—C27—H27B109.4
C16—C15—H15120.2H27A—C27—H27B108.0
C17—C16—C15119.9 (2)O3—C28—C27106.35 (18)
C17—C16—S1119.78 (16)O3—C28—H28A110.5
C15—C16—S1120.32 (16)C27—C28—H28A110.5
C18—C17—C16120.7 (2)O3—C28—H28B110.5
C18—C17—H17119.6C27—C28—H28B110.5
C16—C17—H17119.6H28A—C28—H28B108.7
C17—C18—C13119.5 (2)O3—C29—C30124.4 (2)
C17—C18—H18120.3O3—C29—C34115.19 (19)
C13—C18—H18120.3C30—C29—C34120.3 (2)
N11—C19—C20110.81 (15)C29—C30—C31119.4 (2)
N11—C19—C24108.26 (15)C29—C30—H30120.3
C20—C19—C24111.53 (16)C31—C30—H30120.3
N11—C19—H19108.7C32—C31—C30118.5 (2)
C20—C19—H19108.7C32—C31—H31120.7
C24—C19—H19108.7C30—C31—H31120.7
C19—C20—C21110.55 (16)C33—C32—C31123.3 (2)
C19—C20—H20A109.5C33—C32—F2118.6 (3)
C21—C20—H20A109.5C31—C32—F2118.0 (3)
C19—C20—H20B109.5C32—C33—C34118.1 (3)
C21—C20—H20B109.5C32—C33—H33121.0
H20A—C20—H20B108.1C34—C33—H33121.0
C22—C21—C20111.87 (17)C33—C34—C29120.3 (2)
C22—C21—H21A109.2C33—C34—H34119.8
C20—C21—H21A109.2C29—C34—H34119.8
C22—C21—H21B109.2
O7—S1—N11—C1960.56 (16)N10—C23—C24—C1972.4 (2)
O6—S1—N11—C19170.97 (14)C25—C23—C24—C19178.57 (15)
C16—S1—N11—C1955.41 (16)C22—C23—C24—C1954.9 (2)
C12—O8—C13—C182.9 (4)C26—N9—C25—O5178.3 (2)
C12—O8—C13—C14176.9 (3)C27—N9—C25—O512.4 (3)
O8—C13—C14—C15178.8 (2)C26—N9—C25—C233.5 (2)
C18—C13—C14—C151.0 (4)C27—N9—C25—C23165.77 (18)
C13—C14—C15—C160.3 (4)N10—C23—C25—O5175.12 (19)
C14—C15—C16—C171.2 (3)C22—C23—C25—O553.4 (3)
C14—C15—C16—S1179.56 (19)C24—C23—C25—O569.1 (2)
O7—S1—C16—C17166.69 (16)N10—C23—C25—N96.72 (19)
O6—S1—C16—C1736.52 (19)C22—C23—C25—N9128.47 (17)
N11—S1—C16—C1776.62 (18)C24—C23—C25—N9109.10 (17)
O7—S1—C16—C1514.9 (2)C23—N10—C26—O4173.8 (2)
O6—S1—C16—C15145.07 (18)C23—N10—C26—N96.5 (2)
N11—S1—C16—C15101.79 (19)C25—N9—C26—O4178.7 (2)
C15—C16—C17—C180.9 (3)C27—N9—C26—O49.1 (3)
S1—C16—C17—C18179.27 (17)C25—N9—C26—N101.6 (2)
C16—C17—C18—C130.4 (3)C27—N9—C26—N10171.25 (17)
O8—C13—C18—C17178.5 (2)C25—N9—C27—C2892.0 (2)
C14—C13—C18—C171.3 (4)C26—N9—C27—C2876.1 (2)
S1—N11—C19—C20125.10 (15)C29—O3—C28—C27179.60 (18)
S1—N11—C19—C24112.29 (16)N9—C27—C28—O355.9 (2)
N11—C19—C20—C21176.69 (16)C28—O3—C29—C3020.0 (3)
C24—C19—C20—C2156.0 (2)C28—O3—C29—C34162.7 (2)
C19—C20—C21—C2255.3 (2)O3—C29—C30—C31176.7 (2)
C20—C21—C22—C2354.9 (2)C34—C29—C30—C310.4 (4)
C26—N10—C23—C258.2 (2)C29—C30—C31—C320.3 (4)
C26—N10—C23—C22129.10 (19)C30—C31—C32—C330.2 (5)
C26—N10—C23—C24105.47 (19)C30—C31—C32—F2179.4 (3)
C21—C22—C23—N1071.3 (2)C31—C32—C33—C340.3 (5)
C21—C22—C23—C25174.89 (16)F2—C32—C33—C34179.4 (3)
C21—C22—C23—C2454.1 (2)C32—C33—C34—C290.4 (4)
N11—C19—C24—C23178.48 (15)O3—C29—C34—C33176.9 (2)
C20—C19—C24—C2356.3 (2)C30—C29—C34—C330.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O5i0.862.082.924 (2)168
N11—H11···O6ii0.862.392.991 (3)127
C20—H20A···O4iii0.972.513.377 (3)148
C31—H31···O4iv0.932.483.327 (3)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H26FN3O6S
Mr491.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.926 (5), 11.025 (5), 18.508 (5)
β (°) 97.271 (5)
V3)2413.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO RED; Oxford Diffraction, 2010)
Tmin, Tmax0.771, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21931, 4240, 3435
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.04
No. of reflections4240
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.50

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2010), CrysAlis PRO RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O5i0.862.082.924 (2)168.00
N11—H11···O6ii0.862.392.991 (3)127.00
C20—H20A···O4iii0.972.513.377 (3)148.00
C31—H31···O4iv0.932.483.327 (3)152.00
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help with the data collection.

References

First citationBamford, M. J., et al. (2005). Bioorg. Med. Chem. Lett. 15, 3402–3406.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCartwright, M. W., Sandford, G., Bousbaa, J., Yufit, D. S., Howard, J. A. K., Christopher, J. A. & Miller, D. D. (2007). Tetrahedron, 63, 7027–7035.  Web of Science CSD CrossRef CAS Google Scholar
First citationCollins, I. (2000). J. Chem. Soc. Perkin Trans. 1 pp. 2845–2861.  Google Scholar
First citationEldrup, A. B., et al. (2004). J. Med. Chem. 47, 5284–5297.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKiselyov, A. S., Semenova, M., Semenov, V. V. & Piatnitski, E. (2006). Bioorg. Med. Chem. Lett. 16, 1726–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO CCD and CrysAlis PRO RED . Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPuerstinger, G., Paeshuyse, J., Herdewijn, P., Rozenski, J., Clercq, D. & Neyts, J. (2006). Bioorg. Med. Chem. Lett. 16, 5345–5349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSakthivel, K. & Cook, P. D. (2005). Tetrahedron Lett. 46, 3883–3887.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWarshakoon, N. C., Wu, S., Boyer, A., Kawamoto, R., Sheville, J., Renock, S., Xu, K., Pokross, M., Evdokimov, A. G., Walter, R. & Mekel, M. (2006). Bioorg. Med. Chem. Lett. 16, 5598–5601.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o194-o195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds