metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m33-m34

Bis(tetra­phenyl­phospho­nium) bis­­[N-(tri­fluoro­methyl­sulfon­yl)di­thio­carbimato(2−)-κ2S,S′]zincate(II)

aDepartamento de Química – UFV, Viçosa MG, Brazil, and bInstituto de Química – UFU, Uberlândia, MG, Brazil
*Correspondence e-mail: silvana@ufu.br

(Received 23 November 2011; accepted 2 December 2011; online 10 December 2011)

The title salt, (C24H20P)2[Zn(C2F3NO2S3)2], consists of a complex dianion and two tetra­phenyl­phospho­nium cations. The ZnII ion displays a distorted tetra­hedral coordination environment with four S atoms from two S,S′-chelated N-(trifluoro­methyl­sulfonyl­)dithio­carbimate anions. In the crystal, besides the ionic inter­action of the oppositely charged ions, inter­molecular C—H⋯O inter­actions between cations and anions are observed. One of the cations inter­acts with an inversion-related equivalent by ππ stacking between phenyl rings, with a centroid–centroid distance of 3.932 (4) Å.

Related literature

For the anti­fungal and vulcanization activities and crystal structures of dithio­carbimato complexes, see: Amim et al. (2011[Amim, R. S., Oliveira, M. R. L., Janczak, J., Rubinger, M. M. M., Vieira, L. M. M., Alves, L. C. & Zambolim, L. (2011). Polyhedron, 30, 683-689.]); Alves et al. (2009[Alves, L. C., Rubinger, M. M. M., Lindemann, R. H., Perpétuo, G. J., Janczak, J., Miranda, L. D. L., Zambolim, L. & Oliveira, M. R. L. (2009). J. Inorg. Biochem. 103, 1045-1053.]); Mariano et al. (2007[Mariano, R. M., Oliveira, M. R. L., Rubinger, M. M. M. & Visconte, L. L. Y. (2007). Eur. Polym. J. 43, 4706-4711.]); Oliveira et al. (2007[Oliveira, M. R. L., Perpétuo, G. J., Janczak, J. & Rubinger, M. M. M. (2007). Polyhedron, 26, 163-168.]); Perpétuo et al. (2003[Perpétuo, G. J., Oliveira, M. R. L., Janczak, J., Vieira, H. P., Amaral, F. F. & De Bellis, V. M. (2003). Polyhedron, 22, 3355-3362.]). For further synthetic details, see: Franca et al. (2006[Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119-2126.]). For other literature related to fungicides, see: Hogarth (2005[Hogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71-561.]).

[Scheme 1]

Experimental

Crystal data
  • (C24H20P)2[Zn(C2F3NO2S3)2]

  • Mr = 1190.53

  • Monoclinic, P 21 /c

  • a = 8.8461 (1) Å

  • b = 29.1869 (5) Å

  • c = 20.6963 (3) Å

  • β = 93.578 (1)°

  • V = 5333.17 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 295 K

  • 0.42 × 0.18 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.758, Tmax = 0.950

  • 57739 measured reflections

  • 11977 independent reflections

  • 8307 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.169

  • S = 1.05

  • 11977 reflections

  • 646 parameters

  • H-atom parameters constrained

  • Δρmax = 1.18 e Å−3

  • Δρmin = −1.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn—S1 2.3346 (10)
Zn—S2 2.3340 (10)
Zn—S4 2.3376 (9)
Zn—S5 2.3566 (10)
S2—Zn—S1 77.84 (3)
S4—Zn—S5 77.63 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 0.93 2.68 3.424 (4) 138
C31—H31⋯O4 0.93 2.62 3.470 (4) 153
C33—H33⋯O2i 0.93 2.47 3.283 (4) 145
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

We became interested in the syntheses and characterization of dithiocarbimato-metal complexes due to their similarities with dithiocarbamato complexes, which are important fungicides (Hogarth, 2005). While the dithiocarbamato- metal(II) are neutral substances, the analogous dithiocarbimato-complexes are necessarily anionic species. Thus, the choice of metallic ion, active counter ions or the use of different R groups on the dithiocarbimate structures could improve and/or modulate the antifungal activity.

The title complex is a new member of the class of Zn complexes with general formula [Zn(RSO2NCS2)2]2- (Amim et al., 2011; Alves et al., 2009; Mariano et al., 2007; Perpétuo et al., 2003). The literature describes only one complex of this class having an alkyl group (methyl) attached to the SO2 moiety (Oliveira et al., 2007). The asymmetric unit of the title compound is shown in Fig. 1, and consists of one [Zn(CF3SO2NCS2)2]2- anion and two Ph4P+ cations. The ZnII ion is coordinated by two S,S'-chelated N-trifluoromethylsulfonyldithiocarbimate ligands, resulting in a slightly distorted ZnS4 tetrahedral geometry. Due to the formation of the two ZnS2C four membered rings, the two S—Zn—S angles containing both sulfur atoms of the same ligand are significantly smaller than those containing the sulfur atoms from two ligands (Table 1). The dihedral angle between the two ZnS2C four membered rings [87.40 (4)°] is greater than that found in the salt (Ph4P)2[Zn(CH3SO2NCS2)2] of 79.1 (1)° (Oliveira et al., 2007). The C—S [average value of 1.731 Å] and CN bond distances [1.315 (4) and 1.314 (4) Å] have double bond character. This behavior indicates that the electron density is delocalized over the entire NCS2 moiety. The S1–C1–N1 and S5–C3–N2 angles are significantly greater than S2–C1–N1 and S4–C3–N2 due to the repulsive interactions between the two SO2CF3 groups and the S1 and S5 atoms, respectively, which are cis in relation to the C1–N1 and C3–N2 bonds. Similar behavior is observed for other zinc complexes with dithiocarbimato ligands (Amim et al., 2011; Alves et al., 2009; Oliveira et al., 2007; Perpétuo et al., 2003). The torsion angles of C1–N1–S3–C2 and C3–N2–S6–C4 describing the conformation of the dithiocarbimato ligands are -175.9 (3)° and 180.0 (3)°, respectively. These angles are -67.1 (2)° and 159.6 (2)° in the compound (Ph4P)2[Zn(CH3SO2NCS2)2] (Oliveira et al., 2007), probably due to the larger size of the CF3 group and the intermolecular interaction present in the title compound.

In both tetraphenylphosphonium cations, the P–C bond lengths range from 1.785 (3) to 1.803 (3) Å, the C–P–C angles range from 106.6 (2) to 112.1 (1)°, and the P atoms display slightly distorted tetrahedral geometry. The arrangement of molecules is mainly determined by the electrostatic interactions between oppositely charged units. Moreover, there are intermolecular C—H···O interactions between cations and anions (Table 2) and π-π stacking between phenyl rings on inversion related (1-x, -y, 2-z) cations.

Related literature top

For the antifungal and vulcanization activities and crystal structures of dithiocarbimato complexes, see: Amim et al. (2011); Alves et al. (2009); Mariano et al. (2007); Oliveira et al. (2007); Perpétuo et al. (2003). For further synthetic details, see: Franca et al. (2006). For other literature related to fungicides, see: Hogarth (2005).

Experimental top

The potassium trifluoromethylsulfonyldithiocarbimate dihydrate was prepared in dimethylformamide from trifluoromethanesulfonamide as described in the literature (Franca et al., 2006). The title compound was prepared in 1:1 (10 ml) methanol:water by the reaction of zinc acetate dihydrate (1.0 mmol) with trifluoromethylsulfonyldithiocarbimate dihydrate (2.0 mmol) and tetraphenylphosphanium chloride (2.0 mmol). The reaction mixture was stirred for 1 h at room temperature. The white solid obtained was filtered, washed with distilled water and dried under reduced pressure. The title compound is insoluble in water but soluble in chloroform, methanol and dichloromethane. Suitable crystals were obtained after slow evaporation of the solution in dichloromethene:ethanol 2:1 mixture. M.p. 161.5–163.3 °C. IR (selected bands, cm-1): 1395, 1378 v(CN); 1315, 1183 (vCF3), 1298 vas(SO2); 1110 vsym(SO2); 951 vas(CS2) and 323 v(ZnS). 13C NMR (dithiocarbimate anion signals) (δ): 119.3 (q, CF3, J = 317,2 Hz), 226.3 (s, CN). All spectra (IR, 1H NMR and 13C NMR) showed the expected signals for the tetraphenylphosphonium cation.

Refinement top

H atoms were geometrically positioned (C–H 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq of the parent atom. Anisotropic displacement parameters were made equal for the S3, O2 and O1 atoms, using the SHELXL-97 EADP constraint. Reflections (-1 1 2) and (0 4 2) were omitted because they were partially obscured by the beamstop.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Bis(tetraphenylphosphonium) bis[N-(trifluoromethylsulfonyl)dithiocarbimato(2-)- κ2S,S']zincate(II) top
Crystal data top
(C24H20P)2[Zn(C2F3NO2S3)2]F(000) = 2432
Mr = 1190.53Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.8461 (1) ÅCell parameters from 80040 reflections
b = 29.1869 (5) Åθ = 2.9–27.5°
c = 20.6963 (3) ŵ = 0.82 mm1
β = 93.578 (1)°T = 295 K
V = 5333.17 (13) Å3Prism, colourless
Z = 40.42 × 0.18 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
11977 independent reflections
Radiation source: Enraf Nonius FR5908307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.9°
CCD rotation images, thick slices scansh = 117
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 3737
Tmin = 0.758, Tmax = 0.950l = 2626
57739 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0872P)2 + 2.420P]
where P = (Fo2 + 2Fc2)/3
11977 reflections(Δ/σ)max = 0.003
646 parametersΔρmax = 1.18 e Å3
0 restraintsΔρmin = 1.66 e Å3
Crystal data top
(C24H20P)2[Zn(C2F3NO2S3)2]V = 5333.17 (13) Å3
Mr = 1190.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8461 (1) ŵ = 0.82 mm1
b = 29.1869 (5) ÅT = 295 K
c = 20.6963 (3) Å0.42 × 0.18 × 0.12 mm
β = 93.578 (1)°
Data collection top
Nonius KappaCCD
diffractometer
11977 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
8307 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.950Rint = 0.082
57739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.05Δρmax = 1.18 e Å3
11977 reflectionsΔρmin = 1.66 e Å3
646 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.76875 (4)0.258126 (13)1.300410 (19)0.05905 (14)
S10.76765 (13)0.32502 (3)1.36222 (5)0.0744 (3)
S20.89252 (11)0.30995 (3)1.23596 (4)0.0636 (2)
S30.88481 (12)0.42771 (3)1.34592 (5)0.0706 (2)
S40.57897 (9)0.20559 (3)1.26862 (5)0.0615 (2)
S50.87243 (10)0.18826 (3)1.33924 (5)0.0658 (2)
S60.77346 (10)0.08409 (3)1.33543 (4)0.0600 (2)
P10.58019 (9)0.36494 (3)1.07700 (4)0.0529 (2)
P20.41864 (8)0.12861 (3)1.04277 (4)0.04373 (18)
F10.8570 (4)0.48605 (10)1.25094 (14)0.1171 (10)
F21.0842 (3)0.47099 (9)1.28085 (14)0.1085 (9)
F30.9532 (4)0.51320 (8)1.33994 (13)0.1030 (9)
F40.6206 (4)0.03089 (10)1.25260 (17)0.1194 (10)
F50.7129 (4)0.00242 (9)1.33781 (18)0.1227 (11)
F60.5171 (3)0.03994 (10)1.34194 (19)0.1285 (11)
N10.9004 (3)0.39051 (10)1.29069 (13)0.0605 (7)
N20.6657 (3)0.12278 (9)1.30365 (13)0.0559 (6)
O10.7346 (3)0.43889 (9)1.36095 (12)0.0706 (2)
O20.9950 (3)0.42280 (8)1.39932 (12)0.0706 (2)
O30.7885 (4)0.08521 (10)1.40437 (13)0.0839 (8)
O40.9063 (3)0.07468 (9)1.30165 (13)0.0758 (7)
C10.8577 (3)0.34775 (11)1.29750 (15)0.0537 (7)
C20.9492 (5)0.47687 (14)1.3012 (2)0.0765 (11)
C30.7047 (3)0.16624 (11)1.30466 (14)0.0503 (7)
C40.6486 (5)0.03583 (14)1.3155 (3)0.0853 (12)
C50.4940 (4)0.36160 (13)1.15287 (17)0.0638 (9)
C60.3858 (6)0.32851 (19)1.1625 (2)0.0986 (15)
H60.36160.30691.13050.118*
C70.3137 (7)0.3277 (3)1.2198 (3)0.128 (2)
H70.24190.30521.22680.153*
C80.3489 (7)0.3605 (3)1.2668 (3)0.125 (2)
H80.29720.36081.30460.151*
C90.4583 (6)0.3920 (2)1.2581 (2)0.1071 (17)
H90.48460.4131.29080.129*
C100.5303 (4)0.39325 (15)1.20132 (18)0.0744 (10)
H100.60370.41541.19530.089*
C110.6968 (4)0.31543 (11)1.06493 (16)0.0558 (8)
C120.6925 (4)0.27720 (12)1.10471 (17)0.0664 (9)
H120.62420.27591.13710.08*
C130.7902 (6)0.24120 (13)1.0960 (2)0.0816 (13)
H130.78740.21571.12280.098*
C140.8906 (6)0.24230 (15)1.0487 (3)0.0889 (14)
H140.95620.21781.04360.107*
C150.8946 (5)0.27990 (17)1.0084 (2)0.0878 (12)
H150.96170.28050.97550.105*
C160.7991 (4)0.31657 (14)1.01673 (18)0.0693 (9)
H160.80340.34210.990.083*
C170.7020 (4)0.41366 (11)1.07582 (15)0.0537 (7)
C180.8430 (4)0.41156 (14)1.11035 (18)0.0672 (9)
H180.87310.38511.13260.081*
C190.9370 (5)0.44945 (15)1.1109 (2)0.0793 (11)
H191.03050.44851.13410.095*
C200.8941 (6)0.48820 (16)1.0781 (2)0.0939 (14)
H200.95860.51341.07870.113*
C210.7568 (6)0.49019 (16)1.0441 (3)0.1064 (17)
H210.72810.51671.02160.128*
C220.6601 (5)0.45280 (13)1.0432 (2)0.0794 (11)
H220.56640.45431.02030.095*
C230.4320 (3)0.37039 (11)1.01393 (16)0.0536 (7)
C240.2849 (4)0.38278 (15)1.0277 (2)0.0750 (10)
H240.26150.38791.07030.09*
C250.1748 (4)0.38742 (15)0.9783 (2)0.0790 (11)
H250.07680.39530.98790.095*
C260.2071 (4)0.38068 (13)0.9152 (2)0.0698 (10)
H260.13160.38390.88220.084*
C270.3520 (4)0.36912 (14)0.90089 (19)0.0698 (9)
H270.37480.36490.8580.084*
C280.4642 (4)0.36372 (12)0.95011 (16)0.0616 (8)
H280.56170.35560.94010.074*
C290.6183 (3)0.12592 (9)1.06577 (13)0.0418 (6)
C300.6682 (3)0.12508 (10)1.13043 (14)0.0475 (6)
H300.59960.1291.16230.057*
C310.8211 (3)0.11840 (11)1.14776 (15)0.0525 (7)
H310.85530.11731.19110.063*
C320.9212 (3)0.11350 (11)1.09979 (16)0.0527 (7)
H321.02340.10871.11120.063*
C330.8732 (3)0.11551 (11)1.03584 (16)0.0528 (7)
H330.94270.11271.00420.063*
C340.7213 (3)0.12172 (11)1.01815 (15)0.0507 (7)
H340.68830.12310.97460.061*
C350.3211 (3)0.13903 (11)1.11472 (15)0.0510 (7)
C360.2516 (4)0.18093 (13)1.12335 (18)0.0625 (8)
H360.25260.20331.09140.075*
C370.1799 (4)0.18924 (16)1.1806 (2)0.0781 (12)
H370.13450.21751.18710.094*
C380.1766 (4)0.15591 (19)1.22685 (19)0.0811 (13)
H380.1260.16141.26420.097*
C390.2459 (4)0.11501 (17)1.21909 (17)0.0741 (11)
H390.24390.09291.25140.089*
C400.3192 (3)0.10597 (13)1.16364 (15)0.0588 (8)
H400.36730.0781.15880.071*
C410.3778 (3)0.17355 (10)0.98562 (14)0.0489 (7)
C420.4799 (4)0.20877 (11)0.97580 (18)0.0634 (9)
H420.57290.20950.99940.076*
C430.4427 (5)0.24267 (13)0.9309 (2)0.0813 (12)
H430.51160.26590.92380.098*
C440.3046 (5)0.24214 (14)0.8969 (2)0.0821 (12)
H440.27970.26520.86720.099*
C450.2028 (5)0.20768 (15)0.90656 (19)0.0764 (11)
H450.10870.20790.88380.092*
C460.2388 (4)0.17285 (13)0.94965 (17)0.0637 (9)
H460.1710.1490.95480.076*
C470.3599 (3)0.07588 (10)1.00384 (14)0.0472 (6)
C480.2587 (4)0.04559 (11)1.02871 (16)0.0559 (7)
H480.21660.05191.06780.067*
C490.2205 (4)0.00612 (12)0.99541 (19)0.0668 (9)
H490.15150.01411.0120.08*
C500.2826 (4)0.00369 (12)0.93823 (19)0.0652 (9)
H500.2570.03070.91640.078*
C510.3832 (4)0.02640 (14)0.91288 (19)0.0718 (10)
H510.42560.01970.8740.086*
C520.4205 (4)0.06620 (13)0.94506 (17)0.0670 (9)
H520.48680.08680.92750.08*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0568 (2)0.0545 (2)0.0660 (3)0.00555 (17)0.00531 (18)0.00531 (17)
S10.0976 (7)0.0628 (5)0.0662 (6)0.0187 (5)0.0324 (5)0.0122 (4)
S20.0715 (6)0.0615 (5)0.0595 (5)0.0087 (4)0.0170 (4)0.0105 (4)
S30.0793 (5)0.0670 (5)0.0670 (5)0.0189 (4)0.0169 (4)0.0131 (4)
S40.0452 (4)0.0540 (5)0.0840 (6)0.0023 (3)0.0067 (4)0.0026 (4)
S50.0505 (5)0.0657 (5)0.0792 (6)0.0007 (4)0.0113 (4)0.0004 (4)
S60.0575 (5)0.0567 (5)0.0661 (5)0.0069 (4)0.0063 (4)0.0033 (4)
P10.0490 (4)0.0558 (5)0.0538 (5)0.0078 (4)0.0028 (3)0.0004 (4)
P20.0310 (3)0.0516 (4)0.0485 (4)0.0019 (3)0.0015 (3)0.0016 (3)
F10.167 (3)0.0894 (18)0.0918 (18)0.0078 (18)0.0169 (19)0.0137 (14)
F20.114 (2)0.0865 (17)0.131 (2)0.0304 (16)0.0558 (18)0.0042 (16)
F30.149 (3)0.0613 (13)0.0995 (18)0.0193 (15)0.0172 (17)0.0187 (12)
F40.129 (2)0.0855 (18)0.139 (3)0.0078 (17)0.028 (2)0.0277 (17)
F50.119 (2)0.0566 (14)0.191 (3)0.0091 (14)0.003 (2)0.0182 (17)
F60.0822 (18)0.0841 (18)0.223 (4)0.0127 (15)0.042 (2)0.006 (2)
N10.0680 (17)0.0590 (16)0.0557 (15)0.0102 (13)0.0132 (13)0.0067 (12)
N20.0491 (14)0.0513 (15)0.0670 (17)0.0027 (11)0.0029 (12)0.0022 (12)
O10.0793 (5)0.0670 (5)0.0670 (5)0.0189 (4)0.0169 (4)0.0131 (4)
O20.0793 (5)0.0670 (5)0.0670 (5)0.0189 (4)0.0169 (4)0.0131 (4)
O30.102 (2)0.0844 (18)0.0650 (16)0.0128 (16)0.0061 (14)0.0117 (13)
O40.0603 (14)0.0793 (17)0.0889 (18)0.0176 (13)0.0128 (13)0.0008 (14)
C10.0469 (16)0.0598 (19)0.0545 (18)0.0038 (14)0.0030 (14)0.0058 (14)
C20.097 (3)0.062 (2)0.072 (2)0.013 (2)0.008 (2)0.0079 (19)
C30.0435 (15)0.0583 (18)0.0501 (16)0.0029 (13)0.0112 (13)0.0027 (13)
C40.076 (3)0.060 (2)0.121 (4)0.006 (2)0.009 (3)0.003 (2)
C50.0565 (19)0.073 (2)0.062 (2)0.0092 (17)0.0054 (16)0.0066 (17)
C60.090 (3)0.122 (4)0.087 (3)0.046 (3)0.023 (2)0.005 (3)
C70.105 (4)0.172 (6)0.110 (4)0.057 (4)0.043 (3)0.012 (4)
C80.110 (4)0.183 (6)0.088 (4)0.026 (4)0.045 (3)0.007 (4)
C90.111 (4)0.142 (5)0.071 (3)0.010 (4)0.028 (3)0.014 (3)
C100.067 (2)0.096 (3)0.061 (2)0.006 (2)0.0141 (18)0.010 (2)
C110.0572 (18)0.0539 (17)0.0546 (18)0.0058 (14)0.0099 (15)0.0023 (14)
C120.077 (2)0.057 (2)0.062 (2)0.0165 (18)0.0148 (18)0.0035 (16)
C130.096 (3)0.052 (2)0.092 (3)0.008 (2)0.035 (3)0.0041 (19)
C140.089 (3)0.067 (3)0.106 (3)0.018 (2)0.030 (3)0.014 (2)
C150.083 (3)0.093 (3)0.086 (3)0.030 (2)0.000 (2)0.002 (2)
C160.072 (2)0.074 (2)0.062 (2)0.0119 (19)0.0010 (18)0.0075 (17)
C170.0503 (17)0.0574 (18)0.0541 (17)0.0048 (14)0.0080 (14)0.0067 (14)
C180.0544 (19)0.076 (2)0.071 (2)0.0137 (17)0.0012 (16)0.0005 (18)
C190.063 (2)0.090 (3)0.085 (3)0.026 (2)0.004 (2)0.012 (2)
C200.101 (3)0.076 (3)0.105 (3)0.038 (3)0.012 (3)0.008 (3)
C210.109 (4)0.063 (2)0.143 (5)0.025 (3)0.024 (3)0.016 (3)
C220.079 (3)0.061 (2)0.096 (3)0.0155 (19)0.011 (2)0.005 (2)
C230.0469 (16)0.0531 (17)0.0607 (19)0.0063 (13)0.0032 (14)0.0014 (14)
C240.0534 (19)0.095 (3)0.077 (2)0.0010 (19)0.0082 (18)0.008 (2)
C250.0465 (19)0.094 (3)0.096 (3)0.0001 (19)0.0016 (19)0.004 (2)
C260.056 (2)0.065 (2)0.085 (3)0.0047 (16)0.0183 (18)0.0004 (19)
C270.063 (2)0.079 (2)0.065 (2)0.0018 (18)0.0080 (17)0.0002 (18)
C280.0518 (18)0.071 (2)0.062 (2)0.0013 (16)0.0013 (15)0.0037 (16)
C290.0331 (12)0.0454 (14)0.0469 (15)0.0032 (11)0.0020 (11)0.0006 (12)
C300.0348 (13)0.0587 (17)0.0494 (16)0.0034 (12)0.0041 (12)0.0051 (13)
C310.0399 (14)0.0650 (19)0.0520 (17)0.0042 (13)0.0019 (13)0.0009 (14)
C320.0306 (13)0.0585 (18)0.069 (2)0.0038 (12)0.0005 (13)0.0011 (15)
C330.0365 (14)0.0634 (19)0.0599 (19)0.0062 (13)0.0134 (13)0.0071 (14)
C340.0394 (14)0.0643 (18)0.0487 (16)0.0062 (13)0.0043 (12)0.0005 (14)
C350.0295 (12)0.071 (2)0.0521 (17)0.0027 (13)0.0025 (12)0.0085 (15)
C360.0449 (16)0.072 (2)0.071 (2)0.0025 (15)0.0037 (15)0.0159 (17)
C370.0470 (19)0.104 (3)0.083 (3)0.0028 (19)0.0070 (18)0.037 (2)
C380.0469 (19)0.140 (4)0.058 (2)0.009 (2)0.0088 (16)0.025 (3)
C390.0489 (18)0.122 (3)0.0514 (19)0.011 (2)0.0017 (15)0.002 (2)
C400.0377 (15)0.085 (2)0.0541 (18)0.0022 (15)0.0026 (13)0.0011 (16)
C410.0399 (14)0.0518 (16)0.0545 (17)0.0022 (12)0.0009 (12)0.0022 (13)
C420.0588 (19)0.0536 (18)0.076 (2)0.0053 (15)0.0123 (17)0.0027 (16)
C430.086 (3)0.056 (2)0.100 (3)0.0090 (19)0.011 (2)0.019 (2)
C440.091 (3)0.070 (2)0.083 (3)0.012 (2)0.014 (2)0.014 (2)
C450.064 (2)0.086 (3)0.077 (3)0.012 (2)0.0208 (19)0.006 (2)
C460.0435 (16)0.071 (2)0.075 (2)0.0003 (15)0.0071 (16)0.0052 (18)
C470.0342 (13)0.0515 (16)0.0554 (17)0.0028 (12)0.0011 (12)0.0014 (13)
C480.0513 (17)0.0577 (18)0.0594 (18)0.0017 (14)0.0090 (14)0.0051 (15)
C490.067 (2)0.0517 (18)0.082 (2)0.0154 (16)0.0069 (19)0.0053 (17)
C500.068 (2)0.0477 (17)0.079 (2)0.0017 (15)0.0035 (19)0.0047 (16)
C510.067 (2)0.076 (2)0.073 (2)0.0100 (19)0.0159 (18)0.0179 (19)
C520.0578 (19)0.076 (2)0.068 (2)0.0235 (17)0.0161 (16)0.0166 (18)
Geometric parameters (Å, º) top
Zn—S12.3346 (10)C20—C211.366 (7)
Zn—S22.3340 (10)C20—H200.93
Zn—S42.3376 (9)C21—C221.386 (6)
Zn—S52.3566 (10)C21—H210.93
S1—C11.733 (3)C22—H220.93
S2—C11.727 (3)C23—C281.382 (5)
S3—O11.421 (3)C23—C241.397 (5)
S3—O21.435 (3)C24—C251.375 (5)
S3—N11.589 (3)C24—H240.93
S3—C21.818 (4)C25—C261.369 (6)
S4—C31.735 (3)C25—H250.93
S5—C31.730 (3)C26—C271.375 (5)
S6—O31.425 (3)C26—H260.93
S6—O41.431 (3)C27—C281.386 (5)
S6—N21.593 (3)C27—H270.93
S6—C41.821 (5)C28—H280.93
P1—C171.785 (3)C29—C301.383 (4)
P1—C51.790 (4)C29—C341.389 (4)
P1—C231.798 (3)C30—C311.391 (4)
P1—C111.802 (3)C30—H300.93
P2—C411.788 (3)C31—C321.379 (4)
P2—C351.793 (3)C31—H310.93
P2—C471.799 (3)C32—C331.366 (4)
P2—C291.802 (3)C32—H320.93
F1—C21.309 (5)C33—C341.383 (4)
F2—C21.303 (5)C33—H330.93
F3—C21.328 (4)C34—H340.93
F4—C41.319 (6)C35—C361.385 (5)
F5—C41.323 (5)C35—C401.400 (5)
F6—C41.321 (5)C36—C371.399 (5)
N1—C11.314 (4)C36—H360.93
N2—C31.314 (4)C37—C381.367 (7)
C5—C61.383 (5)C37—H370.93
C5—C101.386 (5)C38—C391.356 (6)
C6—C71.381 (7)C38—H380.93
C6—H60.93C39—C401.379 (5)
C7—C81.387 (8)C39—H390.93
C7—H70.93C40—H400.93
C8—C91.356 (8)C41—C421.391 (4)
C8—H80.93C41—C461.397 (4)
C9—C101.372 (6)C42—C431.382 (5)
C9—H90.93C42—H420.93
C10—H100.93C43—C441.372 (6)
C11—C121.389 (5)C43—H430.93
C11—C161.389 (5)C44—C451.373 (6)
C12—C131.380 (6)C44—H440.93
C12—H120.93C45—C461.377 (5)
C13—C141.362 (7)C45—H450.93
C13—H130.93C46—H460.93
C14—C151.381 (7)C47—C481.381 (4)
C14—H140.93C47—C521.389 (4)
C15—C161.381 (6)C48—C491.374 (5)
C15—H150.93C48—H480.93
C16—H160.93C49—C501.366 (5)
C17—C221.366 (5)C49—H490.93
C17—C181.400 (5)C50—C511.377 (5)
C18—C191.383 (5)C50—H500.93
C18—H180.93C51—C521.369 (5)
C19—C201.362 (7)C51—H510.93
C19—H190.93C52—H520.93
S2—Zn—S177.84 (3)C19—C20—C21120.2 (4)
S2—Zn—S4128.21 (4)C19—C20—H20119.9
S1—Zn—S4132.48 (4)C21—C20—H20119.9
S2—Zn—S5124.69 (4)C20—C21—C22120.1 (4)
S1—Zn—S5123.49 (4)C20—C21—H21119.9
S4—Zn—S577.63 (3)C22—C21—H21119.9
C1—S1—Zn83.04 (11)C17—C22—C21120.2 (4)
C1—S2—Zn83.17 (11)C17—C22—H22119.9
O1—S3—O2117.00 (15)C21—C22—H22119.9
O1—S3—N1116.02 (16)C28—C23—C24118.8 (3)
O2—S3—N1113.61 (16)C28—C23—P1119.8 (2)
O1—S3—C2104.9 (2)C24—C23—P1121.4 (3)
O2—S3—C2104.58 (19)C25—C24—C23120.0 (4)
N1—S3—C297.43 (17)C25—C24—H24120
C3—S4—Zn83.31 (11)C23—C24—H24120
C3—S5—Zn82.82 (11)C26—C25—C24121.0 (4)
O3—S6—O4117.73 (18)C26—C25—H25119.5
O3—S6—N2114.39 (16)C24—C25—H25119.5
O4—S6—N2115.02 (15)C25—C26—C27119.6 (3)
O3—S6—C4105.2 (2)C25—C26—H26120.2
O4—S6—C4104.2 (2)C27—C26—H26120.2
N2—S6—C496.67 (18)C26—C27—C28120.3 (4)
C17—P1—C5110.23 (16)C26—C27—H27119.9
C17—P1—C23109.44 (15)C28—C27—H27119.9
C5—P1—C23108.09 (16)C23—C28—C27120.3 (3)
C17—P1—C11106.60 (15)C23—C28—H28119.8
C5—P1—C11110.89 (17)C27—C28—H28119.8
C23—P1—C11111.59 (15)C30—C29—C34120.1 (3)
C41—P2—C35109.70 (15)C30—C29—P2120.3 (2)
C41—P2—C47106.90 (14)C34—C29—P2119.5 (2)
C35—P2—C47112.13 (14)C29—C30—C31119.9 (3)
C41—P2—C29111.16 (13)C29—C30—H30120.1
C35—P2—C29107.61 (13)C31—C30—H30120.1
C47—P2—C29109.39 (13)C32—C31—C30119.2 (3)
C1—N1—S3122.3 (2)C32—C31—H31120.4
C3—N2—S6121.9 (2)C30—C31—H31120.4
N1—C1—S2117.5 (2)C33—C32—C31121.2 (3)
N1—C1—S1126.6 (3)C33—C32—H32119.4
S2—C1—S1115.92 (19)C31—C32—H32119.4
F2—C2—F1108.0 (4)C32—C33—C34120.1 (3)
F2—C2—F3108.0 (4)C32—C33—H33120
F1—C2—F3108.0 (4)C34—C33—H33120
F2—C2—S3112.5 (3)C33—C34—C29119.6 (3)
F1—C2—S3111.5 (3)C33—C34—H34120.2
F3—C2—S3108.7 (3)C29—C34—H34120.2
N2—C3—S5125.6 (2)C36—C35—C40119.3 (3)
N2—C3—S4118.1 (2)C36—C35—P2119.8 (3)
S5—C3—S4116.24 (18)C40—C35—P2120.8 (2)
F4—C4—F6107.6 (4)C35—C36—C37119.4 (4)
F4—C4—F5107.6 (4)C35—C36—H36120.3
F6—C4—F5107.6 (4)C37—C36—H36120.3
F4—C4—S6112.5 (3)C38—C37—C36120.1 (4)
F6—C4—S6111.9 (3)C38—C37—H37120
F5—C4—S6109.4 (3)C36—C37—H37120
C6—C5—C10119.5 (4)C39—C38—C37120.9 (4)
C6—C5—P1120.1 (3)C39—C38—H38119.5
C10—C5—P1120.4 (3)C37—C38—H38119.5
C7—C6—C5119.8 (5)C38—C39—C40120.5 (4)
C7—C6—H6120.1C38—C39—H39119.8
C5—C6—H6120.1C40—C39—H39119.8
C6—C7—C8119.7 (5)C39—C40—C35119.8 (4)
C6—C7—H7120.2C39—C40—H40120.1
C8—C7—H7120.2C35—C40—H40120.1
C9—C8—C7120.5 (5)C42—C41—C46119.4 (3)
C9—C8—H8119.8C42—C41—P2122.2 (2)
C7—C8—H8119.8C46—C41—P2118.5 (2)
C8—C9—C10120.3 (5)C43—C42—C41119.8 (3)
C8—C9—H9119.9C43—C42—H42120.1
C10—C9—H9119.9C41—C42—H42120.1
C9—C10—C5120.3 (4)C44—C43—C42120.2 (4)
C9—C10—H10119.9C44—C43—H43119.9
C5—C10—H10119.9C42—C43—H43119.9
C12—C11—C16119.2 (3)C43—C44—C45120.3 (4)
C12—C11—P1121.7 (3)C43—C44—H44119.8
C16—C11—P1119.0 (3)C45—C44—H44119.8
C13—C12—C11119.6 (4)C44—C45—C46120.5 (4)
C13—C12—H12120.2C44—C45—H45119.8
C11—C12—H12120.2C46—C45—H45119.8
C14—C13—C12121.2 (4)C45—C46—C41119.7 (3)
C14—C13—H13119.4C45—C46—H46120.2
C12—C13—H13119.4C41—C46—H46120.2
C13—C14—C15119.7 (4)C48—C47—C52119.4 (3)
C13—C14—H14120.2C48—C47—P2123.8 (2)
C15—C14—H14120.2C52—C47—P2116.7 (2)
C14—C15—C16120.1 (4)C49—C48—C47119.7 (3)
C14—C15—H15119.9C49—C48—H48120.2
C16—C15—H15119.9C47—C48—H48120.2
C15—C16—C11120.2 (4)C50—C49—C48120.7 (3)
C15—C16—H16119.9C50—C49—H49119.7
C11—C16—H16119.9C48—C49—H49119.7
C22—C17—C18119.6 (3)C49—C50—C51120.1 (3)
C22—C17—P1121.8 (3)C49—C50—H50120
C18—C17—P1118.5 (3)C51—C50—H50120
C19—C18—C17119.1 (4)C52—C51—C50119.8 (3)
C19—C18—H18120.5C52—C51—H51120.1
C17—C18—H18120.5C50—C51—H51120.1
C20—C19—C18120.7 (4)C51—C52—C47120.3 (3)
C20—C19—H19119.6C51—C52—H52119.9
C18—C19—H19119.6C47—C52—H52119.9
S2—Zn—S1—C11.16 (11)C23—P1—C17—C18165.3 (3)
S4—Zn—S1—C1130.18 (11)C11—P1—C17—C1844.5 (3)
S5—Zn—S1—C1124.91 (11)C22—C17—C18—C190.3 (6)
S1—Zn—S2—C11.17 (11)P1—C17—C18—C19178.6 (3)
S4—Zn—S2—C1134.03 (11)C17—C18—C19—C200.5 (6)
S5—Zn—S2—C1123.66 (11)C18—C19—C20—C210.3 (7)
S2—Zn—S4—C3123.96 (10)C19—C20—C21—C220.2 (8)
S1—Zn—S4—C3125.12 (10)C18—C17—C22—C210.2 (6)
S5—Zn—S4—C30.72 (10)P1—C17—C22—C21179.1 (4)
S2—Zn—S5—C3127.47 (10)C20—C21—C22—C170.4 (8)
S1—Zn—S5—C3133.86 (10)C17—P1—C23—C2873.9 (3)
S4—Zn—S5—C30.72 (10)C5—P1—C23—C28166.0 (3)
O1—S3—N1—C165.2 (3)C11—P1—C23—C2843.8 (3)
O2—S3—N1—C174.6 (3)C17—P1—C23—C24103.9 (3)
C2—S3—N1—C1175.9 (3)C5—P1—C23—C2416.1 (3)
O3—S6—N2—C370.0 (3)C11—P1—C23—C24138.3 (3)
O4—S6—N2—C370.8 (3)C28—C23—C24—C251.0 (6)
C4—S6—N2—C3180.0 (3)P1—C23—C24—C25178.9 (3)
S3—N1—C1—S2175.78 (19)C23—C24—C25—C260.9 (7)
S3—N1—C1—S14.8 (5)C24—C25—C26—C270.1 (6)
Zn—S2—C1—N1177.8 (3)C25—C26—C27—C280.9 (6)
Zn—S2—C1—S11.71 (16)C24—C23—C28—C270.2 (5)
Zn—S1—C1—N1177.7 (3)P1—C23—C28—C27178.1 (3)
Zn—S1—C1—S21.71 (16)C26—C27—C28—C230.7 (6)
O1—S3—C2—F2176.8 (3)C41—P2—C29—C30129.3 (2)
O2—S3—C2—F259.5 (3)C35—P2—C29—C309.2 (3)
N1—S3—C2—F257.3 (3)C47—P2—C29—C30112.9 (2)
O1—S3—C2—F155.3 (3)C41—P2—C29—C3454.8 (3)
O2—S3—C2—F1179.0 (3)C35—P2—C29—C34175.0 (2)
N1—S3—C2—F164.2 (3)C47—P2—C29—C3463.0 (3)
O1—S3—C2—F363.6 (4)C34—C29—C30—C312.3 (4)
O2—S3—C2—F360.1 (4)P2—C29—C30—C31173.6 (2)
N1—S3—C2—F3176.9 (3)C29—C30—C31—C321.1 (5)
S6—N2—C3—S50.1 (4)C30—C31—C32—C330.6 (5)
S6—N2—C3—S4179.99 (16)C31—C32—C33—C341.2 (5)
Zn—S5—C3—N2179.0 (3)C32—C33—C34—C290.0 (5)
Zn—S5—C3—S41.06 (15)C30—C29—C34—C331.7 (5)
Zn—S4—C3—N2179.0 (2)P2—C29—C34—C33174.2 (2)
Zn—S4—C3—S51.07 (15)C41—P2—C35—C3610.6 (3)
O3—S6—C4—F4178.5 (3)C47—P2—C35—C36129.2 (2)
O4—S6—C4—F457.0 (3)C29—P2—C35—C36110.5 (3)
N2—S6—C4—F461.0 (3)C41—P2—C35—C40172.0 (2)
O3—S6—C4—F657.3 (4)C47—P2—C35—C4053.3 (3)
O4—S6—C4—F6178.3 (3)C29—P2—C35—C4067.0 (3)
N2—S6—C4—F660.3 (4)C40—C35—C36—C370.5 (5)
O3—S6—C4—F562.0 (4)P2—C35—C36—C37178.0 (3)
O4—S6—C4—F562.5 (4)C35—C36—C37—C381.1 (5)
N2—S6—C4—F5179.5 (3)C36—C37—C38—C391.9 (6)
C17—P1—C5—C6174.8 (4)C37—C38—C39—C401.1 (6)
C23—P1—C5—C655.3 (4)C38—C39—C40—C350.6 (5)
C11—P1—C5—C667.4 (4)C36—C35—C40—C391.3 (5)
C17—P1—C5—C102.4 (4)P2—C35—C40—C39178.8 (2)
C23—P1—C5—C10122.0 (3)C35—P2—C41—C42102.1 (3)
C11—P1—C5—C10115.4 (3)C47—P2—C41—C42136.1 (3)
C10—C5—C6—C70.8 (8)C29—P2—C41—C4216.8 (3)
P1—C5—C6—C7176.5 (5)C35—P2—C41—C4678.2 (3)
C5—C6—C7—C80.9 (10)C47—P2—C41—C4643.6 (3)
C6—C7—C8—C92.9 (11)C29—P2—C41—C46162.9 (3)
C7—C8—C9—C103.1 (10)C46—C41—C42—C430.2 (5)
C8—C9—C10—C51.3 (8)P2—C41—C42—C43179.9 (3)
C6—C5—C10—C90.7 (7)C41—C42—C43—C441.1 (6)
P1—C5—C10—C9176.6 (4)C42—C43—C44—C450.7 (7)
C17—P1—C11—C12131.2 (3)C43—C44—C45—C461.1 (7)
C5—P1—C11—C1211.2 (3)C44—C45—C46—C412.5 (6)
C23—P1—C11—C12109.4 (3)C42—C41—C46—C452.0 (5)
C17—P1—C11—C1645.4 (3)P2—C41—C46—C45178.3 (3)
C5—P1—C11—C16165.4 (3)C41—P2—C47—C48124.1 (3)
C23—P1—C11—C1674.1 (3)C35—P2—C47—C483.9 (3)
C16—C11—C12—C130.3 (5)C29—P2—C47—C48115.4 (3)
P1—C11—C12—C13176.2 (3)C41—P2—C47—C5255.2 (3)
C11—C12—C13—C140.3 (6)C35—P2—C47—C52175.4 (3)
C12—C13—C14—C150.4 (6)C29—P2—C47—C5265.3 (3)
C13—C14—C15—C161.2 (7)C52—C47—C48—C490.7 (5)
C14—C15—C16—C111.2 (7)P2—C47—C48—C49179.9 (3)
C12—C11—C16—C150.4 (5)C47—C48—C49—C500.6 (5)
P1—C11—C16—C15177.1 (3)C48—C49—C50—C510.9 (6)
C5—P1—C17—C22103.0 (3)C49—C50—C51—C520.1 (6)
C23—P1—C17—C2215.8 (4)C50—C51—C52—C471.4 (6)
C11—P1—C17—C22136.6 (3)C48—C47—C52—C511.7 (5)
C5—P1—C17—C1875.9 (3)P2—C47—C52—C51179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.683.424 (4)138
C31—H31···O40.932.623.470 (4)153
C33—H33···O2i0.932.473.283 (4)145
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C24H20P)2[Zn(C2F3NO2S3)2]
Mr1190.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.8461 (1), 29.1869 (5), 20.6963 (3)
β (°) 93.578 (1)
V3)5333.17 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.42 × 0.18 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.758, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
57739, 11977, 8307
Rint0.082
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.169, 1.05
No. of reflections11977
No. of parameters646
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.18, 1.66

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn—S12.3346 (10)Zn—S42.3376 (9)
Zn—S22.3340 (10)Zn—S52.3566 (10)
S2—Zn—S177.84 (3)S4—Zn—S577.63 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.683.424 (4)137.8
C31—H31···O40.932.623.470 (4)152.7
C33—H33···O2i0.932.473.283 (4)145.4
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank Professor Dr Javier Ellena of the IFSC, USP, Brazil, for the X-ray data collection. This work was supported financially by FAPEMIG and CAPES.

References

First citationAlves, L. C., Rubinger, M. M. M., Lindemann, R. H., Perpétuo, G. J., Janczak, J., Miranda, L. D. L., Zambolim, L. & Oliveira, M. R. L. (2009). J. Inorg. Biochem. 103, 1045–1053.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAmim, R. S., Oliveira, M. R. L., Janczak, J., Rubinger, M. M. M., Vieira, L. M. M., Alves, L. C. & Zambolim, L. (2011). Polyhedron, 30, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFranca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, J. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119–2126.  CAS Google Scholar
First citationHogarth, G. A. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationMariano, R. M., Oliveira, M. R. L., Rubinger, M. M. M. & Visconte, L. L. Y. (2007). Eur. Polym. J. 43, 4706–4711.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, M. R. L., Perpétuo, G. J., Janczak, J. & Rubinger, M. M. M. (2007). Polyhedron, 26, 163–168.  Web of Science CSD CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPerpétuo, G. J., Oliveira, M. R. L., Janczak, J., Vieira, H. P., Amaral, F. F. & De Bellis, V. M. (2003). Polyhedron, 22, 3355–3362.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m33-m34
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds