organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Chloro-N-[4-(methyl­sulfon­yl)benzyl­­idene]aniline

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 26 November 2011; accepted 13 December 2011; online 17 December 2011)

In the crystal structure of the title compound, C14H12ClNO2S, the mol­ecules display a trans conformation with respect to the C=N double bond. The dihedral angle between the methyl­sulfonyl benzene and chloro­benzene rings is 59.59 (8)°. The crystal packing is stabilized by weak C—H⋯O inter­actions and by ππ stacking inter­actions between inversion-related methyl­sulfonyl benzene rings [centroid–centroid distance = 3.8579 (11) Å].

Related literature

For background to the pharmacological properties of Schiff base compounds, see: Villar et al. (2004[Villar, R., Encio, I., Migliaccio, M., Gil, M. J. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963-968.]); Pandey et al. (1999[Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624-628.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]). For related structures, see: Qian & Cui (2009[Qian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3093.]); Qian & Liu (2010[Qian, S.-S. & Liu, T. (2010). Acta Cryst. E66, o18.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO2S

  • Mr = 293.77

  • Monoclinic, P 21 /n

  • a = 8.6206 (10) Å

  • b = 8.8748 (10) Å

  • c = 17.799 (2) Å

  • β = 94.972 (1)°

  • V = 1356.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.898, Tmax = 0.913

  • 11492 measured reflections

  • 3320 independent reflections

  • 2596 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.110

  • S = 1.04

  • 3320 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.56 3.126 (2) 120
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff base compounds have been of great interest for many years due to their wide range of biological activities. They have been reported to possess pharmacological activity, including anticancer (Villar et al., 2004), antibacterial (Pandey et al., 1999), and antifungal (Singh & Dash, 1988) properties. As an extension of our work on structural characterization of Schiff base compounds, we report here the crystal structure of the title compound (Fig. 1). All bond lengths are comparable to the values observed in closely related compounds (Qian & Cui, 2009; Qian & Liu, 2010). The title compound displays a trans-configuration with respect to the C=N double bond. The dihedral angle between the methylsulfonyl benzene and chlorobenzene rings is 59.59 (8)°. The crystal packing (Fig. 2) is stabilized by weak C—H···O interactions and by π-π stacking interactions of inversion-related (1-x, 1-y, 2-z) methylsulfonyl benzene rings [centroid-centroid distance = 3.8579 (11)Å].

Related literature top

For background to the pharmacological properties of Schiff base compounds, see: Villar et al. (2004); Pandey et al. (1999); Singh & Dash (1988). For related structures, see: Qian & Cui (2009); Qian & Liu (2010).

Experimental top

4-(Methylsulfonyl)benzaldehyde (0.184 g) and 4-chloroaniline (0.114 g) were dissolved in acetonitrile (20 ml). The mixture was stirred at room temperature for 15 min to give a clear yellow solution. After sitting for 5 days exposed to air, yellow block-shaped crystals were obtained at the bottom of the vessel.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å. They were treated as riding atoms, with Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound, viewed down the a axis.
(E)-4-Chloro-N-[4-(methylsulfonyl)benzylidene]aniline top
Crystal data top
C14H12ClNO2SF(000) = 608
Mr = 293.77Dx = 1.438 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3320 reflections
a = 8.6206 (10) Åθ = 2.3–28.3°
b = 8.8748 (10) ŵ = 0.43 mm1
c = 17.799 (2) ÅT = 296 K
β = 94.972 (1)°Block, yellow
V = 1356.6 (3) Å30.25 × 0.23 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3320 independent reflections
Radiation source: fine-focus sealed tube2596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 119
Tmin = 0.898, Tmax = 0.913k = 1111
11492 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.4568P]
where P = (Fo2 + 2Fc2)/3
3320 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C14H12ClNO2SV = 1356.6 (3) Å3
Mr = 293.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6206 (10) ŵ = 0.43 mm1
b = 8.8748 (10) ÅT = 296 K
c = 17.799 (2) Å0.25 × 0.23 × 0.21 mm
β = 94.972 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3320 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2596 reflections with I > 2σ(I)
Tmin = 0.898, Tmax = 0.913Rint = 0.040
11492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3320 reflectionsΔρmin = 0.40 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.44038 (7)0.87940 (7)0.77377 (3)0.06397 (19)
S10.25645 (5)0.66162 (5)1.12920 (2)0.03972 (14)
O10.12146 (16)0.67285 (18)1.07669 (8)0.0580 (4)
O20.27398 (19)0.52896 (17)1.17454 (9)0.0644 (4)
N10.85437 (18)0.84443 (17)0.92329 (9)0.0414 (3)
C11.2692 (2)0.8676 (2)0.81840 (10)0.0403 (4)
C21.1903 (2)0.7325 (2)0.81801 (10)0.0431 (4)
H21.22860.64870.79430.052*
C31.0540 (2)0.7226 (2)0.85314 (10)0.0407 (4)
H31.00040.63160.85320.049*
C40.9963 (2)0.84819 (19)0.88855 (9)0.0370 (4)
C51.0771 (2)0.9831 (2)0.88774 (10)0.0431 (4)
H51.03841.06790.91050.052*
C61.2147 (2)0.9930 (2)0.85339 (11)0.0447 (4)
H61.26971.08320.85390.054*
C70.8294 (2)0.7307 (2)0.96360 (9)0.0386 (4)
H70.90460.65540.96930.046*
C80.68621 (19)0.71368 (19)1.00167 (9)0.0358 (4)
C90.6839 (2)0.6093 (2)1.05955 (11)0.0475 (4)
H90.77110.54981.07220.057*
C100.5532 (2)0.5927 (2)1.09869 (11)0.0465 (4)
H100.55260.52321.13780.056*
C110.42363 (19)0.68041 (18)1.07919 (9)0.0350 (3)
C120.4227 (2)0.7835 (2)1.02035 (10)0.0434 (4)
H120.33420.84041.00670.052*
C130.5543 (2)0.8005 (2)0.98253 (10)0.0431 (4)
H130.55510.87080.94380.052*
C140.2630 (3)0.8207 (2)1.18768 (12)0.0544 (5)
H14A0.17600.81911.21790.082*
H14B0.25860.91021.15720.082*
H14C0.35820.82011.22000.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0498 (3)0.0688 (4)0.0779 (4)0.0003 (2)0.0313 (3)0.0035 (3)
S10.0346 (2)0.0412 (2)0.0442 (2)0.00697 (17)0.00761 (17)0.00031 (17)
O10.0350 (7)0.0783 (10)0.0600 (8)0.0089 (7)0.0000 (6)0.0115 (7)
O20.0652 (10)0.0534 (9)0.0780 (10)0.0046 (7)0.0263 (8)0.0217 (8)
N10.0337 (8)0.0431 (8)0.0484 (8)0.0006 (6)0.0101 (6)0.0019 (6)
C10.0345 (9)0.0471 (10)0.0403 (9)0.0007 (7)0.0079 (7)0.0022 (7)
C20.0439 (10)0.0415 (9)0.0452 (9)0.0039 (8)0.0104 (8)0.0045 (8)
C30.0399 (10)0.0380 (9)0.0447 (9)0.0031 (7)0.0065 (7)0.0027 (7)
C40.0315 (9)0.0407 (9)0.0389 (8)0.0007 (7)0.0037 (7)0.0004 (7)
C50.0433 (10)0.0391 (9)0.0479 (10)0.0000 (7)0.0102 (8)0.0064 (7)
C60.0448 (10)0.0403 (9)0.0498 (10)0.0082 (8)0.0093 (8)0.0007 (8)
C70.0324 (9)0.0427 (9)0.0406 (8)0.0014 (7)0.0033 (7)0.0034 (7)
C80.0331 (9)0.0368 (8)0.0377 (8)0.0001 (7)0.0046 (7)0.0026 (7)
C90.0393 (10)0.0498 (11)0.0540 (11)0.0126 (8)0.0065 (8)0.0127 (8)
C100.0436 (10)0.0471 (10)0.0496 (10)0.0074 (8)0.0090 (8)0.0161 (8)
C110.0323 (8)0.0356 (8)0.0371 (8)0.0016 (6)0.0037 (6)0.0003 (6)
C120.0333 (9)0.0470 (10)0.0500 (10)0.0062 (7)0.0047 (7)0.0123 (8)
C130.0387 (9)0.0458 (10)0.0451 (9)0.0040 (7)0.0060 (7)0.0130 (8)
C140.0500 (12)0.0614 (13)0.0531 (11)0.0075 (9)0.0120 (9)0.0155 (10)
Geometric parameters (Å, º) top
Cl1—C11.7389 (18)C6—H60.9300
S1—O21.4281 (15)C7—C81.467 (2)
S1—O11.4315 (15)C7—H70.9300
S1—C141.752 (2)C8—C91.387 (2)
S1—C111.7662 (17)C8—C131.391 (2)
N1—C71.267 (2)C9—C101.383 (3)
N1—C41.418 (2)C9—H90.9300
C1—C21.377 (3)C10—C111.381 (3)
C1—C61.378 (3)C10—H100.9300
C2—C31.382 (2)C11—C121.390 (2)
C2—H20.9300C12—C131.377 (2)
C3—C41.393 (2)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—C51.386 (2)C14—H14A0.9600
C5—C61.384 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
O2—S1—O1117.81 (10)N1—C7—H7118.8
O2—S1—C14109.41 (11)C8—C7—H7118.8
O1—S1—C14108.32 (10)C9—C8—C13119.20 (16)
O2—S1—C11108.16 (9)C9—C8—C7118.61 (15)
O1—S1—C11108.49 (8)C13—C8—C7122.18 (15)
C14—S1—C11103.73 (9)C10—C9—C8120.66 (17)
C7—N1—C4117.42 (15)C10—C9—H9119.7
C2—C1—C6121.20 (17)C8—C9—H9119.7
C2—C1—Cl1119.21 (14)C11—C10—C9119.35 (16)
C6—C1—Cl1119.59 (14)C11—C10—H10120.3
C1—C2—C3119.48 (16)C9—C10—H10120.3
C1—C2—H2120.3C10—C11—C12120.79 (16)
C3—C2—H2120.3C10—C11—S1119.85 (13)
C2—C3—C4120.29 (16)C12—C11—S1119.36 (13)
C2—C3—H3119.9C13—C12—C11119.31 (16)
C4—C3—H3119.9C13—C12—H12120.3
C5—C4—C3119.17 (16)C11—C12—H12120.3
C5—C4—N1118.56 (15)C12—C13—C8120.67 (16)
C3—C4—N1122.23 (15)C12—C13—H13119.7
C6—C5—C4120.69 (17)C8—C13—H13119.7
C6—C5—H5119.7S1—C14—H14A109.5
C4—C5—H5119.7S1—C14—H14B109.5
C1—C6—C5119.14 (17)H14A—C14—H14B109.5
C1—C6—H6120.4S1—C14—H14C109.5
C5—C6—H6120.4H14A—C14—H14C109.5
N1—C7—C8122.31 (16)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.563.126 (2)120
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO2S
Mr293.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.6206 (10), 8.8748 (10), 17.799 (2)
β (°) 94.972 (1)
V3)1356.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.898, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
11492, 3320, 2596
Rint0.040
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.110, 1.04
No. of reflections3320
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.40

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.563.126 (2)119.6
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This project was sponsored by the ShanDong Province Science & Technology Innovation Foundation (People's Republic of China).

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628.  Web of Science PubMed Google Scholar
First citationQian, S.-S. & Cui, H.-Y. (2009). Acta Cryst. E65, o3093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQian, S.-S. & Liu, T. (2010). Acta Cryst. E66, o18.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationVillar, R., Encio, I., Migliaccio, M., Gil, M. J. & Martinez-Merino, V. (2004). Bioorg. Med. Chem. 12, 963–968.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds