organic compounds
2-(4-Chloro-3,3,7-trimethyl-2,3-dihydro-1H-indol-2-ylidene)-2-cyanoacetamide
aThe School of Chemistry, The University of Manchester, Manchester M13 9PL, England, bDepartment of Chemistry, Faculty of Science, University of Urmia, Urmia 57153-165, Iran, and cDepartment of Chemical Engineering, University of Urmia, Urmia 57153-165, Iran
*Correspondence e-mail: mmbaradarani@yahoo.com
Reaction of 2-(4-chloro-3,3,7-trimethyl-2,3-dihydro-1H-indol-2-ylidene)propanedial with hydroxylamine gives the title compound, C14H14ClN3O, in which the ring N atom is essentially planar [sum of angles around the ring N atom = 361°], indicating conjugation with the 2-cyanoacrylamide unit. The orientation of the acetamide group arises from intramolecular hydrogen bonding between the indole N—H and carbonyl groups. In the crystal, inversion-related acetamide groups form N—H⋯O hydrogen-bonded dimers in graph-set R22(8) motifs, whilst dimers are also formed by pairs of amine–nitrile N—H⋯N hydrogen bonds in R22(12) motifs. These interactions together generate ribbons that propagate along the b-axis direction.
Related literature
For background information on the chemistry of related compounds, see: Baradarani et al. (2006); Rashidi et al. (2009, 2011). For related structures, see: Helliwell et al. (2010, 2012). For graph-set notation, see: Etter et al. (1990).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811053918/pk2373sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811053918/pk2373Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811053918/pk2373Isup3.cml
A mixture of 2-(4-chloro-1,3-dihydro-3,3,7-trimethyl-2H-indol-2-ylidene)propanedial (100 mg, 0.38 mmol) and hydroxylamine hydrochloride (52 mg, 0.76 mmol) in absolute EtOH (10 ml) was heated with stirring at reflux for 7 h. After complete conversion, the reaction mixture was cooled and concentrated, and the resulting crystals were collected by filtration and recrystallized from EtOH to give the 2-(4-chloro-1,3-dihydro-3,3,7-trimethyl-2H-indol-2-ylidene)-2-cyanoacrylamide (90 mg, 86%), 522–524 K, FT—IR (KBr) νmax 3385, 3289, 3185, 2986, 2939, 2199, 1668, 1608, 1563, 1415, 1329, 909, 788 cm-1, 1H NMR (CDCl3) δ 1.84 (s, 6H, 2CH3), 2.30 (s, 3H, CH3), 5.20–6.50 (bs, 2H, NH2), 6.93 (d, J = 8.1 Hz, 1H, ArH), 7.00 (d, J = 8.1 Hz, 1H, ArH), 11.85 (bs, 1H, NH), 13C NMR (CDCl3) δ 15.9, 21.0, 51.6, 118.9, 118.9, 124.9, 127.4, 130.8, 132.5, 141.0, 169.6,177.4.
H atoms bonded to C were included in calculated positions using the riding method, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C) for the aromatic H atoms. Those bonded to N were found by difference Fourier methods and refined isotropically with the N—H distances ranging from to 0.83 (5) to 0.93 (5) Å.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H14ClN3O | Z = 2 |
Mr = 275.73 | F(000) = 288 |
Triclinic, P1 | Dx = 1.328 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.226 (2) Å | Cell parameters from 735 reflections |
b = 9.282 (3) Å | θ = 2.7–25.8° |
c = 9.744 (3) Å | µ = 0.27 mm−1 |
α = 92.124 (5)° | T = 100 K |
β = 104.766 (5)° | Plate, colourless |
γ = 105.294 (4)° | 0.58 × 0.22 × 0.10 mm |
V = 689.5 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 1549 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.065 |
Graphite monochromator | θmax = 25.0°, θmin = 2.2° |
ϕ and ω scans | h = −9→9 |
3384 measured reflections | k = −10→11 |
2389 independent reflections | l = −10→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0419P)2] where P = (Fo2 + 2Fc2)/3 |
2389 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
C14H14ClN3O | γ = 105.294 (4)° |
Mr = 275.73 | V = 689.5 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.226 (2) Å | Mo Kα radiation |
b = 9.282 (3) Å | µ = 0.27 mm−1 |
c = 9.744 (3) Å | T = 100 K |
α = 92.124 (5)° | 0.58 × 0.22 × 0.10 mm |
β = 104.766 (5)° |
Bruker SMART CCD area-detector diffractometer | 1549 reflections with I > 2σ(I) |
3384 measured reflections | Rint = 0.065 |
2389 independent reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.132 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.45 e Å−3 |
2389 reflections | Δρmin = −0.38 e Å−3 |
187 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.29616 (14) | 0.79125 (12) | 0.38519 (11) | 0.0274 (3) | |
O1 | 0.3245 (3) | 0.4944 (3) | 0.0925 (3) | 0.0224 (7) | |
N1 | 0.0818 (4) | 0.5294 (4) | 0.2080 (3) | 0.0190 (8) | |
H1N | 0.140 (6) | 0.464 (6) | 0.181 (5) | 0.064 (17)* | |
N2 | 0.3940 (5) | 1.0145 (4) | 0.1147 (4) | 0.0306 (9) | |
N3 | 0.4858 (5) | 0.6920 (5) | 0.0127 (4) | 0.0225 (8) | |
H3N | 0.517 (5) | 0.783 (5) | −0.006 (4) | 0.022 (12)* | |
H3M | 0.539 (7) | 0.637 (6) | −0.013 (5) | 0.061 (18)* | |
C1 | −0.0620 (5) | 0.4992 (4) | 0.2658 (4) | 0.0182 (9) | |
C2 | −0.1558 (5) | 0.3606 (5) | 0.2912 (4) | 0.0207 (9) | |
C3 | −0.2983 (5) | 0.3602 (5) | 0.3433 (4) | 0.0244 (10) | |
H3 | −0.3693 | 0.2673 | 0.3598 | 0.029* | |
C4 | −0.3399 (5) | 0.4911 (5) | 0.3718 (4) | 0.0241 (10) | |
H4 | −0.4370 | 0.4878 | 0.4087 | 0.029* | |
C5 | −0.2383 (5) | 0.6280 (5) | 0.3461 (4) | 0.0218 (10) | |
C6 | −0.0984 (5) | 0.6349 (4) | 0.2903 (4) | 0.0179 (9) | |
C7 | 0.0298 (5) | 0.7621 (4) | 0.2452 (4) | 0.0174 (9) | |
C8 | 0.1405 (5) | 0.6759 (4) | 0.1913 (4) | 0.0194 (9) | |
C9 | −0.1084 (5) | 0.2188 (4) | 0.2602 (5) | 0.0271 (10) | |
H9A | −0.0865 | 0.2171 | 0.1660 | 0.041* | |
H9B | −0.2053 | 0.1312 | 0.2613 | 0.041* | |
H9C | −0.0027 | 0.2161 | 0.3332 | 0.041* | |
C10 | −0.0645 (5) | 0.8363 (4) | 0.1230 (4) | 0.0233 (10) | |
H10A | 0.0218 | 0.9169 | 0.0962 | 0.035* | |
H10B | −0.1481 | 0.8784 | 0.1546 | 0.035* | |
H10C | −0.1274 | 0.7610 | 0.0403 | 0.035* | |
C11 | 0.1435 (5) | 0.8796 (5) | 0.3722 (4) | 0.0262 (10) | |
H11A | 0.2078 | 0.8307 | 0.4460 | 0.039* | |
H11B | 0.0681 | 0.9253 | 0.4117 | 0.039* | |
H11C | 0.2268 | 0.9577 | 0.3397 | 0.039* | |
C12 | 0.2765 (5) | 0.7319 (4) | 0.1318 (4) | 0.0183 (9) | |
C13 | 0.3378 (5) | 0.8890 (5) | 0.1241 (4) | 0.0216 (10) | |
C14 | 0.3650 (5) | 0.6315 (4) | 0.0777 (4) | 0.0174 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0283 (6) | 0.0262 (7) | 0.0351 (7) | 0.0153 (5) | 0.0142 (5) | 0.0008 (5) |
O1 | 0.0237 (16) | 0.0140 (17) | 0.0356 (18) | 0.0083 (12) | 0.0150 (13) | 0.0072 (13) |
N1 | 0.0193 (19) | 0.015 (2) | 0.027 (2) | 0.0076 (15) | 0.0104 (16) | 0.0061 (15) |
N2 | 0.031 (2) | 0.019 (2) | 0.048 (2) | 0.0074 (18) | 0.0209 (19) | 0.0073 (19) |
N3 | 0.023 (2) | 0.015 (2) | 0.035 (2) | 0.0071 (17) | 0.0143 (17) | 0.0068 (18) |
C1 | 0.015 (2) | 0.024 (2) | 0.020 (2) | 0.0082 (18) | 0.0094 (18) | 0.0058 (18) |
C2 | 0.020 (2) | 0.022 (2) | 0.022 (2) | 0.0093 (19) | 0.0067 (18) | 0.0052 (18) |
C3 | 0.026 (2) | 0.022 (2) | 0.028 (2) | 0.0052 (19) | 0.012 (2) | 0.0083 (19) |
C4 | 0.017 (2) | 0.033 (3) | 0.025 (2) | 0.007 (2) | 0.0097 (19) | 0.004 (2) |
C5 | 0.024 (2) | 0.021 (2) | 0.024 (2) | 0.0132 (19) | 0.0052 (19) | 0.0006 (19) |
C6 | 0.017 (2) | 0.020 (2) | 0.019 (2) | 0.0095 (18) | 0.0057 (18) | 0.0044 (18) |
C7 | 0.014 (2) | 0.018 (2) | 0.024 (2) | 0.0087 (17) | 0.0070 (18) | 0.0033 (18) |
C8 | 0.020 (2) | 0.017 (2) | 0.021 (2) | 0.0086 (18) | 0.0017 (18) | 0.0054 (18) |
C9 | 0.030 (3) | 0.018 (2) | 0.037 (3) | 0.007 (2) | 0.015 (2) | 0.009 (2) |
C10 | 0.021 (2) | 0.019 (2) | 0.032 (3) | 0.0074 (18) | 0.0093 (19) | 0.0061 (19) |
C11 | 0.028 (3) | 0.026 (3) | 0.026 (2) | 0.012 (2) | 0.0059 (19) | 0.000 (2) |
C12 | 0.019 (2) | 0.013 (2) | 0.026 (2) | 0.0092 (17) | 0.0069 (18) | 0.0057 (18) |
C13 | 0.017 (2) | 0.022 (3) | 0.031 (2) | 0.0081 (19) | 0.0137 (19) | 0.004 (2) |
C14 | 0.016 (2) | 0.016 (2) | 0.021 (2) | 0.0073 (17) | 0.0013 (18) | 0.0027 (18) |
Cl1—C5 | 1.760 (4) | C5—C6 | 1.381 (5) |
O1—C14 | 1.251 (4) | C6—C7 | 1.523 (5) |
N1—C8 | 1.349 (5) | C7—C8 | 1.531 (5) |
N1—C1 | 1.404 (4) | C7—C11 | 1.538 (5) |
N1—H1N | 0.93 (5) | C7—C10 | 1.538 (5) |
N2—C13 | 1.151 (5) | C8—C12 | 1.380 (5) |
N3—C14 | 1.326 (5) | C9—H9A | 0.9800 |
N3—H3N | 0.85 (4) | C9—H9B | 0.9800 |
N3—H3M | 0.83 (5) | C9—H9C | 0.9800 |
C1—C2 | 1.381 (5) | C10—H10A | 0.9800 |
C1—C6 | 1.395 (5) | C10—H10B | 0.9800 |
C2—C3 | 1.391 (5) | C10—H10C | 0.9800 |
C2—C9 | 1.509 (5) | C11—H11A | 0.9800 |
C3—C4 | 1.383 (5) | C11—H11B | 0.9800 |
C3—H3 | 0.9500 | C11—H11C | 0.9800 |
C4—C5 | 1.395 (5) | C12—C13 | 1.424 (5) |
C4—H4 | 0.9500 | C12—C14 | 1.481 (5) |
C8—N1—C1 | 112.7 (3) | C11—C7—C10 | 111.0 (3) |
C8—N1—H1N | 118 (3) | N1—C8—C12 | 123.4 (3) |
C1—N1—H1N | 130 (3) | N1—C8—C7 | 108.8 (3) |
C14—N3—H3N | 128 (3) | C12—C8—C7 | 127.8 (4) |
C14—N3—H3M | 118 (3) | C2—C9—H9A | 109.5 |
H3N—N3—H3M | 114 (4) | C2—C9—H9B | 109.5 |
C2—C1—C6 | 125.2 (3) | H9A—C9—H9B | 109.5 |
C2—C1—N1 | 127.0 (3) | C2—C9—H9C | 109.5 |
C6—C1—N1 | 107.8 (3) | H9A—C9—H9C | 109.5 |
C1—C2—C3 | 115.8 (4) | H9B—C9—H9C | 109.5 |
C1—C2—C9 | 121.7 (3) | C7—C10—H10A | 109.5 |
C3—C2—C9 | 122.5 (4) | C7—C10—H10B | 109.5 |
C4—C3—C2 | 121.9 (4) | H10A—C10—H10B | 109.5 |
C4—C3—H3 | 119.0 | C7—C10—H10C | 109.5 |
C2—C3—H3 | 119.0 | H10A—C10—H10C | 109.5 |
C3—C4—C5 | 119.6 (3) | H10B—C10—H10C | 109.5 |
C3—C4—H4 | 120.2 | C7—C11—H11A | 109.5 |
C5—C4—H4 | 120.2 | C7—C11—H11B | 109.5 |
C6—C5—C4 | 121.1 (4) | H11A—C11—H11B | 109.5 |
C6—C5—Cl1 | 121.2 (3) | C7—C11—H11C | 109.5 |
C4—C5—Cl1 | 117.7 (3) | H11A—C11—H11C | 109.5 |
C5—C6—C1 | 116.4 (4) | H11B—C11—H11C | 109.5 |
C5—C6—C7 | 133.7 (4) | C8—C12—C13 | 120.4 (3) |
C1—C6—C7 | 109.9 (3) | C8—C12—C14 | 121.2 (3) |
C6—C7—C8 | 100.8 (3) | C13—C12—C14 | 118.4 (3) |
C6—C7—C11 | 111.8 (3) | N2—C13—C12 | 176.3 (4) |
C8—C7—C11 | 110.9 (3) | O1—C14—N3 | 122.0 (4) |
C6—C7—C10 | 111.6 (3) | O1—C14—C12 | 120.4 (3) |
C8—C7—C10 | 110.2 (3) | N3—C14—C12 | 117.6 (4) |
C8—N1—C1—C2 | 177.6 (4) | C5—C6—C7—C11 | 63.5 (6) |
C8—N1—C1—C6 | −0.8 (4) | C1—C6—C7—C11 | −117.4 (4) |
C6—C1—C2—C3 | 1.0 (6) | C5—C6—C7—C10 | −61.6 (6) |
N1—C1—C2—C3 | −177.1 (4) | C1—C6—C7—C10 | 117.5 (4) |
C6—C1—C2—C9 | 179.4 (4) | C1—N1—C8—C12 | −177.6 (4) |
N1—C1—C2—C9 | 1.2 (6) | C1—N1—C8—C7 | 1.1 (4) |
C1—C2—C3—C4 | −1.9 (6) | C6—C7—C8—N1 | −1.0 (4) |
C9—C2—C3—C4 | 179.7 (4) | C11—C7—C8—N1 | 117.6 (4) |
C2—C3—C4—C5 | 0.9 (6) | C10—C7—C8—N1 | −119.0 (4) |
C3—C4—C5—C6 | 1.1 (6) | C6—C7—C8—C12 | 177.7 (4) |
C3—C4—C5—Cl1 | −179.6 (3) | C11—C7—C8—C12 | −63.7 (5) |
C4—C5—C6—C1 | −2.0 (6) | C10—C7—C8—C12 | 59.7 (5) |
Cl1—C5—C6—C1 | 178.8 (3) | N1—C8—C12—C13 | −176.7 (4) |
C4—C5—C6—C7 | 177.0 (4) | C7—C8—C12—C13 | 4.7 (6) |
Cl1—C5—C6—C7 | −2.2 (6) | N1—C8—C12—C14 | 1.8 (6) |
C2—C1—C6—C5 | 0.9 (6) | C7—C8—C12—C14 | −176.7 (4) |
N1—C1—C6—C5 | 179.3 (3) | C8—C12—C14—O1 | −4.2 (6) |
C2—C1—C6—C7 | −178.3 (4) | C13—C12—C14—O1 | 174.4 (4) |
N1—C1—C6—C7 | 0.1 (4) | C8—C12—C14—N3 | 175.2 (4) |
C5—C6—C7—C8 | −178.5 (4) | C13—C12—C14—N3 | −6.2 (6) |
C1—C6—C7—C8 | 0.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.93 (5) | 1.89 (5) | 2.610 (4) | 132 (4) |
N3—H3M···O1i | 0.83 (5) | 2.11 (5) | 2.931 (5) | 176 (5) |
N3—H3N···N2ii | 0.85 (4) | 2.24 (4) | 3.065 (5) | 163 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H14ClN3O |
Mr | 275.73 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 8.226 (2), 9.282 (3), 9.744 (3) |
α, β, γ (°) | 92.124 (5), 104.766 (5), 105.294 (4) |
V (Å3) | 689.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.58 × 0.22 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3384, 2389, 1549 |
Rint | 0.065 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.132, 1.01 |
No. of reflections | 2389 |
No. of parameters | 187 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.45, −0.38 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1 | 0.93 (5) | 1.89 (5) | 2.610 (4) | 132 (4) |
N3—H3M···O1i | 0.83 (5) | 2.11 (5) | 2.931 (5) | 176 (5) |
N3—H3N···N2ii | 0.85 (4) | 2.24 (4) | 3.065 (5) | 163 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z. |
Acknowledgements
The authors are grateful to the University of Urmia for financial support of this work.
References
Baradarani, M. M., Afghan, A., Zebarjadi, F., Hasanzadeh, K. & Joule, J. A. (2006). J. Heterocycl. Chem. 43, 1591–1596. CrossRef CAS Google Scholar
Bruker (2001). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Helliwell, M., Afghan, A., Keshvari, F., Baradarani, M. M. & Joule, J. A. (2010). Acta Cryst. E66, o112. Web of Science CSD CrossRef IUCr Journals Google Scholar
Helliwell, M., Baradarani, M. M., Mohammadnejadaghdam, R., Afghan, A., & Joule, J. A. (2012). Acta Cryst. E68, o233. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rashidi, A., Afghan, A., Baradarani, M. M. & Joule, J. A. (2009). J. Heterocycl. Chem. 46, 428–431. Web of Science CrossRef CAS Google Scholar
Rashidi, A., Baradarani, M. M. & Joule, J. A. (2011). Arkivoc, ii, 252–259. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We showed that the interaction of 2,3,3-trimethyl-3H-indoles with the Vilsmeier reagent produces (1,3-dihydro-3,3-dimethyl-2H-indol-2-ylidene)propanedials (Baradarani et al., 2006). 2,3,3-Trimethyl-2H-pyrrolo[2,3-f]quinoline, 2,3,3-trimethyl-3H-pyrrolo[3,2-h]quinoline (Rashidi et al., 2009), 2,2',3,3,3',3'-hexamethyl-3H,3'H-5,5'-biindole and 2,3,3,7,8,8-hexamethyl-3H,8H-indolo[7,6-g]indole (Rashidi et al., 2011) behave analogously. The (1,3-dihydroindol-2-ylidene)propanedials were shown to react with arylhydrazines (or hydrazine) to produce 3,3-dimethyl-2-[1-aryl-1H-pyrazol-4-yl]-3H-indoles (Baradarani et al., 2006. Rashidi et al., 2009. Helliwell et al. 2010. Rashidi et al., 2011).
In anticipation that the (1,3-dihydroindol-2-ylidene)propanedials would react with hydroxylamine to produce isoxazol-4-yl-3H-indoles, 2-(4-chloro-1,3-dihydro-3,3,7-trimethyl-2H-indol-2-ylidene)propanedial was treated with hydroxylamine in refluxing ethanol. The unexpected product of the reaction was 2-(4-chloro-1,3-dihydro-3,3,7-trimethyl-2H-indol-2-ylidene)-2- cyanoacetamide as shown by this X-ray analysis (Fig. 1).
We interpret this transformation as involving firstly formation of the diooxime 1 which cyclizes to generate aminal 2, loss of water would then produce imine 3, proton-induced fragmentation of which (arrows on 3) would then lead to the product 4 (Fig. 2).
The sum of the angles of the bonds at the ring nitrogen in 4 is 361 (4)° showing the extensive conjugation of the nitrogen with the 2-cyanoacrylamide subunit. The geometry of the double bond linking the heterocyclic and cyanoacetamide subunits is E.
The orientation of the acetamide group arises from intramolecular H bonding between the indole N—H and the carbonyl group. The inversion related acetamide groups form N—H···O hydrogen bonded dimers in graph-set R22(8) motifs (Etter et al., 1990), while dimers are also formed by pairs of N—H(amine)···N(nitrile) functionalities in R22(12) motifs. These interactions together generate ribbons that propagate along the b axis direction (Fig. 3).