organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-[(3,5-Di­methyl­phen­yl)imino­meth­yl]-2-meth­­oxy-3-nitro­phenol

aSchool of Life Sciences, Shangdong University of Technology, Zibo 255000, People's Republic of China
*Correspondence e-mail: hailiang_zhu@163.com

(Received 14 December 2011; accepted 18 December 2011; online 23 December 2011)

The mol­ecule of the title compound, C16H16N2O4, exists in the E configuration with respect to the central C=N double bond. The dihedral angle between the two benzene rings is 2.17 (9) Å. In the crystal, mol­ecules are linked via O—H⋯N hydrogen bonds into chains that propagate along the b-axis direction. There is also ππ stacking of inversion-related mol­ecules, with inter­planar spacings of 3.479 (5) Å and ring centroid–centroid distances of 3.876 (4) Å.

Related literature

The title compound is an imine derivative of 4-hy­droxy-3-meth­oxy-2-nitro­benzaldehyde, a vanillin-like compound. For background to the biological activity of vanillin derivatives, see: Javiya et al. (2008[Javiya, J., Godvani, N., Baluja, S., Parekh, J. & Chanda, S. (2008). Acta Cienc. Indica Chem. 34, 413-417.]); Cordano et al. (2002[Cordano, G., Pezoa, J., Munoz, S., Rivera, E., Medina, J., Nunez-Vergara, L. J., Pavani, M., Guerrero, A. & Ferreira, J. (2002). Eur. J. Pharm. Sci. 16, 255-263.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Monoclinic, P 21 /c

  • a = 8.616 (9) Å

  • b = 9.690 (11) Å

  • c = 18.29 (2) Å

  • β = 97.631 (11)°

  • V = 1513 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.989

  • 8085 measured reflections

  • 2935 independent reflections

  • 1699 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.140

  • S = 1.04

  • 2935 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2i 0.82 1.95 2.755 (3) 169
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Schiff base adducts of vanillin with various primary amines show an observable effect on tumours. Amine derivatives of vanillin present similar effects, such as acting as oxidative phosphorylation inhibitors, which prevent ATP sythesis (Cordano et al., 2002). There has been much research interest in vanillin derivatives due to its biological activities (Javiya et al. 2008). In this work, we report here the crystal structure of the title compound, (E)-4-((3,5-dimethylphenylimino)methyl)-2-methoxy-3-nitrophenol, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1).

Related literature top

The title compound is an imine derivative of 4-hydroxy-3-methoxy-2-nitrobenzaldehyde, a vanillin-like compound. For background to the biological activity of vanillin derivatives, see: Javiya et al. (2008); Cordano et al. (2002). For standard bond lengths, see: Allen et al. (1987).

Experimental top

An equimolar ratio of 4-hydroxy-3-methoxy-2-nitrobenzaldehyde (2 mmol, 394 mg) and 3,5-dimethylaniline (2 mmol, 242 mg) were dissolved in methanol (25 ml). The mixture was stirred for 3 h under a gentle reflux. After allowing the solution to stand in air for two days with methanol slowly evaporating, yellow crystals were deposited, isolated, washed with methanol three times, and dried under vacuum with CaCl2 as desiccant.

Refinement top

All H atoms were positioned geometrically (C—H = 0.96 Å for the aromatic) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
(E)-4-[(3,5-Dimethylphenyl)iminomethyl]-2-methoxy-3-nitrophenol top
Crystal data top
C16H16N2O4F(000) = 632
Mr = 300.31Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2115 reflections
a = 8.616 (9) Åθ = 2.4–26.4°
b = 9.690 (11) ŵ = 0.10 mm1
c = 18.29 (2) ÅT = 296 K
β = 97.631 (11)°Column, yellow
V = 1513 (3) Å30.23 × 0.21 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2935 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 810
Tmin = 0.978, Tmax = 0.989k = 1111
8085 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.080P]
where P = (Fo2 + 2Fc2)/3
2935 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C16H16N2O4V = 1513 (3) Å3
Mr = 300.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.616 (9) ŵ = 0.10 mm1
b = 9.690 (11) ÅT = 296 K
c = 18.29 (2) Å0.23 × 0.21 × 0.12 mm
β = 97.631 (11)°
Data collection top
Bruker APEXII CCD
diffractometer
2935 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1699 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.989Rint = 0.032
8085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
2935 reflectionsΔρmin = 0.17 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9369 (2)0.4869 (2)0.39259 (10)0.0569 (5)
N20.50451 (19)0.63346 (16)0.41616 (8)0.0416 (4)
O10.98163 (17)0.29564 (16)0.28424 (8)0.0592 (4)
O20.73798 (16)0.18585 (15)0.19443 (8)0.0542 (4)
H20.65850.16950.16580.081*
O31.0325 (2)0.4118 (2)0.42663 (10)0.0972 (7)
O40.9417 (2)0.61258 (19)0.39560 (10)0.0811 (6)
C10.8322 (2)0.33311 (19)0.29183 (11)0.0410 (5)
C20.7044 (2)0.27628 (19)0.24588 (10)0.0401 (5)
C30.5541 (2)0.3148 (2)0.25587 (11)0.0441 (5)
H30.46930.27780.22540.053*
C40.5275 (2)0.4069 (2)0.31015 (11)0.0428 (5)
H40.42510.43090.31550.051*
C50.6504 (2)0.46491 (19)0.35722 (10)0.0395 (5)
C60.8019 (2)0.42449 (19)0.34604 (10)0.0404 (5)
C70.6243 (2)0.5559 (2)0.41790 (11)0.0427 (5)
H70.69850.55730.45980.051*
C80.4898 (2)0.72319 (19)0.47734 (10)0.0389 (5)
C90.3404 (2)0.7652 (2)0.48727 (11)0.0452 (5)
H90.25450.73240.45590.054*
C100.3177 (2)0.8561 (2)0.54361 (12)0.0473 (6)
C110.4476 (3)0.9040 (2)0.58903 (11)0.0492 (6)
H110.43340.96550.62660.059*
C120.5983 (2)0.86339 (19)0.58038 (11)0.0452 (5)
C130.6190 (2)0.77377 (19)0.52390 (11)0.0409 (5)
H130.71950.74690.51680.049*
C140.1558 (3)0.9054 (3)0.55369 (15)0.0742 (8)
H14A0.07920.85360.52200.111*
H14B0.14601.00160.54140.111*
H14C0.13920.89240.60410.111*
C150.7379 (3)0.9183 (2)0.63073 (13)0.0659 (7)
H15A0.82730.86090.62690.099*
H15B0.71530.91800.68070.099*
H15C0.75991.01090.61650.099*
C161.0488 (3)0.3650 (3)0.22692 (16)0.0830 (8)
H16A0.98570.34850.18040.124*
H16B1.15280.33080.22510.124*
H16C1.05310.46240.23680.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0502 (12)0.0687 (13)0.0484 (12)0.0024 (10)0.0067 (9)0.0119 (10)
N20.0453 (10)0.0436 (9)0.0355 (10)0.0019 (8)0.0038 (8)0.0029 (8)
O10.0433 (9)0.0764 (11)0.0564 (10)0.0165 (8)0.0017 (7)0.0015 (8)
O20.0520 (9)0.0614 (9)0.0468 (10)0.0059 (8)0.0026 (7)0.0146 (8)
O30.0803 (14)0.1037 (15)0.0914 (14)0.0299 (11)0.0490 (11)0.0251 (12)
O40.0812 (13)0.0707 (12)0.0860 (14)0.0246 (10)0.0088 (10)0.0067 (10)
C10.0394 (12)0.0467 (11)0.0355 (12)0.0061 (9)0.0004 (9)0.0031 (9)
C20.0482 (13)0.0393 (10)0.0317 (11)0.0046 (9)0.0012 (9)0.0001 (9)
C30.0433 (12)0.0484 (12)0.0390 (12)0.0026 (9)0.0005 (9)0.0031 (10)
C40.0380 (12)0.0462 (11)0.0436 (13)0.0011 (9)0.0029 (10)0.0034 (10)
C50.0449 (13)0.0393 (10)0.0332 (11)0.0033 (9)0.0016 (9)0.0023 (9)
C60.0415 (12)0.0442 (11)0.0324 (11)0.0007 (9)0.0067 (9)0.0010 (9)
C70.0474 (13)0.0447 (11)0.0342 (12)0.0026 (10)0.0010 (9)0.0020 (9)
C80.0443 (12)0.0382 (10)0.0339 (12)0.0043 (9)0.0037 (9)0.0060 (9)
C90.0410 (13)0.0492 (12)0.0436 (13)0.0058 (9)0.0014 (10)0.0100 (10)
C100.0481 (13)0.0490 (12)0.0460 (13)0.0147 (10)0.0102 (11)0.0100 (11)
C110.0618 (16)0.0423 (11)0.0438 (13)0.0138 (10)0.0080 (11)0.0011 (10)
C120.0502 (13)0.0399 (11)0.0434 (13)0.0099 (9)0.0009 (10)0.0005 (10)
C130.0362 (12)0.0418 (10)0.0443 (12)0.0075 (8)0.0039 (9)0.0000 (9)
C140.0547 (16)0.0839 (18)0.085 (2)0.0269 (13)0.0137 (14)0.0051 (15)
C150.0650 (16)0.0637 (15)0.0644 (16)0.0076 (12)0.0091 (13)0.0172 (12)
C160.0587 (17)0.101 (2)0.093 (2)0.0072 (15)0.0242 (16)0.0017 (18)
Geometric parameters (Å, º) top
N1—O31.208 (2)C8—C131.398 (3)
N1—O41.219 (3)C9—C101.389 (3)
N1—C61.476 (3)C9—H90.9300
N2—C71.274 (3)C10—C111.383 (3)
N2—C81.436 (3)C10—C141.509 (3)
O1—C11.362 (3)C11—C121.385 (3)
O1—C161.431 (3)C11—H110.9300
O2—C21.345 (2)C12—C131.379 (3)
O2—H20.8200C12—C151.512 (3)
C1—C61.380 (3)C13—H130.9300
C1—C21.406 (3)C14—H14A0.9600
C2—C31.383 (3)C14—H14B0.9600
C3—C41.377 (3)C14—H14C0.9600
C3—H30.9300C15—H15A0.9600
C4—C51.392 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C5—C61.404 (3)C16—H16A0.9600
C5—C71.458 (3)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—C91.385 (3)
O3—N1—O4124.1 (2)C10—C9—H9119.7
O3—N1—C6118.8 (2)C11—C10—C9118.4 (2)
O4—N1—C6117.06 (19)C11—C10—C14120.5 (2)
C7—N2—C8119.54 (17)C9—C10—C14121.0 (2)
C1—O1—C16115.41 (18)C10—C11—C12122.2 (2)
C2—O2—H2109.5C10—C11—H11118.9
O1—C1—C6121.05 (17)C12—C11—H11118.9
O1—C1—C2120.70 (19)C13—C12—C11118.75 (19)
C6—C1—C2118.22 (19)C13—C12—C15120.4 (2)
O2—C2—C3124.08 (18)C11—C12—C15120.8 (2)
O2—C2—C1116.69 (19)C12—C13—C8120.32 (19)
C3—C2—C1119.23 (19)C12—C13—H13119.8
C4—C3—C2121.24 (18)C8—C13—H13119.8
C4—C3—H3119.4C10—C14—H14A109.5
C2—C3—H3119.4C10—C14—H14B109.5
C3—C4—C5121.47 (19)H14A—C14—H14B109.5
C3—C4—H4119.3C10—C14—H14C109.5
C5—C4—H4119.3H14A—C14—H14C109.5
C4—C5—C6116.32 (19)H14B—C14—H14C109.5
C4—C5—C7122.25 (19)C12—C15—H15A109.5
C6—C5—C7121.32 (18)C12—C15—H15B109.5
C1—C6—C5123.51 (18)H15A—C15—H15B109.5
C1—C6—N1117.89 (19)C12—C15—H15C109.5
C5—C6—N1118.56 (19)H15A—C15—H15C109.5
N2—C7—C5122.96 (18)H15B—C15—H15C109.5
N2—C7—H7118.5O1—C16—H16A109.5
C5—C7—H7118.5O1—C16—H16B109.5
C9—C8—C13119.75 (19)H16A—C16—H16B109.5
C9—C8—N2117.40 (18)O1—C16—H16C109.5
C13—C8—N2122.77 (18)H16A—C16—H16C109.5
C8—C9—C10120.6 (2)H16B—C16—H16C109.5
C8—C9—H9119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.952.755 (3)169
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.616 (9), 9.690 (11), 18.29 (2)
β (°) 97.631 (11)
V3)1513 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.21 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.978, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8085, 2935, 1699
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.04
No. of reflections2935
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.952.755 (3)169.3
Symmetry code: (i) x+1, y1/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordano, G., Pezoa, J., Munoz, S., Rivera, E., Medina, J., Nunez-Vergara, L. J., Pavani, M., Guerrero, A. & Ferreira, J. (2002). Eur. J. Pharm. Sci. 16, 255–263.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaviya, J., Godvani, N., Baluja, S., Parekh, J. & Chanda, S. (2008). Acta Cienc. Indica Chem. 34, 413–417.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds