organic compounds
5-Bromo-N-methylpyrimidin-2-amine
aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Environment, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: hpf@njut.edu.cn
In the title molecule, C5H6BrN3, the pyrimidine ring is essentially planar, with an r.m.s. deviation of 0.007 Å. The Br and N atoms substituted to the pyrimidine ring are coplanar with the ring [displacements = 0.032 (1) and 0.009 (5) Å, respectively], while the methyl C atom lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidine ring and the methylamine group of 4.5 (3)°. In the crystal, C—H⋯N, C—H⋯Br and N—H⋯N hydrogen bonds link the molecules into a two-dimensional network in the (011) plane.
Related literature
Derivatives of pyrimidine are important chemical materials, see: Yu et al. (2007). For a related structure, see: Aakeroey et al. (2005).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811051531/pv2488sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811051531/pv2488Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811051531/pv2488Isup3.cml
5-Bromo-hexahydro-pyrimidine (2.06 g, 0.01 mol) and 1,3-propanediamine (1.48 g, 0.02 mol) were refluxed in 10 ml benzene for 18 h. After completion of the reaction (TLC control), the product was washed with cold toluene (2*15 ml), at room temperature, dried over sodium sulfate and yielded 2.43 g (69%) of the title compound which was further purified by crystallization from methanol. Crystals of the title compound suitable for X-ray crystallographic studies were obstained by slow evaporation of a methanol solution.
H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aryl and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N/C-aryl) or 1.5Ueq(C-methyl).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C5H6BrN3 | Z = 2 |
Mr = 188.04 | F(000) = 184 |
Triclinic, P1 | Dx = 1.814 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 3.9900 (8) Å | Cell parameters from 25 reflections |
b = 9.862 (2) Å | θ = 9–14° |
c = 10.006 (2) Å | µ = 5.88 mm−1 |
α = 61.57 (3)° | T = 293 K |
β = 83.84 (3)° | Block, colorless |
γ = 87.45 (3)° | 0.10 × 0.05 × 0.05 mm |
V = 344.24 (16) Å3 |
Enraf–Nonius CAD-4 diffractometer | 714 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.089 |
Graphite monochromator | θmax = 25.4°, θmin = 2.3° |
ω/2θ scans | h = 0→4 |
Absorption correction: ψ scan (North et al., 1968) | k = −11→11 |
Tmin = 0.591, Tmax = 0.758 | l = −11→11 |
1454 measured reflections | 3 standard reflections every 200 reflections |
1260 independent reflections | intensity decay: 1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0385P)2] where P = (Fo2 + 2Fc2)/3 |
1260 reflections | (Δ/σ)max < 0.001 |
82 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
C5H6BrN3 | γ = 87.45 (3)° |
Mr = 188.04 | V = 344.24 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 3.9900 (8) Å | Mo Kα radiation |
b = 9.862 (2) Å | µ = 5.88 mm−1 |
c = 10.006 (2) Å | T = 293 K |
α = 61.57 (3)° | 0.10 × 0.05 × 0.05 mm |
β = 83.84 (3)° |
Enraf–Nonius CAD-4 diffractometer | 714 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.089 |
Tmin = 0.591, Tmax = 0.758 | 3 standard reflections every 200 reflections |
1454 measured reflections | intensity decay: 1% |
1260 independent reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.40 e Å−3 |
1260 reflections | Δρmin = −0.39 e Å−3 |
82 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.15554 (17) | 0.32133 (9) | 0.25400 (8) | 0.0790 (4) | |
N1 | −0.2779 (12) | 0.9216 (6) | 0.1902 (5) | 0.0673 (15) | |
H1A | −0.2201 | 1.0018 | 0.1048 | 0.081* | |
C1 | −0.4717 (15) | 0.9457 (7) | 0.3050 (7) | 0.080 (2) | |
H1B | −0.5157 | 1.0538 | 0.2663 | 0.120* | |
H1C | −0.3489 | 0.9094 | 0.3930 | 0.120* | |
H1D | −0.6814 | 0.8903 | 0.3330 | 0.120* | |
N2 | 0.0176 (11) | 0.7834 (5) | 0.0874 (5) | 0.0545 (13) | |
C2 | −0.1772 (14) | 0.7836 (7) | 0.2042 (7) | 0.0494 (15) | |
N3 | −0.2888 (11) | 0.6545 (6) | 0.3321 (5) | 0.0549 (13) | |
C3 | 0.1196 (13) | 0.6469 (7) | 0.1010 (7) | 0.0592 (16) | |
H3A | 0.2605 | 0.6407 | 0.0239 | 0.071* | |
C4 | 0.0086 (14) | 0.5125 (7) | 0.2352 (7) | 0.0535 (16) | |
C5 | −0.1934 (14) | 0.5251 (7) | 0.3455 (7) | 0.0574 (17) | |
H5A | −0.2648 | 0.4360 | 0.4340 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.0629 (5) | 0.0737 (5) | 0.0811 (6) | −0.0023 (3) | 0.0026 (3) | −0.0229 (4) |
N1 | 0.059 (3) | 0.064 (4) | 0.049 (3) | −0.015 (3) | 0.015 (3) | −0.006 (3) |
C1 | 0.082 (5) | 0.050 (4) | 0.077 (5) | −0.001 (3) | 0.037 (4) | −0.015 (4) |
N2 | 0.048 (3) | 0.061 (3) | 0.042 (3) | 0.003 (2) | 0.015 (2) | −0.019 (3) |
C2 | 0.049 (4) | 0.060 (4) | 0.042 (4) | 0.000 (3) | −0.009 (3) | −0.025 (3) |
N3 | 0.048 (3) | 0.049 (3) | 0.041 (3) | −0.013 (2) | 0.013 (2) | −0.002 (3) |
C3 | 0.039 (3) | 0.074 (4) | 0.058 (4) | −0.001 (3) | 0.013 (3) | −0.028 (4) |
C4 | 0.046 (4) | 0.061 (4) | 0.047 (4) | 0.004 (3) | −0.006 (3) | −0.020 (3) |
C5 | 0.054 (4) | 0.044 (4) | 0.053 (4) | −0.010 (3) | −0.006 (3) | −0.005 (3) |
Br—C4 | 1.876 (6) | N2—C3 | 1.336 (7) |
N1—C2 | 1.347 (7) | C2—N3 | 1.354 (7) |
N1—C1 | 1.424 (7) | N3—C5 | 1.264 (7) |
N1—H1A | 0.8600 | C3—C4 | 1.409 (8) |
C1—H1B | 0.9600 | C3—H3A | 0.9300 |
C1—H1C | 0.9600 | C4—C5 | 1.347 (8) |
C1—H1D | 0.9600 | C5—H5A | 0.9300 |
N2—C2 | 1.333 (7) | ||
C2—N1—C1 | 125.5 (5) | N1—C2—N3 | 118.5 (5) |
C2—N1—H1A | 117.2 | C5—N3—C2 | 118.5 (5) |
C1—N1—H1A | 117.2 | N2—C3—C4 | 118.4 (6) |
N1—C1—H1B | 109.5 | N2—C3—H3A | 120.8 |
N1—C1—H1C | 109.5 | C4—C3—H3A | 120.8 |
H1B—C1—H1C | 109.5 | C5—C4—C3 | 119.4 (6) |
N1—C1—H1D | 109.5 | C5—C4—Br | 122.4 (5) |
H1B—C1—H1D | 109.5 | C3—C4—Br | 118.1 (5) |
H1C—C1—H1D | 109.5 | N3—C5—C4 | 121.9 (5) |
C2—N2—C3 | 117.5 (5) | N3—C5—H5A | 119.1 |
N2—C2—N1 | 117.3 (5) | C4—C5—H5A | 119.1 |
N2—C2—N3 | 124.2 (6) | ||
C3—N2—C2—N1 | 179.6 (5) | C2—N2—C3—C4 | 1.7 (8) |
C3—N2—C2—N3 | −2.9 (8) | N2—C3—C4—C5 | −0.5 (9) |
C1—N1—C2—N2 | −176.7 (6) | N2—C3—C4—Br | −179.6 (4) |
C1—N1—C2—N3 | 5.7 (8) | C2—N3—C5—C4 | −1.4 (9) |
N2—C2—N3—C5 | 2.8 (8) | C3—C4—C5—N3 | 0.4 (9) |
N1—C2—N3—C5 | −179.7 (5) | Br—C4—C5—N3 | 179.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.86 | 2.19 | 3.035 (7) | 169 |
C1—H1B···Brii | 0.96 | 2.85 | 3.751 (8) | 157 |
C5—H5A···N3iii | 0.93 | 2.59 | 3.357 (7) | 140 |
Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y+1, z; (iii) −x−1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C5H6BrN3 |
Mr | 188.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 3.9900 (8), 9.862 (2), 10.006 (2) |
α, β, γ (°) | 61.57 (3), 83.84 (3), 87.45 (3) |
V (Å3) | 344.24 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.88 |
Crystal size (mm) | 0.10 × 0.05 × 0.05 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.591, 0.758 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1454, 1260, 714 |
Rint | 0.089 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.100, 1.00 |
No. of reflections | 1260 |
No. of parameters | 82 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.39 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.8600 | 2.1900 | 3.035 (7) | 169.00 |
C1—H1B···Brii | 0.9600 | 2.8500 | 3.751 (8) | 157.00 |
C5—H5A···N3iii | 0.9300 | 2.5900 | 3.357 (7) | 140.00 |
Symmetry codes: (i) −x, −y+2, −z; (ii) x−1, y+1, z; (iii) −x−1, −y+1, −z+1. |
Acknowledgements
The authors thank Dr Bo-nian Liu from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.
References
Aakeroey, C. B., Desper, J., Elisabeth, E., Helfrich, B. A., Levin, B. & Urbina, J. F. (2005). Z. Kristallogr. 220, 325–332. CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yu, Z. H., Niu, C. W., Ban, S. R., Wen, X. & Xi, Z. (2007). Chin. Sci. Bull. 52, 1929–1941. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some derivatives of pyrimidin are important chemical materials (Yu et al., 2007). Here in this article, the preparation and crystal structure of the title compound is presented. The pyrimidin ring is essentially planar with rms deviation 0.0071. The atoms Br and N1 are coplanar with the pyrimidin ring while C1 lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidin ring and the methylamine group 4.5 (3)°. In the crystal structure, intermolecular C—H···N, C—H···Br and N—H···N hydrogen bonding interactions link the molecules into a two dimensional cluster in (0 1 1) plane (Tab. 1 and Fig. 2).