organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-(2-Nitro­phen­yl)-1-{1-phenyl­sulfonyl-2-[(phenyl­sulfon­yl)meth­yl]-1H-indol-3-yl}prop-2-en-1-one

aDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and bDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 18 November 2011; accepted 28 November 2011; online 3 December 2011)

In the title compound, C30H22N2O7S2, the configuration about the propene C=C bond is E. The indole unit is essentially planar, with a maximum deviation of 0.031 (3) Å. The dihedral angle between the planes of the phenyl rings of the two phenyl­sulfonyl groups is 80.95 (19)°. The central prop-2-ene-1-one group is oriented at a dihedral angle of 44.26 (11)° with respect to the nitro­phenyl ring and at 39.24 (8)° with respect to the indole unit. The S atoms are in a distorted tetra­hedral configuration. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of C—H⋯O hydrogen bonds with an R22(24) graph-set motif. The crystal structure is stabilized by further C—H⋯O inter­actions. Short intra­molecular C—H⋯O contacts result in several S(6) rings.

Related literature

For the biological activity of sulfonamides and their substituted derivatives, see: Brown (1971[Brown, G. M. (1971). Adv. Biochem. 35, 35-40.]). For related structures, see: Seetharaman & Rajan (1995[Seetharaman, J. & Rajan, S. S. (1995). Acta Cryst. C51, 78-80.]); Varghese et al. (1986[Varghese, B., Srinivasan, S., Ramadas, S. R. & Padmanabhan, P. V. (1986). Acta Cryst. C42, 1542-1544.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22N2O7S2

  • Mr = 586.62

  • Monoclinic, P 21 /n

  • a = 7.9905 (2) Å

  • b = 22.2076 (6) Å

  • c = 15.7378 (4) Å

  • β = 102.913 (2)°

  • V = 2722.04 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 32862 measured reflections

  • 6823 independent reflections

  • 4782 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.186

  • S = 1.03

  • 6823 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O2i 0.93 2.56 3.221 (3) 128
C13—H13⋯O1ii 0.93 2.58 3.275 (5) 132
C19—H19⋯O4iii 0.93 2.58 3.222 (4) 126
C2—H2⋯O4 0.93 2.37 2.946 (4) 120
C9—H9A⋯O3 0.97 2.21 2.846 (3) 122
C9—H9B⋯O5 0.97 2.37 3.029 (3) 125
Symmetry codes: (i) -x+1, -y, -z; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides and their substituted derivatives are well known drugs and are commonly used to control diseases caused by bacterial infections (Brown, 1971). Herein we report the synthesis and crystal structure of a novel sulfonamides derivative.

In the title compound (Fig. 1), the indole moiety is essentially planar with a maximum deviation of 0.031 (3)Å for the atom C6. The configuration of the keto group with respect to the olefinic double bond is typically S-cis, with O5—C22—C23—C24 torsion angle -18.1 (4)°. The propenone group exhibits an E configuration with respect to the C23C24 double bond.

The indole moiety, is perpendicular to both the nitro phenyl ring and the phenylsulfonyl ring, bonded to the N atom of the indole ring system with interplanar angles 81.04 (11) and 89.21 (14)°, respectively. The methyl substituted phenylsulfonyl ring is inclined with respect to the indole moiety and the phenylsulfonyl ring, bonded to N atom of the indole ring system at angles of 9.01 (16)° and 80.95 (19)°. The two sulfonyl bound phenyl rings make a dihedral angle of 73.17 (17)° and 52.35 (15)° with the nitro phenyl ring. The nitro-group is inclined at an angle of 27.63 (16)° with the benzene ring, to which it is attached.

The molecular dimensions in the title compound are in excellent agreement with the corresponding molecular dimensions reported in closely related compounds (Varghese et al., 1986; Seetharaman & Rajan, 1995).

The crystal packing is stabilized by intermolecular C—H···O interactions and molecules are stacked along the a axis; the molecules are linked into centrosymmetric dimers via pairs of C—H···O hydrogen bonds with an R22(24) graph-set motif (Bernstein, et al., 1995) (Fig. 2). Intramolecular C—H···O hydrogen bonds generate S(6) ring motifs.

Related literature top

For the biological activity of sulfonamides and their substituted derivatives, see: Brown (1971). For related structures, see: Seetharaman & Rajan (1995); Varghese et al. (1986). For graph-set motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of (E)-1-(2-(bromomethyl)-1-phenylsulfonyl-indol-3-yl)-3-(2- nitrophenyl)prop-2-en-1-one (0.5 g, 0.95 mmol) in dimethylformamide (5 ml), sodium phenylsulfinate (0.18 g, 1.1 mmol) was added and stirred for 5 h at room temperature. After completion of the reaction (monitored by TLC), the mixture was poured over crushed ice (100 g). The solid (0.5 g, 90%) formed was filtered and recrystallized from MeOH to afford the title compund as colorless crystals.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93 and 0.97Å for aryl and methylene H-atoms, respectively, and refined in the riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme, displacement ellipsoids are drawn at 30% probability level. The intramolecular S(6) ring motiffs have been drawn by dashed lines.
[Figure 2] Fig. 2. The packing arrangement of the title compound viewed down c axis, showing the formation of centrosymmetric R22(24) dimer. The dashed lines indicate C—H···O intermolecular interactions.
(E)-3-(2-Nitrophenyl)-1-{1-phenylsulfonyl-2-[(phenylsulfonyl)methyl]- 1H-indol-3-yl}prop-2-en-1-one top
Crystal data top
C30H22N2O7S2F(000) = 1216
Mr = 586.62Dx = 1.431 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 6823 reflections
a = 7.9905 (2) Åθ = 1.6–28.5°
b = 22.2076 (6) ŵ = 0.25 mm1
c = 15.7378 (4) ÅT = 293 K
β = 102.913 (2)°Block, colourless
V = 2722.04 (12) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4782 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.5°, θmin = 1.6°
ω and ϕ scansh = 1010
32862 measured reflectionsk = 2929
6823 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0995P)2 + 1.3462P]
where P = (Fo2 + 2Fc2)/3
6823 reflections(Δ/σ)max < 0.001
370 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C30H22N2O7S2V = 2722.04 (12) Å3
Mr = 586.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9905 (2) ŵ = 0.25 mm1
b = 22.2076 (6) ÅT = 293 K
c = 15.7378 (4) Å0.30 × 0.25 × 0.20 mm
β = 102.913 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4782 reflections with I > 2σ(I)
32862 measured reflectionsRint = 0.030
6823 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.03Δρmax = 1.01 e Å3
6823 reflectionsΔρmin = 0.36 e Å3
370 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5998 (3)0.34651 (11)0.01613 (16)0.0425 (5)
C20.5611 (4)0.39178 (13)0.0784 (2)0.0578 (7)
H20.54050.43120.06340.069*
C30.5547 (4)0.37511 (15)0.1644 (2)0.0664 (8)
H30.52770.40410.20800.080*
C40.5871 (4)0.31678 (16)0.18715 (19)0.0632 (8)
H40.58310.30760.24520.076*
C50.6251 (4)0.27239 (13)0.12536 (17)0.0542 (6)
H50.64730.23330.14100.065*
C60.6299 (3)0.28697 (11)0.03834 (15)0.0424 (5)
C70.6711 (3)0.25300 (10)0.04173 (15)0.0406 (5)
C80.6668 (3)0.29053 (10)0.10888 (15)0.0404 (5)
C90.6959 (3)0.27418 (12)0.20279 (16)0.0470 (6)
H9A0.74410.30860.23780.056*
H9B0.77890.24170.21500.056*
C100.5613 (4)0.25333 (14)0.34824 (17)0.0547 (7)
C110.6166 (5)0.2026 (2)0.3950 (3)0.0902 (12)
H110.62410.16590.36780.108*
C120.6625 (6)0.2085 (3)0.4877 (3)0.127 (2)
H120.70360.17550.52240.152*
C130.6456 (6)0.2634 (4)0.5250 (3)0.124 (2)
H130.67180.26640.58550.149*
C140.5929 (5)0.3125 (3)0.4777 (2)0.0962 (14)
H140.58550.34910.50510.115*
C150.5497 (4)0.30874 (17)0.38864 (19)0.0664 (8)
H150.51290.34280.35530.080*
C160.8420 (3)0.43956 (11)0.13095 (17)0.0469 (6)
C170.8594 (4)0.49609 (13)0.0994 (2)0.0638 (8)
H170.76330.51870.07400.077*
C181.0234 (5)0.51890 (15)0.1062 (3)0.0761 (10)
H181.03830.55760.08660.091*
C191.1633 (4)0.48428 (16)0.1420 (2)0.0733 (9)
H191.27290.49980.14610.088*
C201.1451 (4)0.42794 (16)0.1714 (3)0.0743 (9)
H201.24140.40470.19440.089*
C210.9823 (4)0.40518 (14)0.1672 (2)0.0672 (8)
H210.96820.36700.18870.081*
C220.7121 (3)0.18772 (11)0.05105 (16)0.0459 (5)
C230.6136 (4)0.14762 (11)0.01649 (17)0.0487 (6)
H230.51170.16100.05240.058*
C240.6704 (3)0.09237 (11)0.02613 (16)0.0463 (6)
H240.77850.08220.00670.056*
C250.5766 (3)0.04638 (10)0.08421 (15)0.0421 (5)
C260.6559 (3)0.00166 (10)0.11791 (16)0.0438 (5)
C270.5667 (4)0.04876 (12)0.16277 (19)0.0543 (6)
H270.62520.08030.18210.065*
C280.3914 (4)0.04922 (13)0.1790 (2)0.0611 (7)
H280.32960.08090.20960.073*
C290.3070 (4)0.00207 (13)0.1496 (2)0.0597 (7)
H290.18760.00150.16180.072*
C300.3974 (4)0.04393 (12)0.10241 (18)0.0531 (6)
H300.33760.07450.08180.064*
N10.6179 (3)0.34835 (8)0.07519 (13)0.0428 (4)
N20.8416 (3)0.00196 (11)0.10846 (18)0.0606 (6)
O10.3735 (3)0.29516 (9)0.20506 (12)0.0577 (5)
O20.4684 (3)0.19066 (9)0.20544 (16)0.0751 (7)
O30.6243 (3)0.39890 (9)0.21694 (14)0.0672 (6)
O40.5114 (3)0.45290 (8)0.08011 (16)0.0676 (6)
O50.8204 (3)0.16859 (9)0.11194 (12)0.0604 (5)
O60.9183 (3)0.04543 (11)0.1026 (2)0.0877 (8)
O70.9119 (3)0.05005 (12)0.1109 (3)0.1135 (12)
S10.50305 (9)0.25119 (3)0.23386 (4)0.04646 (18)
S20.63430 (9)0.41325 (3)0.13067 (5)0.0503 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (12)0.0404 (12)0.0460 (13)0.0016 (9)0.0107 (10)0.0032 (10)
C20.0551 (15)0.0460 (14)0.0715 (19)0.0000 (12)0.0126 (13)0.0161 (13)
C30.0644 (18)0.072 (2)0.0571 (17)0.0060 (15)0.0018 (14)0.0269 (15)
C40.0643 (18)0.080 (2)0.0420 (14)0.0120 (16)0.0059 (12)0.0064 (14)
C50.0610 (16)0.0578 (16)0.0434 (14)0.0039 (13)0.0105 (12)0.0020 (11)
C60.0423 (12)0.0427 (12)0.0422 (13)0.0001 (10)0.0096 (10)0.0008 (9)
C70.0473 (13)0.0368 (11)0.0382 (12)0.0033 (9)0.0105 (9)0.0011 (9)
C80.0468 (12)0.0344 (11)0.0408 (12)0.0001 (9)0.0117 (10)0.0018 (9)
C90.0557 (14)0.0454 (13)0.0406 (13)0.0001 (11)0.0121 (11)0.0007 (10)
C100.0529 (15)0.0711 (18)0.0394 (13)0.0053 (13)0.0088 (11)0.0095 (12)
C110.096 (3)0.103 (3)0.077 (2)0.036 (2)0.030 (2)0.041 (2)
C120.096 (3)0.201 (6)0.088 (3)0.062 (4)0.027 (3)0.080 (4)
C130.084 (3)0.239 (7)0.048 (2)0.048 (4)0.0111 (19)0.009 (3)
C140.075 (2)0.159 (4)0.054 (2)0.002 (3)0.0134 (18)0.026 (2)
C150.0710 (19)0.082 (2)0.0470 (16)0.0044 (16)0.0143 (14)0.0112 (14)
C160.0493 (13)0.0390 (12)0.0583 (15)0.0051 (10)0.0247 (11)0.0107 (10)
C170.0608 (17)0.0495 (15)0.089 (2)0.0012 (13)0.0323 (16)0.0023 (14)
C180.075 (2)0.0549 (18)0.111 (3)0.0139 (16)0.048 (2)0.0015 (17)
C190.0589 (18)0.074 (2)0.098 (3)0.0205 (16)0.0417 (18)0.0206 (18)
C200.0502 (16)0.070 (2)0.103 (3)0.0043 (15)0.0174 (17)0.0066 (18)
C210.0603 (17)0.0485 (16)0.095 (2)0.0012 (13)0.0212 (16)0.0032 (15)
C220.0547 (14)0.0403 (12)0.0437 (13)0.0073 (11)0.0133 (11)0.0016 (10)
C230.0586 (15)0.0385 (12)0.0474 (13)0.0084 (11)0.0086 (11)0.0010 (10)
C240.0546 (14)0.0399 (12)0.0461 (13)0.0059 (10)0.0151 (11)0.0004 (10)
C250.0513 (13)0.0323 (11)0.0447 (13)0.0053 (9)0.0148 (10)0.0043 (9)
C260.0495 (13)0.0335 (11)0.0502 (14)0.0042 (10)0.0150 (11)0.0005 (9)
C270.0649 (17)0.0376 (13)0.0623 (17)0.0009 (11)0.0185 (13)0.0036 (11)
C280.0675 (18)0.0464 (15)0.0667 (18)0.0111 (13)0.0091 (14)0.0007 (13)
C290.0491 (15)0.0585 (17)0.0708 (19)0.0045 (13)0.0118 (13)0.0112 (14)
C300.0554 (15)0.0482 (14)0.0582 (16)0.0116 (12)0.0181 (12)0.0087 (12)
N10.0537 (12)0.0294 (9)0.0477 (11)0.0006 (8)0.0162 (9)0.0028 (8)
N20.0545 (14)0.0492 (13)0.0818 (17)0.0050 (11)0.0230 (12)0.0124 (12)
O10.0597 (12)0.0545 (11)0.0533 (11)0.0029 (9)0.0005 (9)0.0045 (8)
O20.0983 (18)0.0445 (11)0.0851 (16)0.0140 (11)0.0261 (13)0.0162 (10)
O30.0870 (15)0.0531 (11)0.0750 (14)0.0218 (10)0.0464 (12)0.0249 (10)
O40.0541 (11)0.0398 (10)0.1143 (18)0.0102 (8)0.0298 (11)0.0046 (10)
O50.0734 (13)0.0507 (11)0.0512 (11)0.0185 (9)0.0009 (9)0.0003 (8)
O60.0656 (14)0.0686 (15)0.141 (2)0.0149 (12)0.0477 (15)0.0346 (15)
O70.0705 (16)0.0616 (15)0.209 (4)0.0209 (13)0.0318 (19)0.0169 (19)
S10.0583 (4)0.0381 (3)0.0422 (3)0.0027 (3)0.0095 (3)0.0018 (2)
S20.0520 (4)0.0350 (3)0.0717 (5)0.0048 (3)0.0303 (3)0.0119 (3)
Geometric parameters (Å, º) top
C1—C21.390 (3)C17—C181.386 (4)
C1—C61.402 (3)C17—H170.9300
C1—N11.413 (3)C18—C191.370 (5)
C2—C31.393 (4)C18—H180.9300
C2—H20.9300C19—C201.353 (5)
C3—C41.384 (5)C19—H190.9300
C3—H30.9300C20—C211.383 (4)
C4—C51.370 (4)C20—H200.9300
C4—H40.9300C21—H210.9300
C5—C61.399 (4)C22—O51.215 (3)
C5—H50.9300C22—C231.473 (4)
C6—C71.442 (3)C23—C241.329 (3)
C7—C81.352 (3)C23—H230.9300
C7—C221.486 (3)C24—C251.461 (3)
C8—N11.411 (3)C24—H240.9300
C8—C91.489 (3)C25—C301.397 (4)
C9—S11.792 (3)C25—C261.404 (3)
C9—H9A0.9700C26—C271.369 (4)
C9—H9B0.9700C26—N21.458 (3)
C10—C111.364 (4)C27—C281.367 (4)
C10—C151.398 (4)C27—H270.9300
C10—S11.756 (3)C28—C291.380 (4)
C11—C121.428 (7)C28—H280.9300
C11—H110.9300C29—C301.370 (4)
C12—C131.372 (8)C29—H290.9300
C12—H120.9300C30—H300.9300
C13—C141.335 (7)N1—S21.6749 (19)
C13—H130.9300N2—O61.211 (3)
C14—C151.369 (5)N2—O71.212 (3)
C14—H140.9300O1—S11.422 (2)
C15—H150.9300O2—S11.424 (2)
C16—C171.368 (4)O3—S21.414 (2)
C16—C211.371 (4)O4—S21.423 (2)
C16—S21.759 (3)
C2—C1—C6122.0 (2)C17—C18—H18120.1
C2—C1—N1130.7 (2)C20—C19—C18121.3 (3)
C6—C1—N1107.3 (2)C20—C19—H19119.4
C1—C2—C3116.6 (3)C18—C19—H19119.4
C1—C2—H2121.7C19—C20—C21119.6 (3)
C3—C2—H2121.7C19—C20—H20120.2
C4—C3—C2122.1 (3)C21—C20—H20120.2
C4—C3—H3119.0C16—C21—C20119.3 (3)
C2—C3—H3119.0C16—C21—H21120.3
C5—C4—C3121.0 (3)C20—C21—H21120.3
C5—C4—H4119.5O5—C22—C23121.9 (2)
C3—C4—H4119.5O5—C22—C7121.4 (2)
C4—C5—C6118.8 (3)C23—C22—C7116.6 (2)
C4—C5—H5120.6C24—C23—C22120.0 (2)
C6—C5—H5120.6C24—C23—H23120.0
C5—C6—C1119.6 (2)C22—C23—H23120.0
C5—C6—C7133.2 (2)C23—C24—C25125.2 (2)
C1—C6—C7107.1 (2)C23—C24—H24117.4
C8—C7—C6108.6 (2)C25—C24—H24117.4
C8—C7—C22124.6 (2)C30—C25—C26114.9 (2)
C6—C7—C22126.8 (2)C30—C25—C24121.0 (2)
C7—C8—N1108.7 (2)C26—C25—C24123.7 (2)
C7—C8—C9126.9 (2)C27—C26—C25123.3 (2)
N1—C8—C9124.3 (2)C27—C26—N2116.7 (2)
C8—C9—S1112.79 (18)C25—C26—N2120.0 (2)
C8—C9—H9A109.0C28—C27—C26119.7 (3)
S1—C9—H9A109.0C28—C27—H27120.1
C8—C9—H9B109.0C26—C27—H27120.1
S1—C9—H9B109.0C27—C28—C29119.2 (3)
H9A—C9—H9B107.8C27—C28—H28120.4
C11—C10—C15121.9 (3)C29—C28—H28120.4
C11—C10—S1120.7 (3)C30—C29—C28120.6 (3)
C15—C10—S1117.4 (2)C30—C29—H29119.7
C10—C11—C12117.0 (4)C28—C29—H29119.7
C10—C11—H11121.5C29—C30—C25122.2 (3)
C12—C11—H11121.5C29—C30—H30118.9
C13—C12—C11119.4 (4)C25—C30—H30118.9
C13—C12—H12120.3C8—N1—C1108.23 (18)
C11—C12—H12120.3C8—N1—S2127.19 (17)
C14—C13—C12122.4 (4)C1—N1—S2122.25 (16)
C14—C13—H13118.8O6—N2—O7122.5 (3)
C12—C13—H13118.8O6—N2—C26119.4 (2)
C13—C14—C15119.9 (5)O7—N2—C26118.0 (2)
C13—C14—H14120.1O1—S1—O2118.14 (14)
C15—C14—H14120.1O1—S1—C10108.39 (13)
C14—C15—C10119.4 (4)O2—S1—C10109.61 (15)
C14—C15—H15120.3O1—S1—C9109.06 (12)
C10—C15—H15120.3O2—S1—C9107.57 (14)
C17—C16—C21121.5 (3)C10—S1—C9103.01 (13)
C17—C16—S2118.4 (2)O3—S2—O4119.76 (14)
C21—C16—S2120.0 (2)O3—S2—N1106.98 (11)
C16—C17—C18118.6 (3)O4—S2—N1106.10 (12)
C16—C17—H17120.7O3—S2—C16109.18 (13)
C18—C17—H17120.7O4—S2—C16109.20 (13)
C19—C18—C17119.8 (3)N1—S2—C16104.53 (11)
C19—C18—H18120.1
C6—C1—C2—C30.4 (4)C23—C24—C25—C26155.7 (3)
N1—C1—C2—C3179.2 (3)C30—C25—C26—C272.2 (4)
C1—C2—C3—C40.8 (4)C24—C25—C26—C27171.1 (2)
C2—C3—C4—C50.9 (5)C30—C25—C26—N2175.7 (2)
C3—C4—C5—C60.3 (5)C24—C25—C26—N211.0 (4)
C4—C5—C6—C11.4 (4)C25—C26—C27—C282.3 (4)
C4—C5—C6—C7177.1 (3)N2—C26—C27—C28175.7 (3)
C2—C1—C6—C51.5 (4)C26—C27—C28—C290.2 (4)
N1—C1—C6—C5178.2 (2)C27—C28—C29—C301.8 (4)
C2—C1—C6—C7178.2 (2)C28—C29—C30—C251.9 (4)
N1—C1—C6—C71.5 (3)C26—C25—C30—C290.1 (4)
C5—C6—C7—C8175.8 (3)C24—C25—C30—C29173.4 (3)
C1—C6—C7—C80.3 (3)C7—C8—N1—C12.9 (3)
C5—C6—C7—C224.2 (5)C9—C8—N1—C1179.0 (2)
C1—C6—C7—C22179.7 (2)C7—C8—N1—S2165.70 (19)
C6—C7—C8—N12.0 (3)C9—C8—N1—S218.2 (3)
C22—C7—C8—N1178.1 (2)C2—C1—N1—C8177.0 (3)
C6—C7—C8—C9178.0 (2)C6—C1—N1—C82.7 (3)
C22—C7—C8—C92.1 (4)C2—C1—N1—S213.2 (4)
C7—C8—C9—S188.4 (3)C6—C1—N1—S2166.49 (17)
N1—C8—C9—S187.1 (3)C27—C26—N2—O6150.7 (3)
C15—C10—C11—C120.0 (6)C25—C26—N2—O627.4 (4)
S1—C10—C11—C12179.5 (3)C27—C26—N2—O725.9 (4)
C10—C11—C12—C131.5 (7)C25—C26—N2—O7156.1 (3)
C11—C12—C13—C142.3 (8)C11—C10—S1—O1149.5 (3)
C12—C13—C14—C151.5 (8)C15—C10—S1—O130.9 (3)
C13—C14—C15—C100.0 (6)C11—C10—S1—O219.3 (3)
C11—C10—C15—C140.8 (5)C15—C10—S1—O2161.1 (2)
S1—C10—C15—C14179.7 (3)C11—C10—S1—C995.0 (3)
C21—C16—C17—C181.2 (5)C15—C10—S1—C984.6 (3)
S2—C16—C17—C18174.7 (3)C8—C9—S1—O150.7 (2)
C16—C17—C18—C191.6 (5)C8—C9—S1—O278.5 (2)
C17—C18—C19—C200.3 (6)C8—C9—S1—C10165.71 (19)
C18—C19—C20—C211.4 (6)C8—N1—S2—O328.1 (2)
C17—C16—C21—C200.5 (5)C1—N1—S2—O3171.30 (19)
S2—C16—C21—C20176.3 (3)C8—N1—S2—O4157.0 (2)
C19—C20—C21—C161.8 (5)C1—N1—S2—O442.4 (2)
C8—C7—C22—O537.3 (4)C8—N1—S2—C1687.6 (2)
C6—C7—C22—O5142.6 (3)C1—N1—S2—C1673.0 (2)
C8—C7—C22—C23141.9 (3)C17—C16—S2—O3121.2 (2)
C6—C7—C22—C2338.1 (4)C21—C16—S2—O354.7 (3)
O5—C22—C23—C2418.1 (4)C17—C16—S2—O411.4 (3)
C7—C22—C23—C24162.6 (2)C21—C16—S2—O4172.6 (2)
C22—C23—C24—C25173.4 (2)C17—C16—S2—N1124.6 (2)
C23—C24—C25—C3031.4 (4)C21—C16—S2—N159.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O2i0.932.563.221 (3)128
C13—H13···O1ii0.932.583.275 (5)132
C19—H19···O4iii0.932.583.222 (4)126
C2—H2···O40.932.372.946 (4)120
C9—H9A···O30.972.212.846 (3)122
C9—H9B···O50.972.373.029 (3)125
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC30H22N2O7S2
Mr586.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.9905 (2), 22.2076 (6), 15.7378 (4)
β (°) 102.913 (2)
V3)2722.04 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32862, 6823, 4782
Rint0.030
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.186, 1.03
No. of reflections6823
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.36

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O2i0.932.563.221 (3)128.0
C13—H13···O1ii0.932.583.275 (5)132.1
C19—H19···O4iii0.932.583.222 (4)126.2
C2—H2···O40.932.372.946 (4)120.0
C9—H9A···O30.972.212.846 (3)122.0
C9—H9B···O50.972.373.029 (3)125.0
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z.
 

Acknowledgements

SK and KS thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Department of Physics, RKM Vivekananda College, for providing facilities in the department for carrying out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, G. M. (1971). Adv. Biochem. 35, 35–40.  CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSeetharaman, J. & Rajan, S. S. (1995). Acta Cryst. C51, 78–80.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarghese, B., Srinivasan, S., Ramadas, S. R. & Padmanabhan, P. V. (1986). Acta Cryst. C42, 1542–1544.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds