organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o29-o30

Tri­methyl­ammonium 2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, and bDepartment of Chemistry, Faculty of Engineering and Technology, SRM University, Kattankulathur 603 203, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 15 August 2011; accepted 30 November 2011; online 7 December 2011)

In the title barbiturate salt (trivial name: trimethyl­ammonium 2,4,6-trinitro­phenyl­barbiturate), C3H10N+·C10H4N5O9, the asymmetric unit contains two sets of anion–cation moieties. The dihedral angle between the rings in the anions are 44.0 (3) and 45.7 (3)°. Adjacent anions are connected into ribbons along [100] through R22(8) ring motifs formed by N—H⋯O hydrogen bonds involving the barbiturate rings. Attached to both sides of these ribbons via N—H⋯O hydrogen bonds are the trimethyl­ammonium cations. C—H⋯O hydrogen bonds are also observed.

Related literature

For the biological activity of barbiturates, see: Nogrady (1988[Nogrady, T. (1988). Medicinal Chemistry. New York: Oxford University Press Inc.]); Gitto et al. (2006[Gitto, R. S., Caruso, R., Pagano, B., De Luca, L., Citraro, R., Russo, E., De Sarro, G. & Chimirri, A. (2006). J. Med. Chem. 49, 5618-5622.]). For side effects of barbiturates, see: Hardman & Limbird (2001[Hardman, J. G. & Limbird, L. E. (2001). The Pharmacological Basis of Therapeutics, 10th ed., pp. 1143-1170. New York: McGraw-Hill.]); Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10-17.]). For barbit­ur­ates related to the title compound, see: Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]); Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]).

[Scheme 1]

Experimental

Crystal data
  • C3H10N+·C10H4N5O9

  • Mr = 398.30

  • Monoclinic, P 21 /c

  • a = 11.9828 (12) Å

  • b = 30.802 (3) Å

  • c = 9.5516 (11) Å

  • β = 105.895 (6)°

  • V = 3390.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEX II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.90, Tmax = 0.97

  • 31796 measured reflections

  • 6580 independent reflections

  • 4977 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.123

  • S = 1.02

  • 6580 reflections

  • 536 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O17i 0.85 (2) 1.94 (2) 2.780 (2) 170 (2)
N5—H5⋯O16 0.86 (3) 1.93 (3) 2.778 (2) 170 (2)
N9—H9⋯O8 0.85 (2) 1.95 (2) 2.790 (2) 172 (2)
N10—H10⋯O7ii 0.83 (2) 1.96 (2) 2.786 (2) 173 (2)
N11—H11A⋯O9iii 0.94 (3) 1.82 (3) 2.730 (2) 160 (3)
N12—H12A⋯O18 0.94 (3) 2.02 (3) 2.803 (3) 139 (3)
N12—H12A⋯O5iv 0.94 (3) 2.16 (3) 2.856 (3) 130 (2)
C2—H2⋯O4v 0.93 2.58 3.265 (3) 131
C16—H16⋯O2vi 0.93 2.27 3.146 (3) 156
C24—H24B⋯O5 0.96 2.51 3.448 (4) 164
C24—H24C⋯O10iii 0.96 2.57 3.457 (4) 154
C26—H26B⋯O18iv 0.96 2.50 3.400 (5) 156
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1; (v) -x, -y, -z+2; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Barbiturates are biologically active molecules (Nogrady, 1988; Gitto et al., 2006). Many reported barbiturates have noticeable side effects (Hardman & Limbird, 2001; Rana et al., 2007). The growing interest in preparing new barbiturates prompted the present work. A barbiturate previously synthesized in our laboratory from 1-chloro-2,4-dinitrobenzene, barbituric acid and triethylamine has only one anion-cation pair in the asymmetric unit (Kalaivani et al., 2008; Kalaivani & Malarvizhi, 2009). However, the asymmetric unit of the title barbiturate (Scheme), prepared from 1-chloro-2,4,6-trinitrobenzene, barbituric acid and trimethylamine, comprises two sets of anion-cation moieties (Fig. 1). Two sets of R22(8) hydrogen bond motifs are noticed between the adjacent anions. The hydrogen bonds N9—H9···O8 and N5—H5···O16 form the first set of R22(8) motif and the hydrogen bonds N10—H10···O7 and N4—H4···O17 form the second set of R22(8) motif. The aggregations of these motifs form an infinite one dimensional anionic ribbon extending along [100] direction. To either side of the anionic ribbon the trimethylammonium cations are hydrogen bonded through N11—H11A···O9 and N12—H12A···O18 hydrogen bonds in the terminal positions as depicted in Fig. 2. Furthermore a number of weak C—H···O interactions (cf. Table 1) contribute to the three-dimensional coherence of the crystal structure.

Related literature top

For the biological activity of barbiturates, see: Nogrady (1988); Gitto et al. (2006). For side effects of barbiturates, see: Hardman & Limbird (2001); Rana et al. (2007). For barbiturates related to the title compound, see: Kalaivani et al. (2008); Kalaivani & Malarvizhi (2009).

Experimental top

1-Chloro-2,4,6-trinitrobenzene (2.5 g, 0.01 mol) in 20 ml of absolute ethanol was mixed with barbituric acid (1.3 g, 0.01 mol) in 30 ml of absolute ethanol and heated to 40°C. Trimethylamine (3 ml ~0.05 mol) was then added and the mixture was shaken well for 2 hrs. Dark maroon red crystals obtained were filtered. The filtered crystals were powdered well and washed with 50 ml of dry ether and recrystallized from absolute ethanol (yield 80%; m.p. 245 °C). Good quality crystals, suitable for single-crystal X-ray studies were obtained by slow evaporation of the ethanolic solution of title compound at room temperature.

Refinement top

The six N-bound H atoms were located in a difference map and were freely refined without constraints. The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C) for non-methyl and Uiso(H) = 1.5Ueq(C) for methyl H.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of (I) showing 30% probability displacement ellipsoids and the atomic numbering scheme.
[Figure 2] Fig. 2. View of a hydrogen bonded ribbon of barbiturate anions with the attached trimethylammonium cations.
Trimethylammonium 2,6-dioxo-5-(2,4,6-trinitrophenyl)-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C3H10N+·C10H4N5O9F(000) = 1648
Mr = 398.30Dx = 1.561 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8488 reflections
a = 11.9828 (12) Åθ = 2.2–29.2°
b = 30.802 (3) ŵ = 0.13 mm1
c = 9.5516 (11) ÅT = 296 K
β = 105.895 (6)°Block, brown
V = 3390.6 (6) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEX II CCD
diffractometer
6580 independent reflections
Radiation source: fine-focus sealed tube4977 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and ϕ scanθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.90, Tmax = 0.97k = 3737
31796 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0538P)2 + 1.671P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
6580 reflectionsΔρmax = 0.34 e Å3
536 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0021 (4)
Crystal data top
C3H10N+·C10H4N5O9V = 3390.6 (6) Å3
Mr = 398.30Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.9828 (12) ŵ = 0.13 mm1
b = 30.802 (3) ÅT = 296 K
c = 9.5516 (11) Å0.30 × 0.20 × 0.20 mm
β = 105.895 (6)°
Data collection top
Bruker Kappa APEX II CCD
diffractometer
6580 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4977 reflections with I > 2σ(I)
Tmin = 0.90, Tmax = 0.97Rint = 0.030
31796 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
6580 reflectionsΔρmin = 0.30 e Å3
536 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1280 (2)0.04978 (7)0.6975 (3)0.0520 (6)
C20.07387 (19)0.02594 (7)0.7794 (3)0.0507 (6)
H20.03960.03930.84440.061*
C30.07113 (16)0.01807 (6)0.7636 (2)0.0379 (5)
C40.11767 (14)0.04061 (6)0.6661 (2)0.0301 (4)
C50.16732 (16)0.01315 (6)0.5837 (2)0.0371 (4)
C60.17509 (19)0.03096 (7)0.5989 (3)0.0492 (6)
H60.21160.04760.54310.059*
C70.11546 (15)0.08708 (6)0.6514 (2)0.0294 (4)
C80.01360 (15)0.11016 (6)0.6479 (2)0.0284 (4)
C90.10703 (16)0.17708 (6)0.6088 (2)0.0330 (4)
C100.21401 (15)0.10922 (6)0.6360 (2)0.0314 (4)
C110.57418 (19)0.33262 (6)0.5258 (2)0.0418 (5)
C120.49039 (18)0.30675 (6)0.4401 (2)0.0386 (5)
H120.42600.31860.37350.046*
C130.50449 (16)0.26296 (6)0.4557 (2)0.0322 (4)
C140.59422 (15)0.24254 (6)0.5597 (2)0.0288 (4)
C150.67477 (16)0.27170 (6)0.6415 (2)0.0321 (4)
C160.66866 (19)0.31572 (6)0.6246 (2)0.0417 (5)
H160.72720.33360.67880.050*
C170.60067 (15)0.19623 (6)0.5822 (2)0.0303 (4)
C180.50129 (15)0.17370 (6)0.5898 (2)0.0314 (4)
C190.61320 (16)0.10691 (6)0.6373 (2)0.0372 (5)
C200.70684 (16)0.17435 (6)0.6027 (2)0.0326 (4)
C210.0029 (3)0.19000 (12)1.0012 (4)0.0901 (10)
H21A0.01740.15970.98040.135*
H21B0.01290.20570.91170.135*
H21C0.05630.20081.05150.135*
C220.1314 (3)0.17431 (12)1.2299 (4)0.0930 (11)
H22A0.12290.14351.21470.140*
H22B0.07440.18451.27570.140*
H22C0.20770.18051.29130.140*
C230.1971 (3)0.18289 (12)1.0133 (4)0.0934 (11)
H23A0.27470.18781.07270.140*
H23B0.18370.19970.92550.140*
H23C0.18710.15260.98920.140*
C240.4800 (3)0.00605 (12)0.8010 (4)0.0884 (10)
H24A0.44930.01360.85930.133*
H24B0.42140.01220.71230.133*
H24C0.50330.03250.85380.133*
C250.6768 (3)0.01717 (14)0.8925 (4)0.0988 (12)
H25A0.65660.03530.96350.148*
H25B0.69750.01120.93290.148*
H25C0.74140.02970.86560.148*
C260.5432 (5)0.05449 (12)0.6919 (5)0.137 (2)
H26A0.61010.07160.69140.205*
H26B0.49920.04870.59350.205*
H26C0.49590.07020.74110.205*
N10.1341 (2)0.09686 (8)0.7141 (3)0.0774 (8)
N20.02277 (18)0.04092 (7)0.8676 (2)0.0520 (5)
N30.20994 (17)0.02933 (6)0.4651 (2)0.0493 (5)
N40.01520 (13)0.15431 (5)0.62608 (18)0.0327 (4)
N50.20410 (14)0.15362 (5)0.61741 (19)0.0352 (4)
N60.5592 (2)0.37934 (6)0.5148 (2)0.0626 (6)
N70.42027 (15)0.23778 (6)0.34613 (19)0.0409 (4)
N80.76942 (14)0.25697 (5)0.7650 (2)0.0396 (4)
N90.51370 (14)0.12959 (5)0.6177 (2)0.0383 (4)
N100.70604 (14)0.13030 (5)0.6297 (2)0.0380 (4)
N110.11542 (19)0.19574 (6)1.0921 (2)0.0538 (5)
N120.5802 (2)0.01380 (7)0.7670 (2)0.0569 (5)
O10.0869 (2)0.11310 (7)0.7939 (5)0.1399 (14)
O20.1908 (3)0.11639 (7)0.6489 (2)0.1265 (13)
O30.08047 (18)0.06930 (6)0.9405 (2)0.0659 (5)
O40.06914 (17)0.02796 (7)0.8806 (2)0.0788 (6)
O50.29880 (18)0.01269 (7)0.4523 (2)0.0780 (6)
O60.15519 (15)0.05664 (6)0.38352 (18)0.0575 (4)
O70.07663 (10)0.09318 (4)0.65984 (16)0.0365 (3)
O80.30776 (11)0.09178 (4)0.64047 (17)0.0423 (4)
O90.10310 (12)0.21575 (4)0.58780 (19)0.0506 (4)
O100.4647 (2)0.39359 (6)0.4567 (3)0.0874 (7)
O110.6406 (2)0.40236 (6)0.5663 (3)0.1089 (9)
O120.32075 (13)0.25037 (6)0.3120 (2)0.0589 (5)
O130.45480 (14)0.20692 (5)0.29116 (18)0.0547 (4)
O140.86373 (13)0.27312 (5)0.7787 (2)0.0605 (5)
O150.74674 (14)0.23106 (5)0.84766 (17)0.0493 (4)
O160.40506 (11)0.19019 (4)0.57728 (17)0.0403 (3)
O170.79831 (11)0.19122 (4)0.59685 (18)0.0438 (4)
O180.61782 (13)0.06785 (5)0.6586 (2)0.0563 (5)
H40.046 (2)0.1686 (7)0.619 (2)0.037 (6)*
H50.263 (2)0.1680 (8)0.607 (3)0.050 (7)*
H90.455 (2)0.1158 (7)0.627 (2)0.042 (6)*
H100.769 (2)0.1172 (7)0.640 (2)0.046 (6)*
H11A0.123 (3)0.2258 (11)1.111 (3)0.091 (10)*
H12A0.605 (3)0.0039 (10)0.701 (3)0.082 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0435 (12)0.0251 (11)0.0709 (16)0.0001 (9)0.0121 (11)0.0031 (10)
C20.0354 (11)0.0391 (12)0.0711 (16)0.0048 (9)0.0038 (11)0.0197 (11)
C30.0274 (9)0.0334 (10)0.0516 (12)0.0023 (8)0.0089 (9)0.0086 (9)
C40.0186 (8)0.0273 (9)0.0423 (11)0.0002 (7)0.0046 (7)0.0010 (8)
C50.0285 (10)0.0337 (10)0.0459 (12)0.0032 (8)0.0049 (8)0.0036 (9)
C60.0440 (12)0.0348 (12)0.0580 (14)0.0105 (9)0.0043 (10)0.0105 (10)
C70.0226 (9)0.0255 (9)0.0406 (11)0.0002 (7)0.0095 (7)0.0016 (8)
C80.0240 (9)0.0277 (9)0.0336 (10)0.0004 (7)0.0081 (7)0.0008 (7)
C90.0278 (9)0.0263 (10)0.0427 (11)0.0017 (7)0.0059 (8)0.0004 (8)
C100.0245 (9)0.0288 (10)0.0408 (11)0.0003 (7)0.0089 (8)0.0009 (8)
C110.0509 (12)0.0252 (10)0.0488 (13)0.0038 (9)0.0130 (10)0.0035 (9)
C120.0382 (11)0.0354 (11)0.0426 (12)0.0077 (8)0.0118 (9)0.0050 (9)
C130.0265 (9)0.0338 (10)0.0384 (11)0.0005 (8)0.0123 (8)0.0006 (8)
C140.0233 (9)0.0283 (9)0.0389 (10)0.0007 (7)0.0153 (8)0.0004 (8)
C150.0274 (9)0.0295 (10)0.0400 (11)0.0016 (7)0.0103 (8)0.0011 (8)
C160.0427 (11)0.0287 (10)0.0512 (13)0.0056 (9)0.0086 (10)0.0027 (9)
C170.0236 (9)0.0265 (9)0.0432 (11)0.0007 (7)0.0133 (8)0.0007 (8)
C180.0248 (9)0.0280 (9)0.0436 (11)0.0008 (7)0.0131 (8)0.0007 (8)
C190.0317 (10)0.0266 (10)0.0558 (13)0.0001 (8)0.0163 (9)0.0003 (9)
C200.0269 (9)0.0252 (9)0.0493 (12)0.0001 (7)0.0166 (8)0.0011 (8)
C210.077 (2)0.102 (3)0.090 (2)0.0316 (19)0.0213 (18)0.024 (2)
C220.103 (3)0.100 (3)0.068 (2)0.043 (2)0.0111 (18)0.0178 (18)
C230.082 (2)0.116 (3)0.091 (2)0.029 (2)0.0376 (19)0.039 (2)
C240.0619 (18)0.112 (3)0.096 (2)0.0006 (18)0.0298 (17)0.028 (2)
C250.0619 (19)0.140 (3)0.087 (2)0.003 (2)0.0083 (17)0.040 (2)
C260.227 (6)0.081 (3)0.130 (4)0.076 (3)0.098 (4)0.039 (2)
N10.0761 (17)0.0366 (13)0.0909 (19)0.0052 (12)0.0255 (14)0.0109 (13)
N20.0495 (12)0.0541 (12)0.0587 (13)0.0159 (10)0.0256 (10)0.0248 (10)
N30.0479 (11)0.0517 (11)0.0497 (11)0.0081 (9)0.0159 (9)0.0082 (9)
N40.0220 (8)0.0269 (8)0.0493 (10)0.0040 (6)0.0099 (7)0.0017 (7)
N50.0226 (8)0.0275 (8)0.0561 (11)0.0036 (6)0.0118 (7)0.0042 (7)
N60.0797 (16)0.0325 (11)0.0665 (14)0.0076 (11)0.0046 (12)0.0024 (10)
N70.0344 (9)0.0435 (10)0.0429 (10)0.0040 (8)0.0071 (8)0.0002 (8)
N80.0327 (9)0.0342 (9)0.0491 (11)0.0004 (7)0.0064 (8)0.0017 (8)
N90.0260 (8)0.0278 (9)0.0655 (12)0.0035 (7)0.0201 (8)0.0033 (8)
N100.0246 (8)0.0279 (9)0.0656 (12)0.0049 (7)0.0190 (8)0.0027 (8)
N110.0733 (14)0.0327 (10)0.0583 (13)0.0046 (9)0.0231 (11)0.0020 (9)
N120.0711 (14)0.0527 (12)0.0529 (12)0.0156 (10)0.0272 (11)0.0002 (10)
O10.0936 (19)0.0485 (14)0.275 (4)0.0012 (12)0.047 (2)0.064 (2)
O20.250 (4)0.0466 (12)0.0588 (13)0.0597 (18)0.0027 (17)0.0002 (10)
O30.0789 (13)0.0684 (12)0.0515 (11)0.0184 (11)0.0197 (9)0.0022 (9)
O40.0603 (11)0.0869 (14)0.1081 (16)0.0190 (10)0.0548 (11)0.0474 (12)
O50.0752 (13)0.0907 (14)0.0825 (14)0.0325 (11)0.0459 (11)0.0048 (11)
O60.0557 (10)0.0671 (11)0.0479 (10)0.0038 (9)0.0113 (8)0.0038 (8)
O70.0227 (6)0.0326 (7)0.0565 (9)0.0023 (5)0.0148 (6)0.0072 (6)
O80.0217 (7)0.0344 (8)0.0731 (10)0.0015 (5)0.0169 (6)0.0040 (7)
O90.0389 (8)0.0248 (7)0.0857 (12)0.0013 (6)0.0131 (8)0.0057 (7)
O100.1006 (17)0.0439 (11)0.0996 (16)0.0302 (11)0.0035 (13)0.0065 (10)
O110.1089 (18)0.0312 (10)0.151 (2)0.0119 (11)0.0244 (16)0.0059 (12)
O120.0320 (8)0.0625 (11)0.0721 (11)0.0003 (7)0.0030 (8)0.0016 (9)
O130.0582 (10)0.0518 (10)0.0515 (10)0.0026 (8)0.0108 (8)0.0162 (8)
O140.0315 (8)0.0539 (10)0.0856 (13)0.0096 (7)0.0015 (8)0.0053 (9)
O150.0519 (9)0.0494 (9)0.0450 (9)0.0027 (7)0.0102 (7)0.0097 (7)
O160.0236 (7)0.0332 (7)0.0684 (10)0.0024 (5)0.0197 (6)0.0052 (7)
O170.0264 (7)0.0306 (7)0.0810 (11)0.0005 (6)0.0261 (7)0.0031 (7)
O180.0430 (9)0.0255 (8)0.1043 (14)0.0015 (6)0.0269 (9)0.0071 (8)
Geometric parameters (Å, º) top
C1—C61.354 (4)C21—N111.456 (4)
C1—C21.360 (4)C21—H21A0.9600
C1—N11.458 (3)C21—H21B0.9600
C2—C31.363 (3)C21—H21C0.9600
C2—H20.9300C22—N111.438 (4)
C3—C41.395 (3)C22—H22A0.9600
C3—N21.460 (3)C22—H22B0.9600
C4—C51.395 (3)C22—H22C0.9600
C4—C71.438 (3)C23—N111.443 (4)
C5—C61.367 (3)C23—H23A0.9600
C5—N31.452 (3)C23—H23B0.9600
C6—H60.9300C23—H23C0.9600
C7—C81.405 (2)C24—N121.461 (4)
C7—C101.405 (2)C24—H24A0.9600
C8—O71.234 (2)C24—H24B0.9600
C8—N41.377 (2)C24—H24C0.9600
C9—O91.207 (2)C25—N121.424 (4)
C9—N41.352 (2)C25—H25A0.9600
C9—N51.352 (2)C25—H25B0.9600
C10—O81.235 (2)C25—H25C0.9600
C10—N51.380 (2)C26—N121.452 (4)
C11—C161.363 (3)C26—H26A0.9600
C11—C121.365 (3)C26—H26B0.9600
C11—N61.451 (3)C26—H26C0.9600
C12—C131.362 (3)N1—O11.178 (4)
C12—H120.9300N1—O21.201 (4)
C13—C141.398 (3)N2—O41.209 (3)
C13—N71.462 (3)N2—O31.210 (3)
C14—C151.391 (3)N3—O61.210 (2)
C14—C171.441 (2)N3—O51.218 (2)
C15—C161.365 (3)N4—H40.85 (2)
C15—N81.466 (3)N5—H50.86 (3)
C16—H160.9300N6—O111.198 (3)
C17—C181.398 (2)N6—O101.199 (3)
C17—C201.405 (2)N7—O121.211 (2)
C18—O161.235 (2)N7—O131.212 (2)
C18—N91.384 (2)N8—O151.205 (2)
C19—O181.219 (2)N8—O141.208 (2)
C19—N101.344 (2)N9—H90.85 (2)
C19—N91.350 (2)N10—H100.83 (2)
C20—O171.228 (2)N11—H11A0.94 (3)
C20—N101.381 (2)N12—H12A0.94 (3)
C6—C1—C2121.6 (2)N11—C22—H22C109.5
C6—C1—N1118.9 (3)H22A—C22—H22C109.5
C2—C1—N1119.5 (3)H22B—C22—H22C109.5
C1—C2—C3118.3 (2)N11—C23—H23A109.5
C1—C2—H2120.8N11—C23—H23B109.5
C3—C2—H2120.8H23A—C23—H23B109.5
C2—C3—C4124.5 (2)N11—C23—H23C109.5
C2—C3—N2114.0 (2)H23A—C23—H23C109.5
C4—C3—N2121.33 (18)H23B—C23—H23C109.5
C5—C4—C3112.67 (17)N12—C24—H24A109.5
C5—C4—C7123.22 (17)N12—C24—H24B109.5
C3—C4—C7124.11 (17)H24A—C24—H24B109.5
C6—C5—C4124.8 (2)N12—C24—H24C109.5
C6—C5—N3113.30 (19)H24A—C24—H24C109.5
C4—C5—N3121.83 (18)H24B—C24—H24C109.5
C1—C6—C5118.0 (2)N12—C25—H25A109.5
C1—C6—H6121.0N12—C25—H25B109.5
C5—C6—H6121.0H25A—C25—H25B109.5
C8—C7—C10120.10 (16)N12—C25—H25C109.5
C8—C7—C4119.90 (15)H25A—C25—H25C109.5
C10—C7—C4119.97 (16)H25B—C25—H25C109.5
O7—C8—N4118.79 (16)N12—C26—H26A109.5
O7—C8—C7124.11 (16)N12—C26—H26B109.5
N4—C8—C7117.08 (15)H26A—C26—H26B109.5
O9—C9—N4122.42 (17)N12—C26—H26C109.5
O9—C9—N5122.07 (17)H26A—C26—H26C109.5
N4—C9—N5115.51 (16)H26B—C26—H26C109.5
O8—C10—N5118.72 (16)O1—N1—O2124.3 (3)
O8—C10—C7124.59 (17)O1—N1—C1118.2 (3)
N5—C10—C7116.68 (16)O2—N1—C1117.4 (3)
C16—C11—C12121.82 (18)O4—N2—O3124.9 (2)
C16—C11—N6119.5 (2)O4—N2—C3116.9 (2)
C12—C11—N6118.7 (2)O3—N2—C3117.97 (19)
C13—C12—C11117.63 (19)O6—N3—O5124.2 (2)
C13—C12—H12121.2O6—N3—C5119.76 (17)
C11—C12—H12121.2O5—N3—C5116.0 (2)
C12—C13—C14124.84 (18)C9—N4—C8125.18 (16)
C12—C13—N7113.99 (18)C9—N4—H4116.2 (14)
C14—C13—N7121.06 (16)C8—N4—H4118.5 (14)
C15—C14—C13112.90 (16)C9—N5—C10125.41 (16)
C15—C14—C17123.66 (17)C9—N5—H5115.7 (16)
C13—C14—C17123.42 (17)C10—N5—H5118.8 (16)
C16—C15—C14124.62 (18)O11—N6—O10122.2 (2)
C16—C15—N8114.02 (17)O11—N6—C11119.1 (2)
C14—C15—N8121.13 (16)O10—N6—C11118.6 (2)
C11—C16—C15117.95 (19)O12—N7—O13124.23 (18)
C11—C16—H16121.0O12—N7—C13117.30 (17)
C15—C16—H16121.0O13—N7—C13118.40 (17)
C18—C17—C20120.41 (16)O15—N8—O14124.99 (18)
C18—C17—C14119.19 (15)O15—N8—C15117.93 (16)
C20—C17—C14120.34 (15)O14—N8—C15117.02 (17)
O16—C18—N9118.05 (16)C19—N9—C18125.36 (16)
O16—C18—C17125.23 (17)C19—N9—H9117.0 (15)
N9—C18—C17116.70 (16)C18—N9—H9117.6 (15)
O18—C19—N10122.54 (18)C19—N10—C20125.79 (16)
O18—C19—N9122.14 (18)C19—N10—H10117.8 (16)
N10—C19—N9115.32 (17)C20—N10—H10116.4 (16)
O17—C20—N10118.43 (16)C22—N11—C23114.3 (3)
O17—C20—C17125.15 (17)C22—N11—C21110.7 (2)
N10—C20—C17116.42 (16)C23—N11—C21110.1 (2)
N11—C21—H21A109.5C22—N11—H11A107 (2)
N11—C21—H21B109.5C23—N11—H11A108.9 (19)
H21A—C21—H21B109.5C21—N11—H11A105 (2)
N11—C21—H21C109.5C25—N12—C26114.9 (3)
H21A—C21—H21C109.5C25—N12—C24111.8 (3)
H21B—C21—H21C109.5C26—N12—C24108.2 (3)
N11—C22—H22A109.5C25—N12—H12A105.4 (18)
N11—C22—H22B109.5C26—N12—H12A106.4 (19)
H22A—C22—H22B109.5C24—N12—H12A109.8 (18)
C6—C1—C2—C32.2 (3)C20—C17—C18—O16177.9 (2)
N1—C1—C2—C3178.9 (2)C14—C17—C18—O160.8 (3)
C1—C2—C3—C41.7 (3)C20—C17—C18—N90.2 (3)
C1—C2—C3—N2173.5 (2)C14—C17—C18—N9177.35 (18)
C2—C3—C4—C50.6 (3)C18—C17—C20—O17179.4 (2)
N2—C3—C4—C5175.41 (18)C14—C17—C20—O173.5 (3)
C2—C3—C4—C7179.3 (2)C18—C17—C20—N100.2 (3)
N2—C3—C4—C74.5 (3)C14—C17—C20—N10177.31 (18)
C3—C4—C5—C62.6 (3)C6—C1—N1—O1175.5 (3)
C7—C4—C5—C6177.25 (19)C2—C1—N1—O13.5 (4)
C3—C4—C5—N3173.45 (18)C6—C1—N1—O27.0 (4)
C7—C4—C5—N36.7 (3)C2—C1—N1—O2174.0 (3)
C2—C1—C6—C50.3 (3)C2—C3—N2—O449.6 (3)
N1—C1—C6—C5179.3 (2)C4—C3—N2—O4135.1 (2)
C4—C5—C6—C12.3 (3)C2—C3—N2—O3125.8 (2)
N3—C5—C6—C1174.08 (19)C4—C3—N2—O349.6 (3)
C5—C4—C7—C8136.11 (19)C6—C5—N3—O6135.8 (2)
C3—C4—C7—C844.0 (3)C4—C5—N3—O640.7 (3)
C5—C4—C7—C1042.0 (3)C6—C5—N3—O541.6 (3)
C3—C4—C7—C10137.9 (2)C4—C5—N3—O5141.9 (2)
C10—C7—C8—O7179.62 (18)O9—C9—N4—C8178.88 (19)
C4—C7—C8—O71.5 (3)N5—C9—N4—C81.4 (3)
C10—C7—C8—N41.4 (3)O7—C8—N4—C9178.87 (18)
C4—C7—C8—N4176.73 (17)C7—C8—N4—C90.5 (3)
C8—C7—C10—O8178.54 (19)O9—C9—N5—C10177.6 (2)
C4—C7—C10—O83.4 (3)N4—C9—N5—C102.7 (3)
C8—C7—C10—N50.3 (3)O8—C10—N5—C9179.20 (19)
C4—C7—C10—N5177.84 (17)C7—C10—N5—C91.9 (3)
C16—C11—C12—C130.5 (3)C16—C11—N6—O1117.1 (4)
N6—C11—C12—C13177.93 (19)C12—C11—N6—O11165.3 (3)
C11—C12—C13—C144.6 (3)C16—C11—N6—O10161.4 (2)
C11—C12—C13—N7171.62 (18)C12—C11—N6—O1016.2 (3)
C12—C13—C14—C154.4 (3)C12—C13—N7—O1240.6 (2)
N7—C13—C14—C15171.59 (16)C14—C13—N7—O12143.01 (19)
C12—C13—C14—C17174.00 (18)C12—C13—N7—O13136.46 (19)
N7—C13—C14—C1710.0 (3)C14—C13—N7—O1339.9 (3)
C13—C14—C15—C160.2 (3)C16—C15—N8—O15131.1 (2)
C17—C14—C15—C16178.20 (19)C14—C15—N8—O1543.6 (3)
C13—C14—C15—N8174.30 (16)C16—C15—N8—O1446.3 (3)
C17—C14—C15—N84.1 (3)C14—C15—N8—O14139.05 (19)
C12—C11—C16—C153.3 (3)O18—C19—N9—C18178.5 (2)
N6—C11—C16—C15174.1 (2)N10—C19—N9—C180.7 (3)
C14—C15—C16—C113.5 (3)O16—C18—N9—C19178.6 (2)
N8—C15—C16—C11170.99 (18)C17—C18—N9—C190.3 (3)
C15—C14—C17—C18132.5 (2)O18—C19—N10—C20178.5 (2)
C13—C14—C17—C1845.7 (3)N9—C19—N10—C200.7 (3)
C15—C14—C17—C2044.6 (3)O17—C20—N10—C19178.9 (2)
C13—C14—C17—C20137.12 (19)C17—C20—N10—C190.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O17i0.85 (2)1.94 (2)2.780 (2)170 (2)
N5—H5···O160.86 (3)1.93 (3)2.778 (2)170 (2)
N9—H9···O80.85 (2)1.95 (2)2.790 (2)172 (2)
N10—H10···O7ii0.83 (2)1.96 (2)2.786 (2)173 (2)
N11—H11A···O9iii0.94 (3)1.82 (3)2.730 (2)160 (3)
N12—H12A···O180.94 (3)2.02 (3)2.803 (3)139 (3)
N12—H12A···O5iv0.94 (3)2.16 (3)2.856 (3)130 (2)
C2—H2···O4v0.932.583.265 (3)131
C16—H16···O2vi0.932.273.146 (3)156
C24—H24B···O50.962.513.448 (4)164
C24—H24C···O10iii0.962.573.457 (4)154
C26—H26B···O18iv0.962.503.400 (5)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y, z+2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC3H10N+·C10H4N5O9
Mr398.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.9828 (12), 30.802 (3), 9.5516 (11)
β (°) 105.895 (6)
V3)3390.6 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEX II CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.90, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
31796, 6580, 4977
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 1.02
No. of reflections6580
No. of parameters536
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.30

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O17i0.85 (2)1.94 (2)2.780 (2)170 (2)
N5—H5···O160.86 (3)1.93 (3)2.778 (2)170 (2)
N9—H9···O80.85 (2)1.95 (2)2.790 (2)172 (2)
N10—H10···O7ii0.83 (2)1.96 (2)2.786 (2)173 (2)
N11—H11A···O9iii0.94 (3)1.82 (3)2.730 (2)160 (3)
N12—H12A···O180.94 (3)2.02 (3)2.803 (3)139 (3)
N12—H12A···O5iv0.94 (3)2.16 (3)2.856 (3)130 (2)
C2—H2···O4v0.932.583.265 (3)131.2
C16—H16···O2vi0.932.273.146 (3)156.3
C24—H24B···O50.962.513.448 (4)163.9
C24—H24C···O10iii0.962.573.457 (4)153.7
C26—H26B···O18iv0.962.503.400 (5)155.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y, z+2; (vi) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the X-ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGitto, R. S., Caruso, R., Pagano, B., De Luca, L., Citraro, R., Russo, E., De Sarro, G. & Chimirri, A. (2006). J. Med. Chem. 49, 5618–5622.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHardman, J. G. & Limbird, L. E. (2001). The Pharmacological Basis of Therapeutics, 10th ed., pp. 1143–1170. New York: McGraw–Hill.  Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNogrady, T. (1988). Medicinal Chemistry. New York: Oxford University Press Inc.  Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). Indian J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages o29-o30
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds