metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m62-m63

(N-Ethyl-N-phenyl­di­thio­carbamato-κS)tri­phenyl­tin(IV)

aEnvironmental Health Programme, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia, bSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia, cDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 December 2011; accepted 12 December 2011; online 17 December 2011)

The title compound, [Sn(C6H5)3(C9H10NS2)], has two independent mol­ecules in the asymmetric unit and each features a tetra­hedrally coordinated SnIV atom as the dithio­carbamate ligand coordinates in a monodentate fashion. As the non-coordinating thione S atom is proximate to the Sn atom [Sn⋯S(thione) = 3.1477 (6) and 2.9970 (5) Å for the independent mol­ecules], distortions from the ideal geometry are evident [the widest angle being 120.48 (5)°]. The most notable feature of the crystal packing is the formation of C—H⋯π inter­actions that lead to the formation of supra­molecular layers parallel to ([\overline{3}]2[\overline{1}]).

Related literature

For a review on the applications and structural chemistry of tin dithio­carbamates, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). For the recently reported n-butyl derivative, see: Kamaludin et al. (2011[Kamaludin, N. F., Baba, I., Awang, N., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m555-m556.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C9H10NS2)]

  • Mr = 546.29

  • Triclinic, [P \overline 1]

  • a = 9.6973 (2) Å

  • b = 12.2804 (2) Å

  • c = 22.8523 (4) Å

  • α = 90.588 (2)°

  • β = 101.573 (2)°

  • γ = 110.687 (2)°

  • V = 2484.39 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 150 K

  • 0.30 × 0.24 × 0.19 mm

Data collection
  • Oxford Diffraction Xcaliber Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.748, Tmax = 0.795

  • 62467 measured reflections

  • 10558 independent reflections

  • 9633 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.055

  • S = 1.00

  • 10558 reflections

  • 561 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C10 2.1339 (19)
Sn1—C16 2.1541 (19)
Sn1—C22 2.1210 (18)
Sn1—S1 2.4539 (5)
Sn2—C37 2.1413 (18)
Sn2—C43 2.1605 (19)
Sn2—C49 2.1379 (19)
Sn2—S3 2.4662 (5)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, and Cg3 are the centroids of the C16–C21, C37–C42 and C43–C48 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg1i 0.95 2.72 3.630 (3) 160
C25—H25⋯Cg2ii 0.95 2.90 3.639 (3) 135
C32—H32⋯Cg3iii 0.95 2.92 3.824 (2) 160
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y, z; (iii) -x+2, -y+2, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and QMol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Potential applications as anti-cancer agents, anti-microbials and insecticides, and as convenient synthetic precursors for tin sulfide nanoparticles, characterize organotin dithiocarbamates (Tiekink, 2008). This background motivates our interest in this class of compound and led to the investigation of the title compound, (I). Recently, the structure of the n-butyl derivative was described (Kamaludin et al., 2011) and herein, we describe the analysis of (I).

There are two independent molecules in the asymmetric unit of (I): the molecular structures are shown in Fig. 1. Each molecule features Sn coordinated by the dithiocarbamate ligand and three ipso-C atoms of three benzene rings. The dithiocarbamate ligand coordinates essentially in a monodentate fashion, an assignment supported by the large disparity in the C—S bond distances, Table 1. The coordination geometry is based on a tetrahedron with the range of tetrahedral angles being 94.46 (5) to 120.48 (5)° for the Sn1-containing molecule and 95.28 (5) to 118.66 (5)° for the other. The wider angles are ascribed to the influence of the proximate thione-S atom [Sn1···S2 = 3.1477 (6) Å and Sn2···S4 = 2.9970 (5) Å]. The major differences between the independent molecules is highlighted in the overlay diagram, Fig. 2, showing that the chemically equivalent phenyl rings do not overlap significantly.

The crystal packing of (I) features C—H···π interactions involving the Sn- and N-phenyl rings as donors, and Sn-bound phenyl rings as acceptors, Table 2. The result is the formation of supramolecular layers parallel to (3 2 1), Fig. 3.

Related literature top

For a review on the applications and structural chemistry of tin dithiocarbamates, see: Tiekink (2008). For the recently reported n-butyl derivative, see: Kamaludin et al. (2011).

Experimental top

The title compound was prepared using an in situ method. A mixture of ethanol (50 ml) and N-ethylaniline (30 mM) was added to an ammonia solution (0.25%). The solution was stirred for half an hour at approximately 277 K. Carbon disulfide (30 mM) was added drop-wise and stirring was continued for another 6–8 h at 277 K. Triphenytin(IV) chloride (30 mM), dissolved in ethanol (20 ml), was added and stirring continued for a further 3 h. The white precipitate formed was filtered, washed with cold ethanol and dried in a vacuum desiccator. Recrystallization was from its ethanol:ethyl acetate (1:1) solution. Yield: 32%. M.pt. 381–382 K. Elemental analysis. Found (calculated) for C27H25NS2Sn: C, 59.19 (59.36); H 4.33 (4.61); N 2.52 (2.56); S 11.30 (11.74) %. IR (KBr): ν(C—H) 2986 m; ν(CN) 1478 m; ν(N—C) 1125 s; ν(CS) 997 s; ν(Sn—S) 357 s cm-1. 13C NMR (CDCl3): δ (CS2) 198.63 p.p.m..

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the two independent molecules comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. An overlay diagram of the two independent molecules comprising (I) aligned so that the Sn—S—C planes are superimposed. The red image illustrates the molecule containing the Sn1 atom.
[Figure 3] Fig. 3. A view of the supramolecular layer parallel to [3 2 1] in (I) mediated by C—H···π interactions (purple dashed lines).
(N-Ethyl-N-phenyldithiocarbamato-κS)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C9H10NS2)]Z = 4
Mr = 546.29F(000) = 1104
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6973 (2) ÅCell parameters from 39367 reflections
b = 12.2804 (2) Åθ = 2–29°
c = 22.8523 (4) ŵ = 1.21 mm1
α = 90.588 (2)°T = 150 K
β = 101.573 (2)°Block, colourless
γ = 110.687 (2)°0.30 × 0.24 × 0.19 mm
V = 2484.39 (8) Å3
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
10558 independent reflections
Radiation source: fine-focus sealed tube9633 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.1952 pixels mm-1θmax = 26.8°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1515
Tmin = 0.748, Tmax = 0.795l = 2828
62467 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0259P)2 + 1.489P]
where P = (Fo2 + 2Fc2)/3
10558 reflections(Δ/σ)max = 0.004
561 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Sn(C6H5)3(C9H10NS2)]γ = 110.687 (2)°
Mr = 546.29V = 2484.39 (8) Å3
Triclinic, P1Z = 4
a = 9.6973 (2) ÅMo Kα radiation
b = 12.2804 (2) ŵ = 1.21 mm1
c = 22.8523 (4) ÅT = 150 K
α = 90.588 (2)°0.30 × 0.24 × 0.19 mm
β = 101.573 (2)°
Data collection top
Oxford Diffraction Xcaliber Eos Gemini
diffractometer
10558 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
9633 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.795Rint = 0.038
62467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.00Δρmax = 0.55 e Å3
10558 reflectionsΔρmin = 0.44 e Å3
561 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.425600 (14)0.868539 (11)0.613068 (5)0.02407 (4)
S10.25460 (6)0.77901 (4)0.51651 (2)0.02845 (10)
S20.39527 (6)0.61380 (5)0.57263 (2)0.03395 (11)
N10.2447 (2)0.58873 (15)0.45887 (7)0.0337 (4)
C10.2955 (2)0.65087 (17)0.51249 (8)0.0284 (4)
C20.2836 (3)0.4851 (2)0.44586 (11)0.0478 (6)
H2A0.38310.49440.47150.057*
H2B0.29230.48150.40350.057*
C30.1682 (3)0.3731 (2)0.45672 (13)0.0614 (8)
H3A0.16780.37230.49960.092*
H3B0.19310.30710.44390.092*
H3C0.06820.36630.43380.092*
C40.1517 (2)0.62092 (17)0.40950 (8)0.0314 (4)
C50.0031 (3)0.5806 (2)0.40371 (10)0.0386 (5)
H50.04820.53330.43240.046*
C60.0915 (3)0.6096 (2)0.35598 (11)0.0510 (6)
H60.19800.58230.35170.061*
C70.0259 (4)0.6780 (3)0.31455 (11)0.0610 (8)
H70.08710.69850.28190.073*
C80.1281 (4)0.7169 (2)0.32016 (11)0.0602 (8)
H80.17250.76360.29110.072*
C90.2197 (3)0.6885 (2)0.36788 (10)0.0440 (5)
H90.32600.71490.37170.053*
C100.6605 (2)0.89709 (18)0.62716 (8)0.0293 (4)
C110.7603 (2)0.9959 (2)0.60893 (10)0.0408 (5)
H110.72391.05070.58850.049*
C120.9148 (3)1.0149 (3)0.62057 (13)0.0574 (7)
H120.98281.08150.60720.069*
C130.9681 (3)0.9371 (3)0.65134 (14)0.0624 (8)
H131.07300.95030.65910.075*
C140.8709 (3)0.8402 (2)0.67092 (12)0.0517 (7)
H140.90860.78770.69290.062*
C150.7171 (2)0.8197 (2)0.65846 (9)0.0359 (5)
H150.64990.75210.67140.043*
C160.4002 (2)1.03524 (16)0.60391 (8)0.0271 (4)
C170.3810 (2)1.09529 (17)0.65201 (9)0.0332 (4)
H170.38291.06320.68970.040*
C180.3592 (3)1.20067 (19)0.64607 (10)0.0408 (5)
H180.34651.23990.67950.049*
C190.3559 (3)1.24854 (19)0.59177 (11)0.0421 (5)
H190.34121.32080.58770.051*
C200.3740 (3)1.1909 (2)0.54327 (10)0.0415 (5)
H200.37161.22350.50570.050*
C210.3956 (2)1.08579 (19)0.54950 (9)0.0350 (5)
H210.40771.04690.51580.042*
C220.3337 (2)0.80327 (17)0.68794 (8)0.0268 (4)
C230.1960 (2)0.7136 (2)0.68340 (10)0.0386 (5)
H230.14160.67160.64570.046*
C240.1371 (3)0.6849 (2)0.73484 (14)0.0581 (7)
H240.04230.62370.73210.070*
C250.2182 (4)0.7465 (3)0.78978 (12)0.0635 (8)
H250.17740.72820.82450.076*
C260.3555 (4)0.8328 (2)0.79434 (11)0.0593 (8)
H260.41170.87300.83220.071*
C270.4122 (3)0.8612 (2)0.74395 (9)0.0410 (5)
H270.50760.92210.74740.049*
Sn20.849644 (14)0.767651 (10)0.914470 (5)0.02217 (4)
S30.73045 (6)0.77465 (4)0.99945 (2)0.02867 (10)
S40.82367 (6)0.56918 (4)0.99206 (2)0.03252 (11)
N20.71753 (19)0.62538 (13)1.08192 (7)0.0289 (3)
C280.7555 (2)0.65068 (16)1.02941 (8)0.0257 (4)
C290.7378 (3)0.52486 (19)1.11280 (11)0.0483 (6)
H29A0.71940.46011.08260.058*
H29B0.66300.49701.13820.058*
C300.8959 (4)0.5582 (3)1.15146 (13)0.0726 (9)
H30A0.96960.57831.12580.109*
H30B0.90350.49211.17380.109*
H30C0.91680.62561.17970.109*
C310.6641 (2)0.69863 (16)1.11445 (8)0.0273 (4)
C320.7662 (2)0.79839 (17)1.14875 (9)0.0335 (4)
H320.87110.82171.14970.040*
C330.7126 (3)0.86425 (19)1.18188 (10)0.0409 (5)
H330.78110.93301.20590.049*
C340.5593 (3)0.8294 (2)1.17981 (10)0.0420 (5)
H340.52270.87471.20220.050*
C350.4607 (3)0.7303 (2)1.14582 (11)0.0440 (5)
H350.35570.70721.14470.053*
C360.5116 (2)0.66293 (19)1.11289 (10)0.0360 (5)
H360.44270.59341.08970.043*
C371.0884 (2)0.80657 (15)0.93488 (8)0.0225 (4)
C381.1777 (2)0.91710 (16)0.92315 (8)0.0251 (4)
H381.13140.97080.90840.030*
C391.3336 (2)0.95029 (17)0.93266 (8)0.0297 (4)
H391.39311.02610.92440.036*
C401.4021 (2)0.87260 (18)0.95422 (9)0.0313 (4)
H401.50860.89470.96050.038*
C411.3150 (2)0.76280 (18)0.96660 (9)0.0320 (4)
H411.36210.70990.98180.038*
C421.1587 (2)0.72925 (17)0.95689 (8)0.0284 (4)
H421.09970.65340.96530.034*
C430.8300 (2)0.92594 (16)0.88000 (8)0.0249 (4)
C440.8243 (2)1.01716 (18)0.91533 (9)0.0329 (4)
H440.82661.01010.95680.040*
C450.8153 (3)1.1176 (2)0.89075 (10)0.0413 (5)
H450.81091.17860.91540.050*
C460.8125 (2)1.12962 (18)0.83056 (9)0.0350 (5)
H460.80521.19830.81370.042*
C470.8206 (2)1.04148 (18)0.79481 (9)0.0330 (4)
H470.82051.04990.75350.040*
C480.8287 (2)0.94077 (17)0.81961 (8)0.0300 (4)
H480.83350.88030.79470.036*
C490.7240 (2)0.64207 (16)0.83962 (8)0.0285 (4)
C500.5873 (3)0.6435 (2)0.80722 (10)0.0440 (5)
H500.54360.69370.82150.053*
C510.5138 (3)0.5727 (2)0.75430 (12)0.0630 (8)
H510.41970.57410.73290.076*
C520.5760 (4)0.5013 (2)0.73294 (12)0.0695 (10)
H520.52610.45390.69630.083*
C530.7108 (4)0.4976 (2)0.76434 (13)0.0670 (9)
H530.75370.44740.74940.080*
C540.7849 (3)0.5676 (2)0.81818 (11)0.0456 (6)
H540.87720.56390.84010.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02483 (7)0.02598 (7)0.01999 (7)0.00680 (5)0.00633 (5)0.00045 (5)
S10.0337 (3)0.0290 (2)0.0217 (2)0.0118 (2)0.00338 (19)0.00109 (18)
S20.0372 (3)0.0334 (3)0.0284 (2)0.0131 (2)0.0004 (2)0.0015 (2)
N10.0406 (10)0.0317 (9)0.0273 (8)0.0143 (8)0.0021 (7)0.0043 (7)
C10.0275 (10)0.0282 (10)0.0256 (9)0.0054 (8)0.0061 (8)0.0005 (7)
C20.0574 (15)0.0529 (15)0.0401 (13)0.0336 (13)0.0016 (11)0.0077 (11)
C30.0743 (19)0.0410 (14)0.0637 (18)0.0265 (14)0.0058 (15)0.0103 (12)
C40.0423 (12)0.0292 (10)0.0209 (9)0.0136 (9)0.0017 (8)0.0057 (7)
C50.0437 (13)0.0378 (12)0.0331 (11)0.0155 (10)0.0043 (9)0.0046 (9)
C60.0518 (15)0.0561 (15)0.0439 (14)0.0285 (13)0.0079 (11)0.0133 (12)
C70.094 (2)0.0664 (18)0.0312 (13)0.0537 (18)0.0121 (14)0.0081 (12)
C80.105 (3)0.0555 (16)0.0303 (12)0.0382 (17)0.0208 (14)0.0141 (11)
C90.0528 (14)0.0423 (13)0.0371 (12)0.0143 (11)0.0156 (11)0.0035 (10)
C100.0262 (10)0.0353 (11)0.0235 (9)0.0072 (8)0.0067 (7)0.0044 (8)
C110.0342 (11)0.0423 (12)0.0364 (12)0.0015 (10)0.0102 (9)0.0028 (9)
C120.0339 (13)0.0641 (17)0.0583 (16)0.0058 (12)0.0190 (12)0.0106 (13)
C130.0251 (12)0.085 (2)0.0691 (18)0.0136 (13)0.0054 (12)0.0264 (16)
C140.0388 (13)0.0656 (17)0.0501 (14)0.0266 (13)0.0048 (11)0.0192 (12)
C150.0327 (11)0.0408 (12)0.0313 (11)0.0131 (9)0.0017 (8)0.0062 (9)
C160.0255 (9)0.0253 (9)0.0284 (10)0.0057 (8)0.0077 (8)0.0004 (7)
C170.0392 (11)0.0293 (10)0.0294 (10)0.0074 (9)0.0133 (9)0.0011 (8)
C180.0484 (13)0.0341 (11)0.0426 (12)0.0136 (10)0.0187 (10)0.0035 (9)
C190.0488 (13)0.0317 (11)0.0518 (14)0.0192 (10)0.0158 (11)0.0055 (10)
C200.0521 (14)0.0416 (12)0.0377 (12)0.0227 (11)0.0139 (10)0.0119 (10)
C210.0427 (12)0.0358 (11)0.0295 (10)0.0157 (10)0.0119 (9)0.0030 (8)
C220.0322 (10)0.0313 (10)0.0222 (9)0.0163 (8)0.0085 (8)0.0059 (7)
C230.0366 (12)0.0419 (12)0.0376 (12)0.0122 (10)0.0116 (9)0.0128 (9)
C240.0554 (16)0.0576 (16)0.075 (2)0.0238 (14)0.0380 (15)0.0376 (15)
C250.106 (3)0.0722 (19)0.0443 (15)0.0525 (19)0.0494 (17)0.0245 (14)
C260.105 (2)0.0549 (16)0.0273 (12)0.0363 (17)0.0212 (14)0.0058 (11)
C270.0556 (14)0.0401 (12)0.0254 (10)0.0173 (11)0.0050 (10)0.0002 (9)
Sn20.02496 (7)0.02192 (7)0.01935 (6)0.00797 (5)0.00520 (5)0.00102 (5)
S30.0357 (3)0.0334 (3)0.0260 (2)0.0199 (2)0.0129 (2)0.00964 (19)
S40.0459 (3)0.0260 (2)0.0315 (3)0.0154 (2)0.0169 (2)0.00464 (19)
N20.0399 (9)0.0213 (8)0.0287 (8)0.0100 (7)0.0164 (7)0.0061 (6)
C280.0257 (9)0.0238 (9)0.0252 (9)0.0054 (8)0.0066 (7)0.0018 (7)
C290.0849 (19)0.0261 (11)0.0492 (14)0.0252 (12)0.0386 (14)0.0172 (10)
C300.122 (3)0.0634 (19)0.0487 (16)0.059 (2)0.0063 (17)0.0182 (14)
C310.0375 (11)0.0254 (9)0.0216 (9)0.0116 (8)0.0119 (8)0.0063 (7)
C320.0340 (11)0.0281 (10)0.0365 (11)0.0086 (9)0.0081 (9)0.0031 (8)
C330.0569 (15)0.0311 (11)0.0318 (11)0.0141 (10)0.0072 (10)0.0033 (9)
C340.0608 (15)0.0445 (13)0.0341 (11)0.0281 (12)0.0233 (11)0.0073 (10)
C350.0404 (13)0.0488 (14)0.0498 (14)0.0173 (11)0.0231 (11)0.0099 (11)
C360.0363 (11)0.0335 (11)0.0346 (11)0.0063 (9)0.0113 (9)0.0027 (9)
C370.0259 (9)0.0247 (9)0.0173 (8)0.0100 (7)0.0042 (7)0.0011 (7)
C380.0295 (10)0.0253 (9)0.0210 (9)0.0117 (8)0.0031 (7)0.0005 (7)
C390.0287 (10)0.0296 (10)0.0259 (9)0.0052 (8)0.0050 (8)0.0004 (8)
C400.0258 (10)0.0387 (11)0.0267 (10)0.0117 (9)0.0002 (8)0.0069 (8)
C410.0349 (11)0.0341 (11)0.0290 (10)0.0190 (9)0.0002 (8)0.0031 (8)
C420.0346 (10)0.0243 (9)0.0272 (9)0.0123 (8)0.0054 (8)0.0007 (7)
C430.0243 (9)0.0270 (9)0.0234 (9)0.0101 (8)0.0038 (7)0.0019 (7)
C440.0471 (12)0.0356 (11)0.0222 (9)0.0210 (10)0.0098 (9)0.0026 (8)
C450.0644 (15)0.0368 (12)0.0362 (12)0.0303 (11)0.0188 (11)0.0054 (9)
C460.0422 (12)0.0311 (11)0.0366 (11)0.0179 (9)0.0105 (9)0.0110 (9)
C470.0391 (11)0.0333 (11)0.0224 (9)0.0100 (9)0.0034 (8)0.0052 (8)
C480.0391 (11)0.0259 (10)0.0228 (9)0.0090 (8)0.0071 (8)0.0003 (7)
C490.0334 (10)0.0222 (9)0.0230 (9)0.0011 (8)0.0072 (8)0.0007 (7)
C500.0428 (13)0.0346 (12)0.0420 (13)0.0060 (10)0.0040 (10)0.0021 (10)
C510.0662 (18)0.0442 (15)0.0438 (14)0.0060 (13)0.0172 (13)0.0028 (12)
C520.092 (2)0.0412 (15)0.0336 (13)0.0187 (15)0.0006 (14)0.0061 (11)
C530.095 (2)0.0418 (15)0.0559 (17)0.0058 (15)0.0331 (17)0.0173 (13)
C540.0497 (14)0.0393 (13)0.0450 (13)0.0111 (11)0.0139 (11)0.0103 (10)
Geometric parameters (Å, º) top
Sn1—C102.1339 (19)Sn2—C372.1413 (18)
Sn1—C162.1541 (19)Sn2—C432.1605 (19)
Sn1—C222.1210 (18)Sn2—C492.1379 (19)
Sn1—S12.4539 (5)Sn2—S32.4662 (5)
S1—C11.759 (2)S3—C281.7496 (19)
S2—C11.680 (2)S4—C281.6862 (19)
N1—C11.342 (2)N2—C281.333 (2)
N1—C41.448 (3)N2—C311.449 (2)
N1—C21.492 (3)N2—C291.481 (3)
C2—C31.496 (4)C29—C301.518 (4)
C2—H2A0.9900C29—H29A0.9900
C2—H2B0.9900C29—H29B0.9900
C3—H3A0.9800C30—H30A0.9800
C3—H3B0.9800C30—H30B0.9800
C3—H3C0.9800C30—H30C0.9800
C4—C91.382 (3)C31—C321.381 (3)
C4—C51.382 (3)C31—C361.379 (3)
C5—C61.379 (3)C32—C331.393 (3)
C5—H50.9500C32—H320.9500
C6—C71.374 (4)C33—C341.384 (3)
C6—H60.9500C33—H330.9500
C7—C81.376 (4)C34—C351.363 (3)
C7—H70.9500C34—H340.9500
C8—C91.391 (4)C35—C361.386 (3)
C8—H80.9500C35—H350.9500
C9—H90.9500C36—H360.9500
C10—C151.393 (3)C37—C381.391 (3)
C10—C111.388 (3)C37—C421.396 (3)
C11—C121.400 (3)C38—C391.389 (3)
C11—H110.9500C38—H380.9500
C12—C131.375 (4)C39—C401.386 (3)
C12—H120.9500C39—H390.9500
C13—C141.375 (4)C40—C411.382 (3)
C13—H130.9500C40—H400.9500
C14—C151.389 (3)C41—C421.392 (3)
C14—H140.9500C41—H410.9500
C15—H150.9500C42—H420.9500
C16—C171.396 (3)C43—C481.392 (3)
C16—C211.395 (3)C43—C441.398 (3)
C17—C181.387 (3)C44—C451.384 (3)
C17—H170.9500C44—H440.9500
C18—C191.378 (3)C45—C461.381 (3)
C18—H180.9500C45—H450.9500
C19—C201.382 (3)C46—C471.383 (3)
C19—H190.9500C46—H460.9500
C20—C211.384 (3)C47—C481.386 (3)
C20—H200.9500C47—H470.9500
C21—H210.9500C48—H480.9500
C22—C271.390 (3)C49—C501.389 (3)
C22—C231.382 (3)C49—C541.384 (3)
C23—C241.403 (3)C50—C511.386 (3)
C23—H230.9500C50—H500.9500
C24—C251.390 (4)C51—C521.362 (5)
C24—H240.9500C51—H510.9500
C25—C261.361 (4)C52—C531.376 (5)
C25—H250.9500C52—H520.9500
C26—C271.370 (3)C53—C541.398 (4)
C26—H260.9500C53—H530.9500
C27—H270.9500C54—H540.9500
C22—Sn1—C10112.49 (7)C49—Sn2—C37115.41 (7)
C22—Sn1—C16105.17 (7)C49—Sn2—C43101.51 (7)
C10—Sn1—C16108.02 (8)C37—Sn2—C43103.22 (7)
C22—Sn1—S1113.28 (6)C49—Sn2—S3118.66 (5)
C10—Sn1—S1120.48 (5)C37—Sn2—S3117.12 (5)
C16—Sn1—S194.46 (5)C43—Sn2—S395.28 (5)
C1—S1—Sn198.20 (7)C28—S3—Sn295.09 (6)
C1—N1—C4121.45 (17)C28—N2—C31122.39 (15)
C1—N1—C2122.48 (18)C28—N2—C29121.82 (16)
C4—N1—C2116.05 (16)C31—N2—C29115.65 (15)
N1—C1—S2123.77 (16)N2—C28—S4123.09 (14)
N1—C1—S1115.59 (15)N2—C28—S3116.67 (14)
S2—C1—S1120.63 (11)S4—C28—S3120.24 (11)
N1—C2—C3112.3 (2)N2—C29—C30111.3 (2)
N1—C2—H2A109.1N2—C29—H29A109.4
C3—C2—H2A109.1C30—C29—H29A109.4
N1—C2—H2B109.1N2—C29—H29B109.4
C3—C2—H2B109.1C30—C29—H29B109.4
H2A—C2—H2B107.9H29A—C29—H29B108.0
C2—C3—H3A109.5C29—C30—H30A109.5
C2—C3—H3B109.5C29—C30—H30B109.5
H3A—C3—H3B109.5H30A—C30—H30B109.5
C2—C3—H3C109.5C29—C30—H30C109.5
H3A—C3—H3C109.5H30A—C30—H30C109.5
H3B—C3—H3C109.5H30B—C30—H30C109.5
C9—C4—C5121.3 (2)C32—C31—C36121.41 (19)
C9—C4—N1119.0 (2)C32—C31—N2119.92 (18)
C5—C4—N1119.70 (19)C36—C31—N2118.56 (18)
C6—C5—C4119.5 (2)C31—C32—C33118.8 (2)
C6—C5—H5120.2C31—C32—H32120.6
C4—C5—H5120.2C33—C32—H32120.6
C7—C6—C5120.1 (3)C34—C33—C32119.9 (2)
C7—C6—H6120.0C34—C33—H33120.0
C5—C6—H6120.0C32—C33—H33120.0
C8—C7—C6120.2 (2)C35—C34—C33120.3 (2)
C8—C7—H7119.9C35—C34—H34119.9
C6—C7—H7119.9C33—C34—H34119.9
C7—C8—C9120.8 (3)C34—C35—C36120.8 (2)
C7—C8—H8119.6C34—C35—H35119.6
C9—C8—H8119.6C36—C35—H35119.6
C4—C9—C8118.2 (2)C31—C36—C35118.8 (2)
C4—C9—H9120.9C31—C36—H36120.6
C8—C9—H9120.9C35—C36—H36120.6
C15—C10—C11118.9 (2)C38—C37—C42118.60 (17)
C15—C10—Sn1119.93 (15)C38—C37—Sn2116.12 (13)
C11—C10—Sn1121.02 (16)C42—C37—Sn2125.26 (14)
C10—C11—C12120.0 (2)C39—C38—C37121.05 (17)
C10—C11—H11120.0C39—C38—H38119.5
C12—C11—H11120.0C37—C38—H38119.5
C13—C12—C11120.0 (3)C38—C39—C40119.83 (19)
C13—C12—H12120.0C38—C39—H39120.1
C11—C12—H12120.0C40—C39—H39120.1
C12—C13—C14120.6 (2)C41—C40—C39119.82 (19)
C12—C13—H13119.7C41—C40—H40120.1
C14—C13—H13119.7C39—C40—H40120.1
C13—C14—C15119.7 (3)C40—C41—C42120.42 (18)
C13—C14—H14120.2C40—C41—H41119.8
C15—C14—H14120.2C42—C41—H41119.8
C10—C15—C14120.8 (2)C41—C42—C37120.28 (18)
C10—C15—H15119.6C41—C42—H42119.9
C14—C15—H15119.6C37—C42—H42119.9
C17—C16—C21116.95 (18)C48—C43—C44117.55 (17)
C17—C16—Sn1121.01 (14)C48—C43—Sn2118.58 (13)
C21—C16—Sn1121.99 (14)C44—C43—Sn2123.82 (14)
C18—C17—C16121.53 (19)C45—C44—C43121.00 (18)
C18—C17—H17119.2C45—C44—H44119.5
C16—C17—H17119.2C43—C44—H44119.5
C19—C18—C17120.1 (2)C44—C45—C46120.29 (19)
C19—C18—H18120.0C44—C45—H45119.9
C17—C18—H18120.0C46—C45—H45119.9
C20—C19—C18119.7 (2)C47—C46—C45119.88 (19)
C20—C19—H19120.1C47—C46—H46120.1
C18—C19—H19120.1C45—C46—H46120.1
C19—C20—C21119.9 (2)C46—C47—C48119.56 (18)
C19—C20—H20120.1C46—C47—H47120.2
C21—C20—H20120.1C48—C47—H47120.2
C20—C21—C16121.82 (19)C43—C48—C47121.71 (18)
C20—C21—H21119.1C43—C48—H48119.1
C16—C21—H21119.1C47—C48—H48119.1
C27—C22—C23118.84 (19)C50—C49—C54118.5 (2)
C27—C22—Sn1117.20 (16)C50—C49—Sn2120.19 (16)
C23—C22—Sn1123.75 (15)C54—C49—Sn2120.84 (16)
C22—C23—C24119.6 (2)C51—C50—C49120.9 (3)
C22—C23—H23120.2C51—C50—H50119.5
C24—C23—H23120.2C49—C50—H50119.5
C25—C24—C23119.7 (3)C52—C51—C50120.1 (3)
C25—C24—H24120.2C52—C51—H51119.9
C23—C24—H24120.2C50—C51—H51119.9
C26—C25—C24120.6 (2)C51—C52—C53120.1 (2)
C26—C25—H25119.7C51—C52—H52119.9
C24—C25—H25119.7C53—C52—H52119.9
C25—C26—C27119.6 (3)C52—C53—C54120.2 (3)
C25—C26—H26120.2C52—C53—H53119.9
C27—C26—H26120.2C54—C53—H53119.9
C26—C27—C22121.7 (2)C53—C54—C49120.1 (3)
C26—C27—H27119.1C53—C54—H54120.0
C22—C27—H27119.1C49—C54—H54120.0
C22—Sn1—S1—C182.34 (8)C49—Sn2—S3—C2876.70 (9)
C10—Sn1—S1—C155.09 (9)C37—Sn2—S3—C2869.32 (8)
C16—Sn1—S1—C1169.04 (8)C43—Sn2—S3—C28177.10 (8)
C4—N1—C1—S2176.31 (16)C31—N2—C28—S4177.77 (15)
C2—N1—C1—S25.4 (3)C29—N2—C28—S42.3 (3)
C4—N1—C1—S15.0 (3)C31—N2—C28—S32.6 (3)
C2—N1—C1—S1173.26 (17)C29—N2—C28—S3178.10 (17)
Sn1—S1—C1—N1166.86 (14)Sn2—S3—C28—N2174.02 (14)
Sn1—S1—C1—S211.88 (12)Sn2—S3—C28—S46.32 (12)
C1—N1—C2—C392.9 (3)C28—N2—C29—C3086.3 (3)
C4—N1—C2—C388.7 (2)C31—N2—C29—C3089.5 (2)
C1—N1—C4—C995.5 (2)C28—N2—C31—C3280.5 (2)
C2—N1—C4—C982.9 (3)C29—N2—C31—C3295.2 (2)
C1—N1—C4—C586.6 (2)C28—N2—C31—C36103.0 (2)
C2—N1—C4—C595.0 (2)C29—N2—C31—C3681.2 (2)
C9—C4—C5—C60.9 (3)C36—C31—C32—C330.6 (3)
N1—C4—C5—C6178.75 (19)N2—C31—C32—C33176.94 (18)
C4—C5—C6—C70.0 (3)C31—C32—C33—C340.2 (3)
C5—C6—C7—C80.7 (4)C32—C33—C34—C350.5 (3)
C6—C7—C8—C90.5 (4)C33—C34—C35—C360.0 (4)
C5—C4—C9—C81.0 (3)C32—C31—C36—C351.1 (3)
N1—C4—C9—C8178.9 (2)N2—C31—C36—C35177.50 (19)
C7—C8—C9—C40.3 (4)C34—C35—C36—C310.8 (3)
C22—Sn1—C10—C1537.46 (17)C49—Sn2—C37—C38109.91 (13)
C16—Sn1—C10—C15153.09 (15)C43—Sn2—C37—C380.12 (14)
S1—Sn1—C10—C15100.26 (15)S3—Sn2—C37—C38102.97 (13)
C22—Sn1—C10—C11138.42 (16)C49—Sn2—C37—C4268.03 (17)
C16—Sn1—C10—C1122.79 (18)C43—Sn2—C37—C42177.83 (15)
S1—Sn1—C10—C1183.85 (16)S3—Sn2—C37—C4279.09 (15)
C15—C10—C11—C121.8 (3)C42—C37—C38—C390.4 (3)
Sn1—C10—C11—C12177.71 (17)Sn2—C37—C38—C39177.68 (14)
C10—C11—C12—C131.6 (4)C37—C38—C39—C400.1 (3)
C11—C12—C13—C140.0 (4)C38—C39—C40—C410.5 (3)
C12—C13—C14—C151.3 (4)C39—C40—C41—C420.7 (3)
C11—C10—C15—C140.5 (3)C40—C41—C42—C370.4 (3)
Sn1—C10—C15—C14176.47 (16)C38—C37—C42—C410.2 (3)
C13—C14—C15—C101.0 (3)Sn2—C37—C42—C41177.73 (14)
C22—Sn1—C16—C1720.76 (18)C49—Sn2—C43—C4835.27 (16)
C10—Sn1—C16—C1799.57 (17)C37—Sn2—C43—C4884.57 (16)
S1—Sn1—C16—C17136.35 (16)S3—Sn2—C43—C48155.95 (15)
C22—Sn1—C16—C21156.46 (16)C49—Sn2—C43—C44147.26 (17)
C10—Sn1—C16—C2183.20 (17)C37—Sn2—C43—C4492.89 (17)
S1—Sn1—C16—C2140.88 (17)S3—Sn2—C43—C4426.58 (17)
C21—C16—C17—C180.3 (3)C48—C43—C44—C451.0 (3)
Sn1—C16—C17—C18177.70 (17)Sn2—C43—C44—C45178.45 (17)
C16—C17—C18—C190.1 (3)C43—C44—C45—C460.3 (4)
C17—C18—C19—C200.2 (4)C44—C45—C46—C470.7 (4)
C18—C19—C20—C210.1 (4)C45—C46—C47—C481.1 (3)
C19—C20—C21—C160.1 (4)C44—C43—C48—C470.6 (3)
C17—C16—C21—C200.4 (3)Sn2—C43—C48—C47178.21 (16)
Sn1—C16—C21—C20177.70 (17)C46—C47—C48—C430.4 (3)
C10—Sn1—C22—C2748.80 (17)C37—Sn2—C49—C50153.78 (16)
C16—Sn1—C22—C2768.54 (17)C43—Sn2—C49—C5042.98 (18)
S1—Sn1—C22—C27170.33 (14)S3—Sn2—C49—C5059.63 (18)
C10—Sn1—C22—C23136.57 (17)C37—Sn2—C49—C5418.37 (19)
C16—Sn1—C22—C23106.10 (17)C43—Sn2—C49—C54129.18 (17)
S1—Sn1—C22—C234.30 (18)S3—Sn2—C49—C54128.22 (16)
C27—C22—C23—C241.5 (3)C54—C49—C50—C510.5 (3)
Sn1—C22—C23—C24173.10 (17)Sn2—C49—C50—C51171.82 (19)
C22—C23—C24—C250.3 (4)C49—C50—C51—C520.7 (4)
C23—C24—C25—C261.3 (4)C50—C51—C52—C531.1 (4)
C24—C25—C26—C271.8 (4)C51—C52—C53—C540.3 (4)
C25—C26—C27—C220.7 (4)C52—C53—C54—C491.0 (4)
C23—C22—C27—C261.0 (3)C50—C49—C54—C531.3 (3)
Sn1—C22—C27—C26173.95 (19)Sn2—C49—C54—C53170.94 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, and Cg3 are the centroids of the C16–C21, C37–C42 and C43–C48 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.723.630 (3)160
C25—H25···Cg2ii0.952.903.639 (3)135
C32—H32···Cg3iii0.952.923.824 (2)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C9H10NS2)]
Mr546.29
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.6973 (2), 12.2804 (2), 22.8523 (4)
α, β, γ (°)90.588 (2), 101.573 (2), 110.687 (2)
V3)2484.39 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.30 × 0.24 × 0.19
Data collection
DiffractometerOxford Diffraction Xcaliber Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.748, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
62467, 10558, 9633
Rint0.038
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.055, 1.00
No. of reflections10558
No. of parameters561
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.44

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and QMol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C102.1339 (19)Sn2—C372.1413 (18)
Sn1—C162.1541 (19)Sn2—C432.1605 (19)
Sn1—C222.1210 (18)Sn2—C492.1379 (19)
Sn1—S12.4539 (5)Sn2—S32.4662 (5)
S1—C11.759 (2)S3—C281.7496 (19)
S2—C11.680 (2)S4—C281.6862 (19)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, and Cg3 are the centroids of the C16–C21, C37–C42 and C43–C48 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg1i0.952.723.630 (3)160
C25—H25···Cg2ii0.952.903.639 (3)135
C32—H32···Cg3iii0.952.923.824 (2)160
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y, z; (iii) x+2, y+2, z+2.
 

Footnotes

Additional correspondence author, e-mail: aibi@ukm.my.

Acknowledgements

The authors thank the Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08–27-111), the Ministry of Higher Education (UKM-ST-06-FRGS0092–2010) and the Universiti Putra Malaysia for support.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamaludin, N. F., Baba, I., Awang, N., Mohamed Tahir, M. I. & Tiekink, E. R. T. (2011). Acta Cryst. E67, m555–m556.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 1| January 2012| Pages m62-m63
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds