organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-Di­ethyl 5-oxo-2-[(2,4,4-tri­methyl­pentan-2-yl)amino]-4,5-di­hydro­pyrano[3,2-c]chromene-3,4-di­carboxyl­ate

aDepartment of Physics, Sri Ram Engineering College, Chennai 602 024, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 22 October 2011; accepted 1 December 2011; online 14 December 2011)

The title compound, C26H33NO7, comprises a racemic mixture of asymmetric mol­ecules containing one stereogenic centre. The dihedral angle between the mean planes of the fused pyran ring and the coumarin ring system is 8.12 (14)°. The mol­ecular structure features a short N—H⋯O contact, which generates an S(6) ring motif. The crystal packing are stabilized by C—H⋯O inter­actions.

Related literature

For a related structure, see: Inglebert et al. (2011[Inglebert, S. A., Sethusankar, K., Arun, Y. & Perumal, P. T. (2011). Acta Cryst. E67, o2955.]). For general background and applications of coumarin derivatives, see: Griffiths et al. (1995[Griffiths, J., Millar, V. & Bahra, G. S. (1995). Dyes Pigm. 28, 327-339.]); Yu et al. (2006[Yu, T.-Z., Zhao, Y.-L. & Fan, D.-W. (2006). J. Mol. Struct. 791, 18-22.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H33NO7

  • Mr = 471.53

  • Orthorhombic, P n a 21

  • a = 11.6910 (17) Å

  • b = 18.786 (3) Å

  • c = 11.7305 (15) Å

  • V = 2576.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.983

  • 10574 measured reflections

  • 3699 independent reflections

  • 2668 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.148

  • S = 1.09

  • 3699 reflections

  • 314 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.86 1.99 2.659 (4) 135
C2—H2⋯O6i 0.93 2.47 3.252 (5) 141
C4—H4⋯O4ii 0.93 2.43 3.306 (5) 157
Symmetry codes: (i) x, y, z-1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin and its derivatives have been extensively used in industrial products as dyes/laser materials, photosensitizers, pestisides, in pharmacology and in enzymology as biological probes. The photophysical and spectroscopic properties of the coumarin derivatives can be readily modified by the introduction of substituents in parent coumarin, converting themselves into more useful products and more flexibility to fit well in various applications (Griffiths et al., 1995; Yu et al., 2006).

In the title compound, C26H33NO7, the coumarin ring system is attached to a pyran ring, two diethyl carboxylates and the mean plane of tri methyl pentan amine group. The coumarin ring system is almost planar with a maximum deviation of -0.011 (4)Å for C8 atom and minimal puckering. Total puckering amplitude of coumarin ring system is 0.016 (4)Å. The coumarin ring system (O1/C1-C9) makes a dihedral angle of 8.12 (14)° with the pyran ring (O3/C7/C8/C10-C12). The coumarin ring system forms dihedral angles of 55.83 (15)° and 16.80 (9)° with the ethyl carboxylates (C13/O4/O5/C14/C15) and (C10/O6/O7/C17/C18) respectively. Likewise the pyran ring forms dihedral angles of 65.08 (18)° and 9.83 (11)° with the ethyl carboxylates (C13/O4/O5/C14/C15) and (C10/O6/O7/C17/C18) respectively. The dihedral angle between two ethyl carboxylate group is 72.93 (15)°.

The molecule is chiral with an asymmetric center (atom C10) present in the pyran ring. The nitrogen atom N1 deviates by -0.1146 (31)° from the pyran ring and carbon atom the C21 deviates by 1.8344 (37)° and 1.0411 (36)° from the mean plane of the butyl and pyran ring. The title compound exhibits structural similarities with a previously reported structure (Inglebert et al., 2011).

The molecular structure features a short intramolecular N1–H1···O6 contact, which generates an S(6) ring motif (Bernstein et al., 1995). The hydrogen bond is bifurcated, with oxygen O5 being simultaneously donated to two equivalent H atoms, forming one intramolecular (N1–H1···O6) and one intermolecular (C2–H2···O6i) hydrogen bonds. The crystal packing is further stabilized by C4–H4···O4ii intermolecular hydrogen bonds (Table 1). The symmetry codes: (i) x, y, -1+z; (ii) 3/2-x, 1/2+y, -1/2+ z.

Related literature top

For a related structure, see: Inglebert et al. (2011). For general background and applications of coumarin derivatives, see: Griffiths et al. (1995); Yu et al. (2006). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a magnetically stirred solution of 4-hydroxy coumarin (0.162 g, 1.0 mmol) and diethyl acetylenedicarboxylate (0.170 g, 1.0 mmol) in CH3CN (10 ml) was added a solution of 1,1,3,3-tetra methylbutyl isocynaide (0.139 g, 1.0 mmol) at room temperature over 5 min. The mixture was then stirred for 24 h. After completion of the reaction, the solvent was removed under vacuum and the solid residue was washed with n-hexane and crystallized from CH2Cl2/n-hexane(1/2) to give product as white crystals (0.396 g, 84%).

Refinement top

Positions of hydrogen atoms were localized from the difference electron density maps and their distances were geometrically constrained. The H atoms bound to the C and N atoms were treated as riding atoms, with N–H = 0.86Å and Uiso(H) = 1.2Ueq(N) for amine group, with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic, C–H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene and C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl groups. The rotation angles for methyl groups were optimized by least squares.

In the diffraction experiment were measured 1388 Fridedel pairs. Because no heavy atoms (Z > Si) in the molecule, during the refinement by SHELXL97, was used 'MERG 2' instruction in final CIF descriptors were placed: _refine_ls_abs_structure_Flack "?".

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The part of molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are present as small spheres of arbitary radius.
[Figure 2] Fig. 2. The packing structure of the title compound viewed along the a axis. Figure shows that intermolecular C–H···O and intramolecular N–H···O interactions as dashed lines. H atoms have omited for clarity.
rac-Diethyl 5-oxo-2-[(2,4,4-trimethylpentan-2-yl)amino]- 4,5-dihydropyrano[3,2-c]chromene-3,4-dicarboxylate top
Crystal data top
C26H33NO7F(000) = 1008
Mr = 471.53Dx = 1.216 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3699 reflections
a = 11.6910 (17) Åθ = 2.1–24.7°
b = 18.786 (3) ŵ = 0.09 mm1
c = 11.7305 (15) ÅT = 295 K
V = 2576.3 (6) Å3Block, colourless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3699 independent reflections
Radiation source: fine-focus sealed tube2668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 24.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1312
Tmin = 0.974, Tmax = 0.983k = 2221
10574 measured reflectionsl = 138
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.078P)2 + 0.3187P]
where P = (Fo2 + 2Fc2)/3
3699 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 0.31 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C26H33NO7V = 2576.3 (6) Å3
Mr = 471.53Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 11.6910 (17) ŵ = 0.09 mm1
b = 18.786 (3) ÅT = 295 K
c = 11.7305 (15) Å0.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3699 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2668 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.040
10574 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.148H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
3699 reflectionsΔρmin = 0.25 e Å3
314 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6377 (3)0.0116 (2)0.3451 (3)0.0508 (10)
C20.6418 (4)0.0147 (3)0.2347 (4)0.0644 (12)
H20.61070.01090.17430.077*
C30.6927 (4)0.0791 (3)0.2170 (4)0.0755 (14)
H30.69460.09750.14350.091*
C40.7414 (4)0.1179 (3)0.3041 (4)0.0683 (13)
H40.77660.16140.28940.082*
C50.7370 (3)0.0910 (2)0.4138 (3)0.0541 (10)
H50.76910.11670.47360.065*
C60.6849 (3)0.02601 (18)0.4351 (3)0.0423 (9)
C70.6755 (3)0.00743 (18)0.5456 (3)0.0394 (8)
C80.6263 (3)0.07045 (18)0.5616 (3)0.0395 (8)
C90.5766 (3)0.1081 (2)0.4650 (4)0.0538 (10)
C100.6226 (3)0.10563 (18)0.6758 (3)0.0427 (8)
H100.54570.12520.68720.051*
C110.6445 (3)0.05068 (18)0.7671 (3)0.0385 (8)
C120.6961 (3)0.01298 (17)0.7433 (3)0.0402 (8)
C130.7083 (4)0.1669 (2)0.6807 (4)0.0573 (10)
C140.9084 (5)0.1933 (3)0.6863 (6)0.108 (2)
H14A0.97550.17710.64500.129*
H14B0.88600.23910.65530.129*
C150.9368 (6)0.2013 (4)0.8074 (7)0.123 (2)
H15A0.95810.15590.83830.184*
H15B0.99940.23400.81550.184*
H15C0.87140.21920.84780.184*
C160.6163 (3)0.06638 (19)0.8839 (3)0.0493 (9)
C170.5375 (5)0.1526 (3)1.0102 (4)0.0780 (14)
H17A0.51400.11141.05410.094*
H17B0.47380.18571.00740.094*
C180.6319 (7)0.1854 (4)1.0635 (7)0.147 (3)
H18A0.65000.22891.02450.221*
H18B0.61330.19571.14150.221*
H18C0.69660.15401.06080.221*
C190.7794 (3)0.13287 (19)0.8039 (3)0.0497 (9)
C200.6949 (3)0.1798 (2)0.7392 (5)0.0683 (12)
H20A0.68100.15980.66520.102*
H20B0.72620.22680.73100.102*
H20C0.62420.18240.78070.102*
C210.8934 (3)0.13309 (19)0.7391 (4)0.0559 (10)
H21A0.91800.18240.73600.067*
H21B0.87560.11950.66140.067*
C220.7911 (5)0.1623 (2)0.9242 (4)0.0801 (15)
H22A0.71660.17210.95470.120*
H22B0.83520.20540.92240.120*
H22C0.82900.12790.97150.120*
C231.0000 (4)0.0895 (3)0.7732 (5)0.0871 (16)
C241.0869 (5)0.1021 (5)0.6791 (9)0.166 (3)
H24A1.15410.07420.69360.249*
H24B1.10700.15170.67700.249*
H24C1.05450.08850.60710.249*
C251.0573 (6)0.1221 (5)0.8796 (8)0.177 (4)
H25A1.13440.10500.88560.266*
H25B1.01520.10860.94650.266*
H25C1.05790.17310.87300.266*
C260.9782 (6)0.0111 (3)0.7841 (11)0.197 (5)
H26A0.94160.00600.71610.295*
H26B0.92970.00240.84860.295*
H26C1.04960.01330.79440.295*
O10.5851 (3)0.07650 (15)0.3600 (2)0.0612 (7)
O20.5283 (3)0.16455 (17)0.4702 (3)0.0809 (9)
O30.7213 (2)0.03244 (13)0.6328 (2)0.0469 (6)
O40.6857 (3)0.22770 (16)0.6899 (4)0.0995 (12)
O50.8155 (3)0.14240 (16)0.6705 (3)0.0857 (11)
O60.6299 (3)0.02675 (14)0.9658 (2)0.0674 (8)
O70.5678 (3)0.13089 (14)0.8956 (2)0.0648 (8)
N10.7291 (3)0.06126 (16)0.8183 (3)0.0531 (8)
H10.71950.04880.88810.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (2)0.065 (3)0.041 (2)0.0145 (19)0.0032 (19)0.0016 (19)
C20.061 (3)0.097 (3)0.035 (2)0.022 (2)0.000 (2)0.005 (2)
C30.080 (3)0.104 (4)0.043 (3)0.029 (3)0.017 (2)0.026 (3)
C40.069 (3)0.079 (3)0.057 (3)0.013 (2)0.019 (2)0.029 (3)
C50.057 (2)0.060 (2)0.046 (3)0.004 (2)0.0088 (19)0.0084 (19)
C60.0436 (19)0.050 (2)0.034 (2)0.0126 (17)0.0063 (16)0.0075 (17)
C70.0359 (19)0.0484 (19)0.034 (2)0.0050 (16)0.0016 (16)0.0002 (17)
C80.0358 (19)0.0450 (19)0.038 (2)0.0029 (16)0.0019 (16)0.0002 (15)
C90.062 (3)0.055 (2)0.045 (2)0.004 (2)0.012 (2)0.003 (2)
C100.044 (2)0.045 (2)0.038 (2)0.0045 (16)0.0007 (17)0.0013 (15)
C110.0355 (18)0.0477 (19)0.032 (2)0.0039 (16)0.0013 (15)0.0071 (15)
C120.0406 (19)0.0470 (19)0.033 (2)0.0018 (16)0.0018 (18)0.0036 (17)
C130.076 (3)0.046 (2)0.050 (2)0.003 (2)0.001 (2)0.0082 (18)
C140.097 (4)0.095 (4)0.131 (5)0.052 (3)0.024 (4)0.031 (4)
C150.109 (5)0.119 (5)0.140 (6)0.028 (4)0.011 (4)0.025 (4)
C160.055 (2)0.051 (2)0.042 (2)0.0062 (18)0.0017 (19)0.0048 (18)
C170.092 (4)0.078 (3)0.063 (3)0.022 (3)0.001 (3)0.022 (2)
C180.143 (6)0.158 (7)0.140 (7)0.025 (5)0.016 (5)0.066 (6)
C190.053 (2)0.047 (2)0.049 (2)0.0072 (18)0.0023 (19)0.0012 (17)
C200.059 (3)0.058 (2)0.088 (3)0.001 (2)0.007 (3)0.004 (2)
C210.051 (2)0.053 (2)0.064 (3)0.0103 (17)0.010 (2)0.0040 (19)
C220.100 (4)0.075 (3)0.065 (3)0.033 (3)0.003 (3)0.015 (2)
C230.056 (3)0.080 (3)0.126 (5)0.003 (2)0.016 (3)0.011 (3)
C240.068 (4)0.217 (9)0.214 (9)0.036 (5)0.029 (5)0.018 (7)
C250.116 (6)0.229 (9)0.188 (9)0.017 (6)0.090 (6)0.013 (8)
C260.086 (4)0.079 (4)0.425 (17)0.010 (3)0.060 (7)0.042 (7)
O10.0684 (18)0.0741 (19)0.0410 (17)0.0001 (15)0.0120 (14)0.0039 (14)
O20.103 (2)0.0674 (18)0.072 (2)0.0260 (18)0.026 (2)0.0017 (17)
O30.0557 (15)0.0522 (14)0.0328 (14)0.0126 (12)0.0012 (12)0.0036 (12)
O40.109 (3)0.0437 (17)0.145 (3)0.0013 (18)0.018 (2)0.0142 (18)
O50.065 (2)0.0698 (18)0.122 (3)0.0217 (17)0.0166 (19)0.0305 (18)
O60.096 (2)0.0688 (17)0.0373 (17)0.0171 (16)0.0010 (16)0.0005 (14)
O70.0885 (19)0.0589 (16)0.0470 (17)0.0158 (15)0.0058 (15)0.0127 (13)
N10.067 (2)0.0570 (19)0.0351 (17)0.0181 (16)0.0014 (16)0.0014 (15)
Geometric parameters (Å, º) top
C1—O11.377 (5)C16—O71.345 (4)
C1—C61.385 (5)C17—C181.409 (8)
C1—C21.386 (6)C17—O71.449 (5)
C2—C31.364 (6)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.378 (7)C18—H18A0.9600
C3—H30.9300C18—H18B0.9600
C4—C51.383 (6)C18—H18C0.9600
C4—H40.9300C19—N11.478 (5)
C5—C61.388 (5)C19—C221.522 (6)
C5—H50.9300C19—C201.526 (6)
C6—C71.445 (5)C19—C211.535 (6)
C7—C81.329 (4)C20—H20A0.9600
C7—O31.376 (4)C20—H20B0.9600
C8—C91.457 (5)C20—H20C0.9600
C8—C101.494 (5)C21—C231.543 (6)
C9—O21.203 (4)C21—H21A0.9700
C9—O11.372 (5)C21—H21B0.9700
C10—C111.509 (5)C22—H22A0.9600
C10—C131.528 (5)C22—H22B0.9600
C10—H100.9800C22—H22C0.9600
C11—C121.368 (5)C23—C261.500 (8)
C11—C161.440 (5)C23—C241.520 (10)
C12—N11.321 (5)C23—C251.543 (10)
C12—O31.378 (4)C24—H24A0.9600
C13—O41.177 (4)C24—H24B0.9600
C13—O51.340 (5)C24—H24C0.9600
C14—O51.459 (5)C25—H25A0.9600
C14—C151.467 (9)C25—H25B0.9600
C14—H14A0.9700C25—H25C0.9600
C14—H14B0.9700C26—H26A0.9600
C15—H15A0.9600C26—H26B0.9600
C15—H15B0.9600C26—H26C0.9600
C15—H15C0.9600N1—H10.8600
C16—O61.226 (5)
O1—C1—C6122.2 (3)H17A—C17—H17B108.2
O1—C1—C2116.7 (4)C17—C18—H18A109.5
C6—C1—C2121.1 (4)C17—C18—H18B109.5
C3—C2—C1118.2 (4)H18A—C18—H18B109.5
C3—C2—H2120.9C17—C18—H18C109.5
C1—C2—H2120.9H18A—C18—H18C109.5
C2—C3—C4122.5 (4)H18B—C18—H18C109.5
C2—C3—H3118.8N1—C19—C22105.1 (3)
C4—C3—H3118.8N1—C19—C20109.0 (3)
C3—C4—C5118.7 (4)C22—C19—C20108.1 (4)
C3—C4—H4120.6N1—C19—C21113.9 (3)
C5—C4—H4120.6C22—C19—C21112.3 (4)
C4—C5—C6120.4 (4)C20—C19—C21108.3 (3)
C4—C5—H5119.8C19—C20—H20A109.5
C6—C5—H5119.8C19—C20—H20B109.5
C1—C6—C5119.1 (4)H20A—C20—H20B109.5
C1—C6—C7115.6 (3)C19—C20—H20C109.5
C5—C6—C7125.3 (3)H20A—C20—H20C109.5
C8—C7—O3123.2 (3)H20B—C20—H20C109.5
C8—C7—C6123.1 (3)C19—C21—C23124.8 (4)
O3—C7—C6113.6 (3)C19—C21—H21A106.1
C7—C8—C9119.7 (3)C23—C21—H21A106.1
C7—C8—C10122.2 (3)C19—C21—H21B106.1
C9—C8—C10118.1 (3)C23—C21—H21B106.1
O2—C9—O1117.4 (4)H21A—C21—H21B106.3
O2—C9—C8125.2 (4)C19—C22—H22A109.5
O1—C9—C8117.4 (3)C19—C22—H22B109.5
C8—C10—C11109.2 (3)H22A—C22—H22B109.5
C8—C10—C13110.3 (3)C19—C22—H22C109.5
C11—C10—C13112.2 (3)H22A—C22—H22C109.5
C8—C10—H10108.3H22B—C22—H22C109.5
C11—C10—H10108.3C26—C23—C24109.2 (7)
C13—C10—H10108.3C26—C23—C21114.0 (4)
C12—C11—C16118.3 (3)C24—C23—C21105.6 (5)
C12—C11—C10121.9 (3)C26—C23—C25113.2 (7)
C16—C11—C10119.8 (3)C24—C23—C25103.6 (6)
N1—C12—C11126.4 (3)C21—C23—C25110.5 (5)
N1—C12—O3112.4 (3)C23—C24—H24A109.5
C11—C12—O3121.2 (3)C23—C24—H24B109.5
O4—C13—O5123.5 (4)H24A—C24—H24B109.5
O4—C13—C10126.0 (4)C23—C24—H24C109.5
O5—C13—C10110.5 (3)H24A—C24—H24C109.5
O5—C14—C15111.0 (5)H24B—C24—H24C109.5
O5—C14—H14A109.4C23—C25—H25A109.5
C15—C14—H14A109.4C23—C25—H25B109.5
O5—C14—H14B109.4H25A—C25—H25B109.5
C15—C14—H14B109.4C23—C25—H25C109.5
H14A—C14—H14B108.0H25A—C25—H25C109.5
C14—C15—H15A109.5H25B—C25—H25C109.5
C14—C15—H15B109.5C23—C26—H26A109.5
H15A—C15—H15B109.5C23—C26—H26B109.5
C14—C15—H15C109.5H26A—C26—H26B109.5
H15A—C15—H15C109.5C23—C26—H26C109.5
H15B—C15—H15C109.5H26A—C26—H26C109.5
O6—C16—O7121.4 (3)H26B—C26—H26C109.5
O6—C16—C11126.3 (3)C9—O1—C1122.0 (3)
O7—C16—C11112.2 (3)C7—O3—C12118.1 (2)
C18—C17—O7110.1 (5)C13—O5—C14117.3 (4)
C18—C17—H17A109.6C16—O7—C17116.9 (3)
O7—C17—H17A109.6C12—N1—C19131.7 (3)
C18—C17—H17B109.6C12—N1—H1114.2
O7—C17—H17B109.6C19—N1—H1114.2
O1—C1—C2—C3179.6 (3)C10—C11—C12—O35.9 (5)
C6—C1—C2—C30.6 (6)C8—C10—C13—O4114.4 (5)
C1—C2—C3—C41.1 (6)C11—C10—C13—O4123.6 (5)
C2—C3—C4—C51.0 (6)C8—C10—C13—O564.3 (4)
C3—C4—C5—C60.3 (6)C11—C10—C13—O557.7 (4)
O1—C1—C6—C5179.8 (3)C12—C11—C16—O63.1 (6)
C2—C1—C6—C50.0 (5)C10—C11—C16—O6179.8 (4)
O1—C1—C6—C70.1 (5)C12—C11—C16—O7179.0 (3)
C2—C1—C6—C7179.7 (3)C10—C11—C16—O72.3 (5)
C4—C5—C6—C10.1 (5)N1—C19—C21—C2355.7 (5)
C4—C5—C6—C7179.8 (3)C22—C19—C21—C2363.6 (5)
C1—C6—C7—C80.8 (5)C20—C19—C21—C23177.1 (4)
C5—C6—C7—C8178.9 (3)C19—C21—C23—C2655.6 (8)
C1—C6—C7—O3178.7 (3)C19—C21—C23—C24175.4 (5)
C5—C6—C7—O31.7 (5)C19—C21—C23—C2573.2 (6)
O3—C7—C8—C9178.0 (3)O2—C9—O1—C1179.3 (3)
C6—C7—C8—C91.4 (5)C8—C9—O1—C10.3 (5)
O3—C7—C8—C103.7 (5)C6—C1—O1—C90.3 (5)
C6—C7—C8—C10176.9 (3)C2—C1—O1—C9179.5 (4)
C7—C8—C9—O2178.4 (4)C8—C7—O3—C1212.7 (4)
C10—C8—C9—O23.2 (6)C6—C7—O3—C12166.8 (3)
C7—C8—C9—O11.1 (5)N1—C12—O3—C7169.8 (3)
C10—C8—C9—O1177.3 (3)C11—C12—O3—C711.3 (4)
C7—C8—C10—C1118.6 (4)O4—C13—O5—C147.9 (7)
C9—C8—C10—C11163.1 (3)C10—C13—O5—C14173.3 (4)
C7—C8—C10—C13105.2 (4)C15—C14—O5—C1384.9 (6)
C9—C8—C10—C1373.2 (4)O6—C16—O7—C172.9 (5)
C8—C10—C11—C1219.6 (4)C11—C16—O7—C17179.0 (4)
C13—C10—C11—C12103.0 (4)C18—C17—O7—C1686.8 (6)
C8—C10—C11—C16163.8 (3)C11—C12—N1—C19176.2 (3)
C13—C10—C11—C1673.6 (4)O3—C12—N1—C194.9 (5)
C16—C11—C12—N13.8 (5)C22—C19—N1—C12176.9 (4)
C10—C11—C12—N1172.9 (3)C20—C19—N1—C1261.3 (5)
C16—C11—C12—O3177.4 (3)C21—C19—N1—C1259.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.861.992.659 (4)135
C2—H2···O6i0.932.473.252 (5)141
C4—H4···O4ii0.932.433.306 (5)157
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H33NO7
Mr471.53
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)11.6910 (17), 18.786 (3), 11.7305 (15)
V3)2576.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
10574, 3699, 2668
Rint0.040
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.09
No. of reflections3699
No. of parameters314
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.861.992.659 (4)135
C2—H2···O6i0.932.473.252 (5)141.2
C4—H4···O4ii0.932.433.306 (5)157.3
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge Dr Babu Varghese, SAIF, IIT, Chennai, India, for the X-ray intensity data collection and Dr V. Murugan, Head of the Physics Department, RKM Vivekananda College, Chennai, India, for providing facilities in the department to carry out this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGriffiths, J., Millar, V. & Bahra, G. S. (1995). Dyes Pigm. 28, 327–339.  CrossRef CAS Web of Science Google Scholar
First citationInglebert, S. A., Sethusankar, K., Arun, Y. & Perumal, P. T. (2011). Acta Cryst. E67, o2955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, T.-Z., Zhao, Y.-L. & Fan, D.-W. (2006). J. Mol. Struct. 791, 18-22.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds