metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[di­aquabis(μ2-4,4′-bi­pyridyl)iron(II)] bis­{2-[(3-carboxypyridin-2-yl)disulfanyl]nicotinate}]

aDepartment of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky37@zjnu.cn

(Received 9 November 2011; accepted 4 December 2011; online 10 December 2011)

In the title compound, {[Fe(C10H8N2)2(H2O)2](C12H7N2O4S2)2}n, synthesized by hydro­thermal reaction, the 4,4′-bipyridyl ligands (one with symmetry 2, one with symmetry [\overline1]) connect Fe2+ cations, forming a cationic layer parallel to (001). The coordination of the Fe2+ cation (site symmetry 2) is octahedral, with four N atoms from four 4,4′-bipyridyl ligands and O atoms from two trans water molecules. Adjacent layers are linked with each other by inter­molecular O—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular structure. Parts of the nicotinic acid derivative are equally disordered over two sets of sites.

Related literature

For related structures, see: Smith & Sagatys (2003[Smith, G. & Sagatys, D. S. (2003). Acta Cryst. E59, o540-o541.]); Panagiotis et al. (2003[Panagiotis, C. Z., Sotiris, K. H., Nick, H., Adonis, M., Stavroula, S., Yang, M. & Yu, X. L. (2003). Inorg. Chim. Acta, 343, 361-365.]); Wang et al. (2011[Wang, X. J., Jiang, Z. G., Chen, J. & Feng, Y. L. (2011). Inorg. Chim. Acta, 373, 270-275.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C10H8N2)2(H2O)2](C12H7N2O4S2)2

  • Mr = 1018.92

  • Monoclinic, P 2/c

  • a = 11.5161 (2) Å

  • b = 11.6531 (2) Å

  • c = 16.3216 (3) Å

  • β = 102.403 (1)°

  • V = 2139.21 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 296 K

  • 0.21 × 0.07 × 0.05 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.938, Tmax = 0.957

  • 32774 measured reflections

  • 4930 independent reflections

  • 3286 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.126

  • S = 1.05

  • 4930 reflections

  • 389 parameters

  • 127 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.86 (2) 1.78 (2) 2.634 (3) 172 (3)
O1W—H1WB⋯O4ii 0.83 (2) 1.96 (2) 2.788 (3) 177 (3)
O2—H2⋯O4iii 0.86 (2) 1.74 (4) 2.549 (6) 156 (8)
O2′—H2′⋯O4iii 0.87 (2) 1.93 (3) 2.776 (10) 164 (9)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y, z-1; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The 2-mercaptopyridine-3-carboxylic acid is an interesting ligand because of its potential versatile coordinate behavior. It may act as a deprotonated ligand through either the carboxylate or the thiolate group, such as 2-mercaptopyridine-3-carboxylate hydrate (Smith et al., 2003) or 2-mercapto-nicotinic acid (Panagiotis et al., 2003). Meanwhile, 2-mercaptopyridine-3-carboxylic acid can produce its derivative, 2-(3-carboxy-pyridine-2-yl disulfanyl)-nicotinic acid under hydrothermal reaction (Wang et al., 2011). As shown in Fig. 1, the Fe atom is six-coordinated by four nitrogen atoms from four bipy ligand and two coordinated water molecules in an octahedral configuration. Fe centers are interconnected by neutral bipy ligands to form a two-dimensional cationic square-grid layer (Fig. 2). The layers are stacking along the crystallographic c axis and the free L ligands act as charge-compensating anions (Fig. 3). The intermolecular O–H···O hydrogen bonds between the coordinated water molecules and the uncoordinated carboxylate oxygen atoms play an important role in the formation of the three-dimensional network.

Related literature top

For related structures, see: Smith et al. (2003); Panagiotis et al. (2003); Wang et al. (2011).

Experimental top

All reagents were purchased commercially and used without further purification. The mixture of 2-mercaptopyridine-3-carboxylic acid (0.0465 g, 0.3 mmol), FeSO4×7H2O (0.0834 g, 0.3 mmol), bipy (0.0468 g, 0.3 mmol) and H2O (16 ml) was placed into a 25 ml Teflon-leaned reactor and kept under autogenous pressure at 433 K for 3 days. The mixture was cooled to room temperature at a rate of 5 degrees per hour. The crystals were filtered and washed with water. Then the single crystals suitable for X-ray diffraction were obtained in the mother solution.

Refinement top

The C-bound H-atoms were positioned geometrically and included in the refinement using a riding model with C–H = 0.93Å and Uiso(H) = 1.2Ueq(C). The O-bound H-atoms (water molecule) were located in a difference fourier maps and refined freely with Uiso(H) = 1.2Ueq(O). One of the nicotinic parts is disordered over two occupation sites: N4 C12 C13 C14 C15 C16 C17 O1 O2 and N4' C12' C13' C14' C15' C16' C17' O1' O2' with refined site-occupation factors of 0.5 : 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry codes: (i) -x+1, y, -z-1/2; (ii) x, y+1, z; (iv) -x, y, -z-1/2; (vii) 1+x, y, z.
[Figure 2] Fig. 2. A two-dimensional layered structure (anion molecules are omitted for clarity).
[Figure 3] Fig. 3. View of the three-dimensional network involving hydrogen bonds.
Poly[[diaquabis(µ2-4,4'-bipyridyl)iron(II)] bis{2-[(3-carboxypyridin-2-yl)disulfanyl]nicotinate}] top
Crystal data top
[Fe(C10H8N2)2(H2O)2](C12H7N2O4S2)2F(000) = 1048
Mr = 1018.92Dx = 1.582 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3520 reflections
a = 11.5161 (2) Åθ = 1.8–27.6°
b = 11.6531 (2) ŵ = 0.62 mm1
c = 16.3216 (3) ÅT = 296 K
β = 102.403 (1)°Block, red
V = 2139.21 (7) Å30.21 × 0.07 × 0.05 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
4930 independent reflections
Radiation source: fine-focus sealed tube3286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.938, Tmax = 0.957k = 1415
32774 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4305P]
where P = (Fo2 + 2Fc2)/3
4930 reflections(Δ/σ)max = 0.001
389 parametersΔρmax = 0.36 e Å3
127 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Fe(C10H8N2)2(H2O)2](C12H7N2O4S2)2V = 2139.21 (7) Å3
Mr = 1018.92Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.5161 (2) ŵ = 0.62 mm1
b = 11.6531 (2) ÅT = 296 K
c = 16.3216 (3) Å0.21 × 0.07 × 0.05 mm
β = 102.403 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
4930 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3286 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.957Rint = 0.064
32774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047127 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.36 e Å3
4930 reflectionsΔρmin = 0.58 e Å3
389 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.60631 (4)0.25000.02882 (15)
S10.30455 (9)0.03861 (10)0.46412 (6)0.0812 (3)
S20.33622 (7)0.13250 (9)0.46478 (5)0.0673 (3)
O30.3830 (2)0.3534 (3)0.47678 (15)0.0871 (9)
O40.2747 (2)0.4971 (3)0.51206 (17)0.0838 (8)
O1W0.46496 (16)0.60454 (16)0.38083 (11)0.0384 (4)
H1WA0.5140 (18)0.612 (2)0.4132 (14)0.046*
H1WB0.4066 (17)0.574 (2)0.4120 (15)0.046*
N10.50000.1992 (2)0.25000.0320 (6)
N20.50000.4115 (2)0.25000.0322 (6)
N30.30520 (16)0.60959 (17)0.25723 (13)0.0339 (5)
N50.1051 (3)0.1215 (3)0.46728 (17)0.0726 (9)
C10.4545 (2)0.1388 (2)0.31906 (16)0.0403 (6)
H1A0.42160.17860.36790.048*
C20.4538 (2)0.0207 (2)0.32156 (16)0.0446 (7)
H2A0.42220.01700.37160.054*
C30.50000.0423 (3)0.25000.0348 (8)
C40.50000.1695 (3)0.25000.0322 (7)
C50.4950 (2)0.2323 (2)0.17883 (16)0.0404 (6)
H5A0.49180.19470.12910.048*
C60.4948 (2)0.3499 (2)0.18169 (16)0.0392 (6)
H6A0.49080.38940.13290.047*
C70.2323 (2)0.5242 (2)0.28880 (18)0.0444 (7)
H7A0.26380.46260.31290.053*
C80.1132 (2)0.5219 (2)0.28784 (18)0.0450 (7)
H8A0.06650.45980.31050.054*
C90.06347 (19)0.6128 (2)0.25276 (15)0.0347 (5)
C100.1365 (2)0.7045 (2)0.22368 (16)0.0400 (6)
H10A0.10610.76930.20260.048*
C110.2552 (2)0.6987 (2)0.22625 (17)0.0399 (6)
H11A0.30350.76060.20520.048*
C180.1968 (3)0.1929 (3)0.47415 (17)0.0599 (9)
C190.1879 (3)0.3118 (3)0.48620 (18)0.0618 (9)
C200.0773 (3)0.3543 (4)0.4883 (2)0.0778 (11)
H20A0.06750.43250.49600.093*
C210.0196 (3)0.2817 (5)0.4791 (3)0.0884 (13)
H21A0.09510.31000.47920.106*
C220.0011 (3)0.1677 (5)0.4699 (2)0.0822 (13)
H22A0.06580.11860.46500.099*
C230.2897 (3)0.3938 (4)0.4916 (2)0.0703 (11)
O10.3004 (5)0.2480 (5)0.4844 (3)0.0697 (17)0.50
O20.2225 (6)0.3746 (4)0.3829 (3)0.0763 (15)0.50
H20.252 (7)0.427 (5)0.418 (4)0.092*0.50
N40.2052 (17)0.026 (3)0.3020 (18)0.055 (4)0.50
C120.2344 (3)0.0670 (3)0.3587 (2)0.0575 (8)0.50
C130.2216 (8)0.1758 (10)0.3477 (6)0.051 (3)0.50
C140.1735 (11)0.2053 (13)0.2620 (9)0.072 (3)0.50
H14A0.16260.28200.24660.087*0.50
C150.1438 (13)0.1219 (14)0.2032 (9)0.071 (4)0.50
H15A0.11980.14150.14680.085*0.50
C160.150 (2)0.005 (3)0.230 (2)0.085 (7)0.50
H16A0.11380.06220.19350.102*0.50
C170.2512 (9)0.2712 (7)0.4106 (5)0.046 (2)0.50
O1'0.1141 (7)0.3593 (6)0.3517 (4)0.123 (2)0.50
O2'0.2801 (8)0.2910 (9)0.4351 (7)0.087 (3)0.50
H2'0.292 (8)0.353 (5)0.465 (5)0.105*0.50
N4'0.2197 (17)0.014 (3)0.3108 (19)0.064 (6)0.50
C12'0.2344 (3)0.0670 (3)0.3587 (2)0.0575 (8)0.50
C13'0.1886 (9)0.1804 (8)0.3196 (8)0.054 (3)0.50
C14'0.1310 (11)0.1877 (13)0.2374 (10)0.081 (4)0.50
H14B0.10200.25780.21440.097*0.50
C15'0.1163 (15)0.0891 (14)0.1885 (12)0.091 (5)0.50
H15B0.07030.08590.13420.109*0.50
C16'0.1714 (18)0.006 (3)0.2251 (16)0.062 (4)0.50
H16B0.18270.05410.18980.074*0.50
C17'0.1925 (7)0.2874 (7)0.3708 (5)0.073 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0244 (2)0.0232 (3)0.0404 (3)0.0000.01043 (18)0.000
S10.0802 (6)0.0940 (8)0.0628 (6)0.0049 (6)0.0006 (5)0.0307 (5)
S20.0547 (5)0.0969 (8)0.0490 (5)0.0114 (4)0.0084 (4)0.0028 (4)
O30.0699 (16)0.129 (2)0.0725 (16)0.0343 (16)0.0374 (13)0.0150 (15)
O40.0838 (18)0.079 (2)0.0859 (19)0.0177 (15)0.0127 (14)0.0126 (16)
O1W0.0383 (9)0.0388 (11)0.0394 (10)0.0043 (8)0.0108 (7)0.0009 (8)
N10.0319 (14)0.0256 (16)0.0392 (16)0.0000.0095 (12)0.000
N20.0324 (14)0.0258 (17)0.0400 (16)0.0000.0108 (12)0.000
N30.0261 (9)0.0307 (12)0.0467 (12)0.0017 (9)0.0119 (8)0.0043 (9)
N50.0644 (18)0.104 (3)0.0502 (16)0.0275 (17)0.0152 (13)0.0067 (16)
C10.0499 (15)0.0267 (15)0.0411 (15)0.0011 (11)0.0026 (12)0.0038 (11)
C20.0613 (17)0.0296 (15)0.0385 (15)0.0019 (12)0.0009 (12)0.0020 (12)
C30.0365 (18)0.027 (2)0.040 (2)0.0000.0068 (14)0.000
C40.0347 (17)0.0203 (19)0.041 (2)0.0000.0070 (14)0.000
C50.0578 (16)0.0274 (15)0.0374 (14)0.0015 (12)0.0134 (12)0.0023 (11)
C60.0511 (15)0.0272 (14)0.0415 (15)0.0001 (12)0.0147 (12)0.0033 (11)
C70.0354 (13)0.0355 (16)0.0649 (18)0.0020 (11)0.0168 (12)0.0106 (13)
C80.0319 (12)0.0350 (16)0.0682 (19)0.0046 (11)0.0111 (12)0.0094 (13)
C90.0276 (11)0.0350 (14)0.0423 (14)0.0026 (11)0.0092 (10)0.0020 (11)
C100.0325 (12)0.0377 (16)0.0515 (15)0.0028 (11)0.0128 (11)0.0074 (12)
C110.0291 (12)0.0378 (16)0.0541 (16)0.0038 (11)0.0115 (11)0.0079 (13)
C180.0533 (17)0.094 (3)0.0345 (15)0.0192 (18)0.0133 (12)0.0051 (16)
C190.0553 (18)0.094 (3)0.0382 (16)0.0185 (18)0.0137 (13)0.0071 (17)
C200.066 (2)0.102 (3)0.070 (2)0.008 (2)0.0246 (18)0.014 (2)
C210.057 (2)0.135 (5)0.077 (3)0.010 (3)0.0231 (18)0.009 (3)
C220.062 (2)0.128 (4)0.059 (2)0.039 (3)0.0182 (17)0.010 (2)
C230.068 (2)0.100 (3)0.0446 (18)0.024 (2)0.0177 (16)0.001 (2)
O10.089 (4)0.056 (3)0.053 (3)0.007 (3)0.010 (3)0.002 (3)
O20.113 (4)0.039 (3)0.066 (3)0.003 (3)0.003 (3)0.000 (2)
N40.073 (7)0.044 (6)0.043 (6)0.005 (6)0.000 (6)0.015 (5)
C120.0566 (18)0.046 (2)0.072 (2)0.0075 (15)0.0172 (15)0.0074 (17)
C130.050 (5)0.066 (6)0.036 (5)0.001 (4)0.006 (4)0.000 (4)
C140.078 (6)0.073 (6)0.061 (6)0.003 (5)0.003 (5)0.003 (5)
C150.088 (7)0.069 (8)0.048 (5)0.003 (6)0.003 (5)0.012 (5)
C160.099 (11)0.084 (9)0.067 (8)0.010 (8)0.008 (7)0.012 (6)
C170.041 (4)0.053 (5)0.041 (4)0.008 (4)0.001 (3)0.017 (4)
O1'0.149 (6)0.102 (5)0.116 (5)0.055 (5)0.020 (4)0.003 (4)
O2'0.064 (5)0.088 (6)0.108 (6)0.002 (4)0.015 (4)0.037 (5)
N4'0.070 (6)0.054 (9)0.054 (8)0.012 (5)0.014 (4)0.005 (6)
C12'0.0566 (18)0.046 (2)0.072 (2)0.0075 (15)0.0172 (15)0.0074 (17)
C13'0.055 (5)0.043 (4)0.063 (7)0.004 (4)0.013 (5)0.002 (5)
C14'0.085 (7)0.063 (7)0.093 (8)0.025 (6)0.015 (6)0.025 (6)
C15'0.099 (8)0.077 (8)0.091 (8)0.005 (6)0.006 (6)0.011 (6)
C16'0.063 (6)0.073 (8)0.046 (6)0.002 (6)0.003 (5)0.001 (5)
C17'0.074 (5)0.077 (6)0.069 (5)0.015 (5)0.020 (4)0.020 (4)
Geometric parameters (Å, º) top
Fe1—O1Wi2.0863 (17)C9—C101.379 (3)
Fe1—O1W2.0863 (17)C9—C9iv1.484 (4)
Fe1—N32.2213 (18)C10—C111.378 (3)
Fe1—N3i2.2213 (18)C10—H10A0.9300
Fe1—N1ii2.267 (3)C11—H11A0.9300
Fe1—N22.270 (3)C18—C191.406 (5)
S1—C121.768 (4)C19—C201.374 (5)
S1—S22.0266 (16)C19—C231.500 (5)
S2—C181.789 (3)C20—C211.382 (5)
O3—C231.243 (4)C20—H20A0.9300
O4—C231.272 (5)C21—C221.359 (6)
O1W—H1WA0.857 (16)C21—H21A0.9300
O1W—H1WB0.828 (16)C22—H22A0.9300
N1—C1i1.337 (3)O1—C171.246 (8)
N1—C11.337 (3)O2—C171.304 (8)
N1—Fe1iii2.267 (3)O2—H20.86 (2)
N2—C61.338 (3)N4—C161.24 (4)
N2—C6i1.338 (3)N4—C121.42 (3)
N3—C71.332 (3)C12—C131.284 (12)
N3—C111.338 (3)C13—C141.431 (15)
N5—C181.330 (4)C13—C171.503 (9)
N5—C221.346 (5)C14—C151.36 (2)
C1—C21.377 (4)C14—H14A0.9300
C1—H1A0.9300C15—C161.54 (4)
C2—C31.385 (3)C15—H15A0.9300
C2—H2A0.9300C16—H16A0.9300
C3—C2i1.385 (3)O1'—C17'1.222 (8)
C3—C41.483 (5)O2'—C17'1.291 (8)
C4—C5i1.384 (3)O2'—H2'0.87 (2)
C4—C51.384 (3)N4'—C16'1.41 (4)
C5—C61.371 (4)C13'—C14'1.367 (17)
C5—H5A0.9300C13'—C17'1.496 (9)
C6—H6A0.9300C14'—C15'1.39 (2)
C7—C81.375 (3)C14'—H14B0.9300
C7—H7A0.9300C15'—C16'1.24 (3)
C8—C91.386 (4)C15'—H15B0.9300
C8—H8A0.9300C16'—H16B0.9300
O1Wi—Fe1—O1W178.87 (10)C10—C9—C9iv121.02 (17)
O1Wi—Fe1—N391.47 (7)C8—C9—C9iv121.68 (18)
O1W—Fe1—N388.55 (7)C11—C10—C9119.2 (2)
O1Wi—Fe1—N3i88.55 (7)C11—C10—H10A120.4
O1W—Fe1—N3i91.47 (7)C9—C10—H10A120.4
N3—Fe1—N3i178.03 (11)N3—C11—C10124.0 (2)
O1Wi—Fe1—N1ii90.57 (5)N3—C11—H11A118.0
O1W—Fe1—N1ii90.57 (5)C10—C11—H11A118.0
N3—Fe1—N1ii89.01 (5)N5—C18—C19123.2 (3)
N3i—Fe1—N1ii89.01 (5)N5—C18—S2117.2 (3)
O1Wi—Fe1—N289.43 (5)C19—C18—S2119.5 (2)
O1W—Fe1—N289.43 (5)C20—C19—C18117.0 (3)
N3—Fe1—N290.99 (5)C20—C19—C23119.1 (4)
N3i—Fe1—N290.99 (5)C18—C19—C23123.8 (3)
N1ii—Fe1—N2180.0C19—C20—C21120.5 (4)
C12—S1—S2103.51 (13)C19—C20—H20A119.7
C18—S2—S1102.92 (13)C21—C20—H20A119.7
Fe1—O1W—H1WA128.5 (17)C22—C21—C20117.9 (4)
Fe1—O1W—H1WB125.8 (18)C22—C21—H21A121.1
H1WA—O1W—H1WB103 (2)C20—C21—H21A121.1
C1i—N1—C1116.5 (3)N5—C22—C21124.1 (4)
C1i—N1—Fe1iii121.77 (15)N5—C22—H22A117.9
C1—N1—Fe1iii121.77 (15)C21—C22—H22A117.9
C6—N2—C6i115.1 (3)O3—C23—O4125.5 (3)
C6—N2—Fe1122.47 (15)O3—C23—C19116.4 (4)
C6i—N2—Fe1122.47 (15)O4—C23—C19118.1 (3)
C7—N3—C11116.1 (2)C17—O2—H2113 (6)
C7—N3—Fe1123.58 (16)C16—N4—C12118 (3)
C11—N3—Fe1120.31 (16)C13—C12—N4131.3 (14)
C18—N5—C22117.2 (4)C13—C12—S1109.6 (5)
N1—C1—C2123.4 (2)N4—C12—S1119.0 (13)
N1—C1—H1A118.3C12—C13—C14112.5 (9)
C2—C1—H1A118.3C12—C13—C17129.2 (8)
C1—C2—C3120.4 (3)C14—C13—C17118.2 (10)
C1—C2—H2A119.8C15—C14—C13120.4 (14)
C3—C2—H2A119.8C15—C14—H14A119.8
C2—C3—C2i116.0 (3)C13—C14—H14A119.8
C2—C3—C4122.01 (17)C14—C15—C16119.9 (16)
C2i—C3—C4122.01 (17)C14—C15—H15A120.0
C5i—C4—C5116.2 (3)C16—C15—H15A120.0
C5i—C4—C3121.90 (16)N4—C16—C15117 (3)
C5—C4—C3121.90 (16)N4—C16—H16A121.7
C6—C5—C4120.0 (2)C15—C16—H16A121.7
C6—C5—H5A120.0O1—C17—O2124.4 (8)
C4—C5—H5A120.0O1—C17—C13119.3 (7)
N2—C6—C5124.4 (2)O2—C17—C13116.3 (7)
N2—C6—H6A117.8C17'—O2'—H2'119 (7)
C5—C6—H6A117.8C14'—C13'—C17'116.5 (11)
N3—C7—C8123.9 (2)C13'—C14'—C15'119.1 (13)
N3—C7—H7A118.0C16'—C15'—C14'112.6 (18)
C8—C7—H7A118.0C15'—C16'—N4'131 (3)
C7—C8—C9119.4 (2)O1'—C17'—O2'126.2 (9)
C7—C8—H8A120.3O1'—C17'—C13'119.8 (8)
C9—C8—H8A120.3O2'—C17'—C13'113.9 (9)
C10—C9—C8117.3 (2)
C12—S1—S2—C1882.35 (14)C9—C10—C11—N31.5 (4)
O1Wi—Fe1—N2—C613.85 (14)C22—N5—C18—C191.9 (4)
O1W—Fe1—N2—C6166.15 (14)C22—N5—C18—S2176.6 (2)
N3—Fe1—N2—C677.61 (14)S1—S2—C18—N58.6 (2)
N3i—Fe1—N2—C6102.39 (14)S1—S2—C18—C19172.9 (2)
O1Wi—Fe1—N2—C6i166.15 (14)N5—C18—C19—C201.9 (5)
O1W—Fe1—N2—C6i13.85 (14)S2—C18—C19—C20176.5 (2)
N3—Fe1—N2—C6i102.39 (14)N5—C18—C19—C23178.2 (3)
N3i—Fe1—N2—C6i77.61 (14)S2—C18—C19—C230.2 (4)
O1Wi—Fe1—N3—C7114.2 (2)C18—C19—C20—C210.1 (5)
O1W—Fe1—N3—C764.6 (2)C23—C19—C20—C21176.6 (3)
N1ii—Fe1—N3—C7155.2 (2)C19—C20—C21—C221.5 (6)
N2—Fe1—N3—C724.8 (2)C18—N5—C22—C210.1 (5)
O1Wi—Fe1—N3—C1163.3 (2)C20—C21—C22—N51.6 (6)
O1W—Fe1—N3—C11117.8 (2)C20—C19—C23—O3169.5 (3)
N1ii—Fe1—N3—C1127.23 (19)C18—C19—C23—O36.8 (5)
N2—Fe1—N3—C11152.77 (19)C20—C19—C23—O411.6 (5)
C1i—N1—C1—C20.54 (19)C18—C19—C23—O4172.2 (3)
Fe1iii—N1—C1—C2179.46 (19)C16—N4—C12—C136.0 (17)
N1—C1—C2—C31.1 (4)C16—N4—C12—S1175.9 (13)
C1—C2—C3—C2i0.50 (18)S2—S1—C12—C13172.7 (5)
C1—C2—C3—C4179.50 (18)S2—S1—C12—N45.8 (7)
C2—C3—C4—C5i28.97 (19)N4—C12—C13—C142.8 (12)
C2i—C3—C4—C5i151.03 (19)S1—C12—C13—C14175.5 (7)
C2—C3—C4—C5151.03 (19)N4—C12—C13—C17178.2 (12)
C2i—C3—C4—C528.97 (19)S1—C12—C13—C173.5 (12)
C5i—C4—C5—C60.22 (17)C12—C13—C14—C151.8 (16)
C3—C4—C5—C6179.78 (17)C17—C13—C14—C15179.0 (12)
C6i—N2—C6—C50.24 (19)C13—C14—C15—C166 (2)
Fe1—N2—C6—C5179.76 (19)C12—N4—C16—C1514 (2)
C4—C5—C6—N20.5 (4)C14—C15—C16—N415 (3)
C11—N3—C7—C82.7 (4)C12—C13—C17—O13.7 (16)
Fe1—N3—C7—C8175.0 (2)C14—C13—C17—O1175.3 (10)
N3—C7—C8—C90.4 (4)C12—C13—C17—O2176.2 (9)
C7—C8—C9—C102.9 (4)C14—C13—C17—O24.7 (14)
C7—C8—C9—C9iv177.7 (3)C17'—C13'—C14'—C15'175.0 (12)
C8—C9—C10—C113.7 (4)C13'—C14'—C15'—C16'8 (2)
C9iv—C9—C10—C11176.9 (3)C14'—C15'—C16'—N4'18 (3)
C7—N3—C11—C101.7 (4)C14'—C13'—C17'—O1'27.1 (14)
Fe1—N3—C11—C10176.0 (2)C14'—C13'—C17'—O2'155.7 (11)
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3v0.86 (2)1.78 (2)2.634 (3)172 (3)
O1W—H1WB···O4vi0.83 (2)1.96 (2)2.788 (3)177 (3)
O2—H2···O4iii0.86 (2)1.74 (4)2.549 (6)156 (8)
O2—H2···O4iii0.87 (2)1.93 (3)2.776 (10)164 (9)
Symmetry codes: (iii) x, y1, z; (v) x+1, y+1, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Fe(C10H8N2)2(H2O)2](C12H7N2O4S2)2
Mr1018.92
Crystal system, space groupMonoclinic, P2/c
Temperature (K)296
a, b, c (Å)11.5161 (2), 11.6531 (2), 16.3216 (3)
β (°) 102.403 (1)
V3)2139.21 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.21 × 0.07 × 0.05
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.938, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
32774, 4930, 3286
Rint0.064
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.05
No. of reflections4930
No. of parameters389
No. of restraints127
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.58

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.857 (16)1.782 (16)2.634 (3)172 (3)
O1W—H1WB···O4ii0.828 (16)1.962 (17)2.788 (3)177 (3)
O2—H2···O4iii0.86 (2)1.74 (4)2.549 (6)156 (8)
O2'—H2'···O4iii0.87 (2)1.93 (3)2.776 (10)164 (9)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z1; (iii) x, y1, z.
 

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPanagiotis, C. Z., Sotiris, K. H., Nick, H., Adonis, M., Stavroula, S., Yang, M. & Yu, X. L. (2003). Inorg. Chim. Acta, 343, 361–365.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Sagatys, D. S. (2003). Acta Cryst. E59, o540–o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X. J., Jiang, Z. G., Chen, J. & Feng, Y. L. (2011). Inorg. Chim. Acta, 373, 270–275.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds