organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Hy­dr­oxy­benzyl­­idene)-3-nitro­benzohydrazide

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 18 November 2011; accepted 28 November 2011; online 3 December 2011)

The mol­ecule of the title compound, C14H11N3O4, assumes an E conformation about the C=N double bond. The benzene rings form a dihedral angle of 3.9 (2)°. The crystal structure is stabilized by N—H⋯O, O—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to (101). In addition, intra­layer ππ stacking inter­actions [centroid–centroid distance = 3.635 (2) Å] are observed.

Related literature

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011[El-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416-3424.]); Horiuchi et al. (2009[Horiuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850-7860.]). For coordination compounds of benzohydrazide derivatives, see: El-Dissouky et al. (2010[El-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330-345.]); Zhang et al. (2010[Zhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For similar structures, see: Liu et al. (2011[Liu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.]); Zhou et al. (2011[Zhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.]); Meng et al. (2011[Meng, X.-F., Wang, D.-Y. & Ma, J.-J. (2011). Acta Cryst. E67, o3109.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O4

  • Mr = 285.26

  • Monoclinic, P 21 /n

  • a = 10.362 (2) Å

  • b = 12.178 (3) Å

  • c = 10.468 (2) Å

  • β = 91.666 (2)°

  • V = 1320.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.984

  • 10464 measured reflections

  • 2884 independent reflections

  • 2017 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.129

  • S = 1.03

  • 2884 reflections

  • 194 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.02 2.8341 (18) 170
O1—H1⋯N1i 0.82 2.58 3.0757 (19) 120
N2—H2A⋯O1ii 0.89 (1) 2.53 (2) 3.0597 (19) 119 (2)
C5—H5⋯O1iii 0.93 2.54 3.367 (2) 147
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzohydrazide compounds are well known for their biological activities (El-Sayed et al., 2011; Horiuchi et al., 2009). In addition, benzohydrazide compounds have also been used as versatile ligands in coordination chemistry (El-Dissouky et al., 2010, Zhang et al., 2010). As a contribution to the structural study of hydrazone compounds, we present here the crystal structure of the title compound, which was obtained as the product of the reaction of 4-hydroxybenzaldehyde with 3-nitrobenzohydrazide in methanol.

In the title compound, Fig. 1, the mean planes of the two benzene rings form a dihedral angle of 3.9 (2)°. The bond distances and angles are within normal ranges (Allen et al., 1987), and agree well with the corresponding bond distances and angles reported in closely related compounds (Meng et al., 2011; Liu et al., 2011; Zhou et al., 2011). In the crystal structure, intermolecular N—H···O, O—H···N, C—H···O and O—H···O hydrogen bonds (Table 1; Fig. 2) link molecules into layers parallel to the (101) plane. The layers are further stabilized by ππ stacking interactions with centroid-to-centroid distances of 3.635 (2) Å.

Related literature top

For the biological activity of benzohydrazide compounds, see: El-Sayed et al. (2011); Horiuchi et al. (2009). For coordination compounds of benzohydrazide derivatives, see: El-Dissouky et al. (2010); Zhang et al. (2010). For standard bond lengths, see: Allen et al. (1987). For similar structures, see: Liu et al. (2011); Zhou et al. (2011); Meng et al. (2011).

Experimental top

To a methanol solution (20 ml) of 4-hydroxybenzaldehyde (0.1 mmol, 12.2 mg) and 3-nitrobenzohydrazide (0.1 mmol, 18.1 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The yellow crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The imine H atoms was located in a difference Fourier map and refined with the N—H distance restrained to 0.90 (1) Å and with Uiso(H) = 0.08 Å2. The C- and O-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the N—H···O, O—H···N, and O—H···O hydrogen-bonds (dashed lines). H-atoms not involved in the hydrogen bonding have been omitted for clarity.
(E)-N'-(4-Hydroxybenzylidene)-3-nitrobenzohydrazide top
Crystal data top
C14H11N3O4F(000) = 592
Mr = 285.26Dx = 1.435 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3224 reflections
a = 10.362 (2) Åθ = 2.5–27.2°
b = 12.178 (3) ŵ = 0.11 mm1
c = 10.468 (2) ÅT = 298 K
β = 91.666 (2)°Block, yellow
V = 1320.3 (5) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2884 independent reflections
Radiation source: fine-focus sealed tube2017 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.982, Tmax = 0.984k = 1515
10464 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.233P]
where P = (Fo2 + 2Fc2)/3
2884 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C14H11N3O4V = 1320.3 (5) Å3
Mr = 285.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.362 (2) ŵ = 0.11 mm1
b = 12.178 (3) ÅT = 298 K
c = 10.468 (2) Å0.17 × 0.15 × 0.15 mm
β = 91.666 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2884 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2017 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.984Rint = 0.034
10464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2884 reflectionsΔρmin = 0.23 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05181 (12)0.48482 (12)0.34202 (13)0.0426 (4)
N20.14827 (13)0.55140 (12)0.39294 (14)0.0432 (4)
N30.56139 (14)0.71802 (15)0.60566 (14)0.0521 (4)
O10.27851 (12)0.07966 (10)0.13367 (13)0.0548 (4)
H10.35100.10640.12730.082*
O20.01462 (11)0.69680 (10)0.38555 (12)0.0525 (4)
O30.57302 (14)0.61913 (14)0.62040 (16)0.0768 (5)
O40.64912 (12)0.78320 (13)0.62796 (14)0.0682 (4)
C10.01449 (16)0.19488 (15)0.27428 (16)0.0451 (4)
H1A0.09460.17030.30470.054*
C20.07416 (16)0.12048 (15)0.22597 (17)0.0481 (4)
H20.05390.04610.22400.058*
C30.19415 (15)0.15658 (14)0.18014 (15)0.0403 (4)
C40.22330 (16)0.26705 (14)0.18248 (16)0.0418 (4)
H40.30300.29160.15100.050*
C50.13454 (15)0.34089 (14)0.23140 (15)0.0414 (4)
H50.15520.41520.23330.050*
C60.01402 (15)0.30600 (14)0.27822 (14)0.0383 (4)
C70.07926 (15)0.38382 (14)0.33207 (15)0.0416 (4)
H70.16030.35900.35960.050*
C80.12135 (15)0.65778 (14)0.41169 (14)0.0387 (4)
C90.22883 (15)0.72875 (14)0.46301 (14)0.0387 (4)
C100.34487 (15)0.68786 (14)0.51232 (14)0.0403 (4)
H100.36010.61260.51550.048*
C110.43746 (15)0.76159 (15)0.55668 (15)0.0425 (4)
C120.41881 (18)0.87291 (16)0.55569 (17)0.0524 (5)
H120.48240.92020.58750.063*
C130.30287 (19)0.91322 (16)0.5062 (2)0.0599 (5)
H130.28800.98850.50380.072*
C140.20934 (17)0.84119 (15)0.46041 (17)0.0499 (4)
H140.13170.86890.42720.060*
H2A0.2202 (14)0.5183 (17)0.4207 (19)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0309 (7)0.0467 (9)0.0495 (8)0.0055 (6)0.0112 (6)0.0001 (6)
N20.0285 (7)0.0449 (8)0.0553 (8)0.0034 (6)0.0141 (6)0.0009 (6)
N30.0346 (8)0.0727 (12)0.0487 (8)0.0096 (8)0.0060 (6)0.0011 (8)
O10.0401 (7)0.0508 (8)0.0729 (8)0.0085 (6)0.0092 (6)0.0107 (6)
O20.0333 (7)0.0542 (8)0.0691 (8)0.0028 (5)0.0139 (6)0.0007 (6)
O30.0500 (9)0.0740 (11)0.1050 (12)0.0048 (8)0.0232 (8)0.0193 (9)
O40.0378 (7)0.0908 (11)0.0752 (9)0.0179 (7)0.0097 (6)0.0121 (8)
C10.0300 (8)0.0517 (10)0.0530 (10)0.0035 (7)0.0052 (7)0.0029 (8)
C20.0411 (10)0.0420 (10)0.0612 (11)0.0019 (8)0.0009 (8)0.0050 (8)
C30.0320 (8)0.0477 (10)0.0411 (8)0.0081 (7)0.0005 (6)0.0053 (7)
C40.0308 (8)0.0495 (10)0.0448 (9)0.0003 (7)0.0068 (7)0.0010 (7)
C50.0351 (9)0.0411 (9)0.0475 (9)0.0014 (7)0.0055 (7)0.0011 (7)
C60.0304 (8)0.0469 (10)0.0373 (8)0.0033 (7)0.0009 (6)0.0028 (7)
C70.0279 (8)0.0506 (11)0.0460 (9)0.0017 (7)0.0060 (7)0.0011 (7)
C80.0307 (8)0.0483 (10)0.0368 (8)0.0015 (7)0.0055 (6)0.0035 (7)
C90.0322 (8)0.0474 (10)0.0364 (8)0.0046 (7)0.0009 (6)0.0006 (7)
C100.0325 (9)0.0468 (10)0.0415 (8)0.0050 (7)0.0038 (7)0.0014 (7)
C110.0313 (9)0.0594 (11)0.0366 (8)0.0079 (8)0.0011 (6)0.0007 (7)
C120.0457 (10)0.0558 (12)0.0554 (11)0.0154 (9)0.0028 (8)0.0068 (9)
C130.0567 (12)0.0468 (11)0.0757 (13)0.0052 (9)0.0052 (10)0.0059 (9)
C140.0432 (10)0.0497 (11)0.0563 (10)0.0030 (8)0.0057 (8)0.0015 (8)
Geometric parameters (Å, º) top
N1—C71.267 (2)C4—H40.9300
N1—N21.3819 (18)C5—C61.394 (2)
N2—C81.341 (2)C5—H50.9300
N2—H2A0.888 (9)C6—C71.456 (2)
N3—O31.220 (2)C7—H70.9300
N3—O41.224 (2)C8—C91.497 (2)
N3—C111.468 (2)C9—C141.384 (2)
O1—C31.3614 (19)C9—C101.387 (2)
O1—H10.8200C10—C111.384 (2)
O2—C81.2272 (18)C10—H100.9300
C1—C21.376 (2)C11—C121.369 (3)
C1—C61.386 (2)C12—C131.384 (3)
C1—H1A0.9300C12—H120.9300
C2—C31.391 (2)C13—C141.383 (2)
C2—H20.9300C13—H130.9300
C3—C41.379 (2)C14—H140.9300
C4—C51.375 (2)
C7—N1—N2116.07 (13)C5—C6—C7121.03 (15)
C8—N2—N1118.17 (13)N1—C7—C6121.04 (15)
C8—N2—H2A124.5 (15)N1—C7—H7119.5
N1—N2—H2A116.8 (15)C6—C7—H7119.5
O3—N3—O4123.09 (17)O2—C8—N2122.10 (15)
O3—N3—C11118.90 (15)O2—C8—C9120.85 (16)
O4—N3—C11118.00 (17)N2—C8—C9117.03 (14)
C3—O1—H1109.5C14—C9—C10119.13 (15)
C2—C1—C6120.87 (15)C14—C9—C8117.22 (15)
C2—C1—H1A119.6C10—C9—C8123.65 (15)
C6—C1—H1A119.6C11—C10—C9118.48 (16)
C1—C2—C3119.95 (16)C11—C10—H10120.8
C1—C2—H2120.0C9—C10—H10120.8
C3—C2—H2120.0C12—C11—C10122.91 (16)
O1—C3—C4122.60 (15)C12—C11—N3118.83 (15)
O1—C3—C2117.65 (16)C10—C11—N3118.26 (16)
C4—C3—C2119.75 (15)C11—C12—C13118.34 (16)
C5—C4—C3120.01 (15)C11—C12—H12120.8
C5—C4—H4120.0C13—C12—H12120.8
C3—C4—H4120.0C14—C13—C12119.78 (18)
C4—C5—C6120.95 (16)C14—C13—H13120.1
C4—C5—H5119.5C12—C13—H13120.1
C6—C5—H5119.5C13—C14—C9121.35 (17)
C1—C6—C5118.46 (14)C13—C14—H14119.3
C1—C6—C7120.50 (14)C9—C14—H14119.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.022.8341 (18)170
O1—H1···N1i0.822.583.0757 (19)120
N2—H2A···O1ii0.89 (1)2.53 (2)3.0597 (19)119 (2)
C5—H5···O1iii0.932.543.367 (2)147
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O4
Mr285.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.362 (2), 12.178 (3), 10.468 (2)
β (°) 91.666 (2)
V3)1320.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
10464, 2884, 2017
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.129, 1.03
No. of reflections2884
No. of parameters194
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.022.8341 (18)170.4
O1—H1···N1i0.822.583.0757 (19)120.1
N2—H2A···O1ii0.888 (9)2.528 (19)3.0597 (19)119.1 (16)
C5—H5···O1iii0.932.543.367 (2)147
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (B2011204051), the Development Foundation of the Department of Education of Hebei Province (2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Dissouky, A., Al-Fulaij, O., Awad, M. K. & Rizk, S. (2010). J. Coord. Chem. 63, 330–345.  Web of Science CrossRef CAS Google Scholar
First citationEl-Sayed, M. A. A., Abdel-Aziz, N. I., Abdel-Aziz, A. A. M., El-Azab, A. S., Asiri, Y. A. & ElTahir, K. E. H. (2011). Bioorg. Med. Chem. 19, 3416–3424.  Web of Science CAS PubMed Google Scholar
First citationHoriuchi, T., Nagata, M., Kitagawa, M., Akahane, K. & Uoto, K. (2009). Bioorg. Med. Chem. 17, 7850–7860.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, W.-H., Song, S.-J. & Ma, J.-J. (2011). Acta Cryst. E67, o2198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeng, X.-F., Wang, D.-Y. & Ma, J.-J. (2011). Acta Cryst. E67, o3109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S.-P., Wei, Y. & Shao, S.-C. (2010). Acta Cryst. E66, m1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, X., Gao, S.-T. & Ma, J.-J. (2011). Acta Cryst. E67, o2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds