metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(aceto­nitrile-κN)bis­­(2,2′-bi­pyridine-κ2N,N′)ruthenium(II) tetra­fluoridoborate

aDepartment of Chemistry and Chemical Engineering, Lianyungang Teachers College, Lianyungang 222006, People's Republic of China, and bState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn

(Received 8 December 2011; accepted 14 December 2011; online 21 December 2011)

In the cation of the title compound, [Ru(CH3CN)2(C10H8N2)2](BF4)2, the RuII atom is six-coordinated in a distorted octa­hedral geometry by the N atoms of the two 2,2′-bipyridine (bpy) ligands and two cis-arranged acetonitrile mol­ecules. The dihedral angles formed by the pyridine rings of the bpy ligands are 8.86 (12) and 10.12 (14)°. In the crystal, the cations and anions are linked by C—H⋯F hydrogen bonds into a three-dimensional network.

Related literature

For the structures of related complexes, see: Chattopadhyay et al. (2004[Chattopadhyay, S. K., Mitra, K., Biswas, S., Naskar, S., Mishra, D., Adhikary, B., Harrison, R. G. & Cannon, J. F. (2004). Transition Met. Chem. 29, 1-6.]); Cordes et al. (1992[Cordes, A. W., Durham, B., Pennington, W. T., Kuntz, B. & Allen, L. (1992). J. Crystallogr. Spectrosc. Res. 22, 699-704.]); Heeg et al. (1985[Heeg, M. J., Kroener, R. & Deutsch, E. (1985). Acta Cryst. C41, 684-686.]); Xu & Huang (2007[Xu, F. & Huang, W. (2007). Acta Cryst. E63, m2114.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C2H3N)2(C10H8N2)2](BF4)2

  • Mr = 669.17

  • Monoclinic, P 21 /c

  • a = 10.5648 (7) Å

  • b = 24.0246 (17) Å

  • c = 10.4561 (7) Å

  • β = 90.253 (1)°

  • V = 2653.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 291 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.924

  • 13281 measured reflections

  • 4680 independent reflections

  • 3326 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 0.95

  • 4680 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F1i 0.93 2.50 3.179 (7) 130
C7—H7⋯F6ii 0.93 2.47 3.373 (7) 165
C9—H9⋯F4iii 0.93 2.42 3.299 (7) 158
C12—H12⋯F8 0.93 2.54 3.459 (7) 167
C14—H14⋯F2iv 0.93 2.33 3.238 (8) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of cis-bis(acetonitrile)bis(2,2'-bipyridine) ruthenium(II) diperchlorate (Chattopadhyay et al., 2004), trans-bis(acetonitrile)bis(2,2'-bipyridine) ruthenium(II) diperchlorate (Cordes et al., 1992), and cis-bis(acetonitrile)bis(2,2'-bipyridine)ruthenium(II) hexafluorophosphate (Heeg et al., 1985; Xu & Huang, 2007) have been reported previously. We present herein the crystal structure of the title compound (I) with the tetrafluoroborate counterions.

The atom-numbering scheme adopted for the title compound is shown in Fig. 1. The ruthenium(II) ion is six-coordinated in a distorted octahedral geometry by the nitrogen atoms form two 2,2'-bipyridine and two cis-arranged acetonitrile molecules. The six Ru—N bond lengths are in the range from 2.042 (4) to 2.060 (4) Å, and are comparable with those reported in the literature. The presence of coordinated acetonitrile molecules and free tetrafluoroborate counterions is confirmed by the characteristic absorptions of its FT–IR spectrum. The N1/C1-C5—N2/C6-C10 and N3/C11-C13—N4/C16-C20 pyridine rings within the 2,2'-bipyridine ligands are tilted by 8.86 (12) and 10.12 (14)°, respectively. In the crystal structure cations and anions are linked by C—H···F hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For the structures of related complexes, see: Chattopadhyay et al. (2004); Cordes et al. (1992); Heeg et al. (1985); Xu & Huang (2007).

Experimental top

The title compound was prepared by our previously reported method (Xu & Huang, 2007) except that sodium tetrafluoroborate was used. Single crystals suitable for X-ray diffraction measurement were obtained after 5 days on slow evaporation of an acetonitrile solution at room temperature. Elemental analysis: calculated for C24H22RuN6B2F8: C 43.08, H 3.31, N 12.56%; found: C 43.29, H 3.62, N 12.34%. Main FT–IR absorptions (KBr plates, cm-1): 3003 (w), 2293 (m), 2252 (s), 1606 (m), 1462 (s), 1421 (s), 1084 (versus), 1038 (versus), 918 (m), 764 (w) and 752 (w).

Refinement top

The non-hydrogen atoms were refined anisotropically, whereas the H atoms were placed in geometrically idealized positions (C—H = 0.93–0.96 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound with displacement ellipsoids drawn at the 30% probability level.
cis-Bis(acetonitrile-κN)bis(2,2'-bipyridine- κ2N,N')ruthenium(II) tetrafluoridoborate top
Crystal data top
[Ru(C2H3N)2(C10H8N2)2](BF4)2F(000) = 1336
Mr = 669.17Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3573 reflections
a = 10.5648 (7) Åθ = 2.6–24.0°
b = 24.0246 (17) ŵ = 0.67 mm1
c = 10.4561 (7) ÅT = 291 K
β = 90.253 (1)°Block, red
V = 2653.9 (3) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4680 independent reflections
Radiation source: fine-focus sealed tube3326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1212
Tmin = 0.900, Tmax = 0.924k = 1528
13281 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
4680 reflections(Δ/σ)max = 0.001
372 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Ru(C2H3N)2(C10H8N2)2](BF4)2V = 2653.9 (3) Å3
Mr = 669.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5648 (7) ŵ = 0.67 mm1
b = 24.0246 (17) ÅT = 291 K
c = 10.4561 (7) Å0.16 × 0.14 × 0.12 mm
β = 90.253 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4680 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3326 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.924Rint = 0.045
13281 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 0.95Δρmax = 0.76 e Å3
4680 reflectionsΔρmin = 0.41 e Å3
372 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.25886 (3)0.627135 (14)0.52470 (3)0.04287 (14)
B10.7581 (7)0.7190 (3)0.5614 (8)0.085 (2)
B20.7624 (5)0.4853 (3)0.0278 (7)0.0672 (16)
C10.2611 (4)0.5012 (2)0.5649 (5)0.0582 (12)
H10.31450.50800.63410.070*
C20.2343 (4)0.4471 (2)0.5328 (5)0.0652 (13)
H20.26920.41770.57880.078*
C30.1540 (5)0.4373 (2)0.4303 (5)0.0705 (14)
H30.13510.40100.40600.085*
C40.1029 (4)0.4808 (2)0.3653 (5)0.0629 (12)
H40.04770.47430.29740.075*
C50.1331 (4)0.53449 (18)0.4002 (4)0.0498 (10)
C60.0783 (4)0.5844 (2)0.3409 (4)0.0525 (11)
C70.0095 (4)0.5832 (2)0.2415 (4)0.0639 (13)
H70.03110.54980.20240.077*
C80.0640 (4)0.6321 (3)0.2019 (5)0.0716 (15)
H80.12260.63200.13530.086*
C90.0320 (5)0.6811 (2)0.2603 (5)0.0725 (14)
H90.07060.71430.23680.087*
C100.0588 (4)0.6799 (2)0.3549 (4)0.0612 (12)
H100.08260.71330.39280.073*
C110.4260 (4)0.5845 (2)0.3099 (4)0.0630 (12)
H110.38970.55000.32630.076*
C120.5170 (4)0.5879 (2)0.2173 (5)0.0693 (14)
H120.54130.55640.17190.083*
C130.5713 (4)0.6385 (2)0.1930 (5)0.0685 (14)
H130.63390.64180.13120.082*
C140.5321 (4)0.6844 (2)0.2612 (5)0.0643 (13)
H140.56850.71900.24610.077*
C150.4388 (4)0.67871 (19)0.3518 (4)0.0503 (10)
C160.3859 (4)0.72526 (18)0.4252 (4)0.0510 (10)
C170.4096 (5)0.7811 (2)0.3994 (5)0.0705 (14)
H170.46630.79070.33530.085*
C180.3501 (5)0.8221 (2)0.4676 (5)0.0755 (15)
H180.36590.85940.45030.091*
C190.2667 (4)0.8072 (2)0.5620 (5)0.0659 (13)
H190.22460.83420.60930.079*
C200.2469 (4)0.75165 (19)0.5852 (5)0.0596 (12)
H200.19230.74180.65090.071*
C210.4890 (4)0.6030 (2)0.7128 (5)0.0591 (12)
C220.5932 (4)0.5904 (3)0.8000 (5)0.0837 (17)
H22A0.56040.58360.88410.126*
H22B0.65050.62140.80280.126*
H22C0.63720.55790.77050.126*
C230.0697 (4)0.63709 (18)0.7582 (4)0.0531 (11)
C240.0175 (5)0.6412 (2)0.8654 (5)0.0810 (16)
H24A0.06130.60650.87560.122*
H24B0.07770.67040.84900.122*
H24C0.02910.64960.94210.122*
F10.7366 (4)0.6846 (2)0.4670 (4)0.154 (2)
F20.6838 (7)0.7071 (2)0.6605 (7)0.262 (4)
F30.7452 (4)0.77248 (19)0.5352 (4)0.1427 (17)
F40.8737 (5)0.7071 (2)0.6035 (6)0.204 (3)
F50.7715 (4)0.5405 (2)0.0135 (5)0.168 (2)
F60.8552 (5)0.4701 (2)0.1074 (6)0.187 (2)
F70.7700 (6)0.4581 (3)0.0758 (6)0.225 (3)
F80.6515 (5)0.4717 (2)0.0777 (6)0.185 (2)
N10.2131 (3)0.54494 (15)0.5004 (3)0.0477 (8)
N20.1144 (3)0.63331 (15)0.3949 (3)0.0479 (9)
N30.3868 (3)0.62815 (14)0.3778 (3)0.0472 (8)
N40.3022 (3)0.71070 (15)0.5180 (3)0.0481 (8)
N50.4065 (3)0.61253 (14)0.6479 (3)0.0482 (8)
N60.1371 (3)0.63333 (13)0.6752 (3)0.0474 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0415 (2)0.0481 (2)0.0390 (2)0.00261 (15)0.00032 (14)0.00096 (15)
B10.082 (5)0.071 (5)0.103 (6)0.019 (4)0.017 (4)0.032 (4)
B20.054 (3)0.067 (4)0.081 (4)0.005 (3)0.003 (3)0.004 (3)
C10.060 (3)0.057 (3)0.058 (3)0.006 (2)0.003 (2)0.006 (2)
C20.072 (3)0.059 (3)0.065 (3)0.001 (2)0.006 (3)0.010 (2)
C30.074 (3)0.058 (3)0.079 (4)0.013 (3)0.010 (3)0.012 (3)
C40.061 (3)0.066 (3)0.062 (3)0.006 (2)0.002 (2)0.010 (3)
C50.047 (2)0.058 (3)0.044 (2)0.006 (2)0.0064 (19)0.002 (2)
C60.044 (2)0.069 (3)0.044 (2)0.002 (2)0.0036 (19)0.002 (2)
C70.049 (3)0.093 (4)0.050 (3)0.005 (3)0.001 (2)0.004 (3)
C80.050 (3)0.115 (5)0.049 (3)0.007 (3)0.009 (2)0.015 (3)
C90.064 (3)0.093 (4)0.060 (3)0.012 (3)0.007 (2)0.014 (3)
C100.060 (3)0.065 (3)0.059 (3)0.005 (2)0.001 (2)0.007 (2)
C110.057 (3)0.068 (3)0.064 (3)0.002 (2)0.011 (2)0.005 (2)
C120.058 (3)0.088 (4)0.061 (3)0.012 (3)0.010 (2)0.009 (3)
C130.046 (3)0.105 (4)0.054 (3)0.001 (3)0.010 (2)0.004 (3)
C140.052 (3)0.082 (4)0.058 (3)0.014 (3)0.003 (2)0.005 (3)
C150.040 (2)0.067 (3)0.044 (2)0.005 (2)0.0024 (18)0.004 (2)
C160.049 (2)0.059 (3)0.044 (2)0.010 (2)0.0080 (19)0.003 (2)
C170.078 (3)0.064 (3)0.069 (3)0.019 (3)0.008 (3)0.011 (3)
C180.093 (4)0.055 (3)0.078 (4)0.020 (3)0.007 (3)0.004 (3)
C190.071 (3)0.058 (3)0.069 (3)0.000 (2)0.014 (3)0.004 (2)
C200.070 (3)0.057 (3)0.052 (3)0.007 (2)0.003 (2)0.000 (2)
C210.056 (3)0.064 (3)0.057 (3)0.006 (2)0.001 (2)0.003 (2)
C220.062 (3)0.113 (5)0.076 (4)0.020 (3)0.013 (3)0.008 (3)
C230.056 (3)0.060 (3)0.043 (3)0.005 (2)0.002 (2)0.000 (2)
C240.074 (3)0.110 (4)0.060 (3)0.010 (3)0.021 (3)0.014 (3)
F10.199 (5)0.114 (4)0.148 (4)0.013 (3)0.070 (4)0.047 (3)
F20.362 (9)0.134 (4)0.290 (8)0.038 (5)0.217 (8)0.024 (5)
F30.185 (5)0.087 (3)0.156 (4)0.012 (3)0.004 (3)0.004 (2)
F40.183 (5)0.177 (5)0.251 (6)0.055 (4)0.123 (5)0.088 (4)
F50.161 (4)0.103 (4)0.240 (6)0.021 (3)0.084 (4)0.052 (3)
F60.187 (5)0.150 (4)0.222 (6)0.007 (3)0.107 (5)0.065 (4)
F70.207 (6)0.311 (9)0.158 (5)0.039 (5)0.047 (4)0.139 (6)
F80.138 (4)0.132 (4)0.285 (7)0.007 (3)0.095 (4)0.011 (4)
N10.0453 (18)0.053 (2)0.045 (2)0.0040 (16)0.0028 (16)0.0007 (16)
N20.0408 (18)0.062 (2)0.041 (2)0.0011 (16)0.0002 (15)0.0067 (17)
N30.0438 (18)0.057 (2)0.041 (2)0.0028 (17)0.0023 (15)0.0027 (16)
N40.0497 (19)0.052 (2)0.043 (2)0.0035 (17)0.0043 (16)0.0003 (16)
N50.049 (2)0.052 (2)0.044 (2)0.0002 (17)0.0007 (17)0.0009 (16)
N60.047 (2)0.051 (2)0.045 (2)0.0016 (16)0.0025 (17)0.0013 (16)
Geometric parameters (Å, º) top
Ru1—N62.042 (4)C10—N21.330 (5)
Ru1—N22.043 (3)C10—H100.9300
Ru1—N12.049 (4)C11—N31.333 (5)
Ru1—N52.049 (4)C11—C121.369 (6)
Ru1—N32.051 (3)C11—H110.9300
Ru1—N42.060 (4)C12—C131.369 (7)
B1—F11.307 (8)C12—H120.9300
B1—F31.320 (8)C13—C141.378 (7)
B1—F41.328 (7)C13—H130.9300
B1—F21.334 (9)C14—C151.377 (6)
B2—F71.268 (7)C14—H140.9300
B2—F81.326 (7)C15—N31.361 (5)
B2—F61.335 (7)C15—C161.468 (6)
B2—F51.337 (8)C16—N41.361 (5)
C1—N11.346 (6)C16—C171.391 (6)
C1—C21.372 (7)C17—C181.371 (7)
C1—H10.9300C17—H170.9300
C2—C31.384 (7)C18—C191.373 (7)
C2—H20.9300C18—H180.9300
C3—C41.356 (6)C19—C201.372 (6)
C3—H30.9300C19—H190.9300
C4—C51.378 (6)C20—N41.344 (6)
C4—H40.9300C20—H200.9300
C5—N11.366 (5)C21—N51.126 (5)
C5—C61.467 (6)C21—C221.458 (6)
C6—N21.358 (5)C22—H22A0.9600
C6—C71.390 (6)C22—H22B0.9600
C7—C81.371 (7)C22—H22C0.9600
C7—H70.9300C23—N61.129 (5)
C8—C91.366 (7)C23—C241.457 (6)
C8—H80.9300C24—H24A0.9600
C9—C101.375 (6)C24—H24B0.9600
C9—H90.9300C24—H24C0.9600
N6—Ru1—N292.02 (13)N3—C11—H11118.3
N6—Ru1—N190.96 (13)C12—C11—H11118.3
N2—Ru1—N179.18 (14)C13—C12—C11118.7 (5)
N6—Ru1—N590.50 (13)C13—C12—H12120.7
N2—Ru1—N5173.93 (14)C11—C12—H12120.7
N1—Ru1—N595.25 (13)C12—C13—C14119.2 (4)
N6—Ru1—N3174.73 (13)C12—C13—H13120.4
N2—Ru1—N389.67 (13)C14—C13—H13120.4
N1—Ru1—N394.26 (13)C15—C14—C13119.6 (5)
N5—Ru1—N388.31 (13)C15—C14—H14120.2
N6—Ru1—N495.53 (13)C13—C14—H14120.2
N2—Ru1—N494.13 (13)N3—C15—C14121.1 (4)
N1—Ru1—N4170.86 (13)N3—C15—C16114.9 (4)
N5—Ru1—N491.12 (13)C14—C15—C16124.0 (4)
N3—Ru1—N479.36 (14)N4—C16—C17120.3 (4)
F1—B1—F3116.2 (7)N4—C16—C15115.3 (4)
F1—B1—F4105.7 (6)C17—C16—C15124.3 (4)
F3—B1—F4111.9 (7)C18—C17—C16120.5 (5)
F1—B1—F2110.5 (7)C18—C17—H17119.7
F3—B1—F2108.1 (6)C16—C17—H17119.7
F4—B1—F2103.9 (8)C17—C18—C19119.0 (5)
F7—B2—F8105.6 (6)C17—C18—H18120.5
F7—B2—F6110.1 (6)C19—C18—H18120.5
F8—B2—F6109.6 (6)C20—C19—C18118.6 (5)
F7—B2—F5114.3 (7)C20—C19—H19120.7
F8—B2—F5110.6 (5)C18—C19—H19120.7
F6—B2—F5106.7 (5)N4—C20—C19123.5 (5)
N1—C1—C2122.7 (4)N4—C20—H20118.2
N1—C1—H1118.7C19—C20—H20118.2
C2—C1—H1118.7N5—C21—C22178.3 (5)
C1—C2—C3118.4 (5)C21—C22—H22A109.5
C1—C2—H2120.8C21—C22—H22B109.5
C3—C2—H2120.8H22A—C22—H22B109.5
C4—C3—C2119.9 (5)C21—C22—H22C109.5
C4—C3—H3120.0H22A—C22—H22C109.5
C2—C3—H3120.0H22B—C22—H22C109.5
C3—C4—C5119.8 (5)N6—C23—C24179.3 (5)
C3—C4—H4120.1C23—C24—H24A109.5
C5—C4—H4120.1C23—C24—H24B109.5
N1—C5—C4121.1 (4)H24A—C24—H24B109.5
N1—C5—C6114.5 (4)C23—C24—H24C109.5
C4—C5—C6124.2 (4)H24A—C24—H24C109.5
N2—C6—C7120.9 (4)H24B—C24—H24C109.5
N2—C6—C5114.9 (4)C1—N1—C5118.1 (4)
C7—C6—C5124.1 (4)C1—N1—Ru1127.0 (3)
C8—C7—C6119.1 (5)C5—N1—Ru1114.7 (3)
C8—C7—H7120.4C10—N2—C6118.3 (4)
C6—C7—H7120.4C10—N2—Ru1126.7 (3)
C9—C8—C7119.9 (5)C6—N2—Ru1114.9 (3)
C9—C8—H8120.0C11—N3—C15118.0 (4)
C7—C8—H8120.0C11—N3—Ru1126.7 (3)
C8—C9—C10118.3 (5)C15—N3—Ru1115.3 (3)
C8—C9—H9120.8C20—N4—C16118.0 (4)
C10—C9—H9120.8C20—N4—Ru1126.7 (3)
N2—C10—C9123.3 (5)C16—N4—Ru1114.8 (3)
N2—C10—H10118.3C21—N5—Ru1177.5 (4)
C9—C10—H10118.3C23—N6—Ru1179.6 (4)
N3—C11—C12123.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.932.503.179 (7)130
C7—H7···F6ii0.932.473.373 (7)165
C9—H9···F4iii0.932.423.299 (7)158
C12—H12···F80.932.543.459 (7)167
C14—H14···F2iv0.932.333.238 (8)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ru(C2H3N)2(C10H8N2)2](BF4)2
Mr669.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.5648 (7), 24.0246 (17), 10.4561 (7)
β (°) 90.253 (1)
V3)2653.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.900, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
13281, 4680, 3326
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 0.95
No. of reflections4680
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.41

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F1i0.932.503.179 (7)130
C7—H7···F6ii0.932.473.373 (7)165
C9—H9···F4iii0.932.423.299 (7)158
C12—H12···F80.932.543.459 (7)167
C14—H14···F2iv0.932.333.238 (8)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x1, y+3/2, z1/2; (iv) x, y+3/2, z1/2.
 

Acknowledgements

WH would like to acknowledge the National Natural Science Foundation of China (No. 21171088) for financial aid.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChattopadhyay, S. K., Mitra, K., Biswas, S., Naskar, S., Mishra, D., Adhikary, B., Harrison, R. G. & Cannon, J. F. (2004). Transition Met. Chem. 29, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationCordes, A. W., Durham, B., Pennington, W. T., Kuntz, B. & Allen, L. (1992). J. Crystallogr. Spectrosc. Res. 22, 699–704.  CSD CrossRef CAS Web of Science Google Scholar
First citationHeeg, M. J., Kroener, R. & Deutsch, E. (1985). Acta Cryst. C41, 684–686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, F. & Huang, W. (2007). Acta Cryst. E63, m2114.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds