metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-tri­methyl­silanolato-κ2O:O)bis­­{[2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentyl­phenolato-κ2N,O]zinc}

aDepartment of Chemistry, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
*Correspondence e-mail: leespy@jnu.ac.kr

(Received 8 December 2011; accepted 15 December 2011; online 23 December 2011)

The binuclear title complex, [Zn2(C22H28N3O)2(C3H9OSi)2], has a crystallographic imposed centre of symmetry. The ZnII atom is coordinated by three O and one N atom from one 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentyl­phenolate ligand and two bridging trimethyl­silanolate anions in a distorted tetra­hedral geometry. The dihedral angle between the benzotriazole ring system and the benzene ring is 19.83 (5)°. The tert-pentyl groups are disordered over two orientations with refined site-occupancy ratios of 0.858 (4):0.142 (4) and 0.665 (6):0.335 (6).

Related literature

For the use of metal complexes for ring-opening polymerization of cyclic esters, see: Cheng et al. (1999[Cheng, M., Attygalle, A. B., Lobkovsky, E. B. & Coates, G. W. (1999). J. Am. Chem. Soc. 121, 11583-11584.]); Chamberlain et al. (2001[Chamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229-3238.]); Chisholm et al. (2001[Chisholm, M. H., Huffman, J. C. & Phomphrai, K. J. (2001). J. Chem. Soc. Dalton Trans. pp. 222-224.]); Drouin et al. (2010[Drouin, F., Oguadinma, P. O., Whitehorne, T. T. J., Prud'homme, R. E. & Schaper, F. (2010). Organometallics, 29, 2139-2147.]). For metal complexes with bidentate benzotriazol-phenolate ligands, see: Lee et al. (2010[Lee, J., Kim, S. H., Lee, K. M., Hwang, K. Y., Kim, H., Huh, J. O., Kim, D. J., Lee, Y. S., Do, Y. & Kim, Y. (2010). Organometallics, 29, 347-353.], 2011[Lee, K. M., Yoon, S., Lee, J., Kim, J., Do, Y., You, T.-S. & Kim, Y. (2011). Polyhedron, 30, 809-813.]); Li et al. (2011[Li, J.-Y., Li, C.-Y., Tai, W.-J., Lin, C.-H. & Ko, B.-T. (2011). Inorg. Chem. Commun. 14, 1140-1144.]); Tai et al. (2011[Tai, Y.-E., Le, C.-Y., Lin, C.-H., Liu, Y.-C., Ko, B.-T. & Sun, Y.-S. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 4027-4036.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C22H28N3O)2(C3H9OSi)2]

  • Mr = 1010.11

  • Monoclinic, P 21 /c

  • a = 10.7640 (4) Å

  • b = 10.7280 (4) Å

  • c = 23.2314 (9) Å

  • β = 90.597 (2)°

  • V = 2682.53 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 296 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.92, Tmax = 0.95

  • 39361 measured reflections

  • 8000 independent reflections

  • 5487 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.01

  • 8000 reflections

  • 387 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Due to the environmental concern, the biodegradable poly(cyclic esters) have received increasing attention. The ring opening polymerization (ROP) process provides a convenient and controllable method for the polymerization of cyclic esters. In particular, dinuclear zinc complexes containing two O bridging atoms have attracted considerable attention in the field of organometallic ROP catalysis (Cheng et al., 1999; Drouin et al., 2010; Chisholm et al., 2001; Chamberlain et al., 2001; Li et al., 2011; Tai et al., 2011). We recently reported the synthesis and structural studies of Al and Zr complexes bearing N,O-bidentate benzotriazol-phenolate ligands (Lee et al., 2010; Lee et al., 2011). We report herein the synthesis and crystal structure of a new dinuclear zinc(II) silyloxide complex (I) bearing benzotriazolyl ligands, which is a potential catalyst for ring opening polymerization of cyclic esters.

In (I) (Fig. 1), the complex molecule has crystallographically imposed centre of symmetry. Each zinc atom is coordinated by the oxygen atoms of two bridging trimethylsilyloxide anions and by a N,O-bidentate benzotriazol-phenolate ligand, resulting in a distorted tetrahedral geometry. The distances Zn—N (2.0077 (14) Å) and Zn—O (1.8822 (16)–1.9609 (15) Å) are a little shorter than those reported for related compounds (Li et al., 2011; Tai et al., 2011). Moreover, a relatively short Zn···Zn contact is observed (2.8402 (4) Å). The Zn—O—Zn angle is significantly narrow (93.24 (6) °) and slightly smaller than that observed for a previously reported compound (Cheng et al., 1999). The benzotrazole ring system and the benzene ring are almost coplanar, forming a dihedral angle of 19.83 (5)°. The crystal packing is governed only by van der Waals interactions.

Related literature top

For the use of metal complexes for ring-opening polymerization of cyclic esters, see: Cheng et al. (1999); Chamberlain et al. (2001); Chisholm et al. (2001); Drouin et al. (2010). For metal complexes with bidentate benzotriazol-phenolate ligands, see: Lee et al. (2010, 2011); Li et al. (2011); Tai et al. (2011).

Experimental top

The title compound was synthesized by the reaction of bis(trimethylsilyl) oxide (0.21 ml, 1 mmol) and [2-(2H-benzotriazol-2-yl)–4,6-di-tert-pentylphenolato]zinc di(trimethylsilyl)amide (0.58 g, 1 mmol) in dichloromethane solution (30 ml). Crystals suitable for X-ray analysis were obtained by slow evaporation of the resulting solution in refrigerator.

Refinement top

The disordered two t-pentyl groups were modeled by splitting the atoms into two sets of two components [C14—C17 and C14A—C17A; C18—C22 and C18A—C22A], the refined site occupation ratios of which were 0.858 (4):0.142 (4) and 0.665 (6):0.335 (6), respectively. H atoms were positioned geometrically and refined using a riding model, with C—H distances fixed to 0.96 (methyl CH3), 0.97 (methylene CH2) and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl groups. Bond lengths involving the C14A–C22A atoms were restained to be equal to those of the C14–C22 atoms (SAME instruction in SHELXL97). Atom C17A was restrained to be approximately isotropic with a effective standard deviation of 0.01.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operation -x, 1 - y, -z. H atoms are omitted for clarity.
Bis(µ-trimethylsilanolato-κ2O:O)bis{[2-(2H- benzotriazol-2-yl)-4,6-di-tert-pentylphenolato- κ2N,O]zinc} top
Crystal data top
[Zn2(C22H28N3O)2(C3H9OSi)2]F(000) = 1072
Mr = 1010.11Dx = 1.251 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4477 reflections
a = 10.7640 (4) Åθ = 1.9–30.9°
b = 10.7280 (4) ŵ = 0.99 mm1
c = 23.2314 (9) ÅT = 296 K
β = 90.597 (2)°Block, yellow
V = 2682.53 (18) Å30.12 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART 1K CCD
diffractometer
8000 independent reflections
Radiation source: fine-focus sealed tube5487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
profile data from /ω scansθmax = 30.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.92, Tmax = 0.95k = 158
39361 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.8229P]
where P = (Fo2 + 2Fc2)/3
8000 reflections(Δ/σ)max = 0.002
387 parametersΔρmax = 0.51 e Å3
18 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Zn2(C22H28N3O)2(C3H9OSi)2]V = 2682.53 (18) Å3
Mr = 1010.11Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.7640 (4) ŵ = 0.99 mm1
b = 10.7280 (4) ÅT = 296 K
c = 23.2314 (9) Å0.12 × 0.10 × 0.08 mm
β = 90.597 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
8000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5487 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.95Rint = 0.053
39361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03918 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.01Δρmax = 0.51 e Å3
8000 reflectionsΔρmin = 0.40 e Å3
387 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn0.104366 (19)0.55812 (2)0.026548 (11)0.04165 (8)
N10.26766 (13)0.59563 (14)0.01068 (7)0.0341 (3)
N20.35760 (12)0.66301 (12)0.01574 (6)0.0277 (3)
N30.46639 (12)0.66115 (13)0.01036 (6)0.0311 (3)
O10.15782 (14)0.62338 (15)0.09782 (7)0.0587 (5)
C10.32338 (17)0.54664 (16)0.05741 (8)0.0337 (4)
C20.2760 (2)0.4676 (2)0.10062 (10)0.0502 (5)
H20.19380.44100.10090.060*
C30.3576 (2)0.4320 (2)0.14212 (10)0.0527 (5)
H30.33000.38010.17160.063*
C40.4823 (2)0.4717 (2)0.14158 (9)0.0490 (5)
H40.53460.44370.17050.059*
C50.52970 (19)0.54967 (18)0.10038 (8)0.0418 (4)
H50.61200.57600.10080.050*
C60.44666 (16)0.58816 (15)0.05707 (7)0.0310 (4)
C70.33891 (15)0.73715 (15)0.06658 (7)0.0295 (3)
C80.24052 (18)0.71386 (19)0.10475 (8)0.0413 (4)
C90.2352 (2)0.7919 (2)0.15453 (10)0.0556 (6)
C100.3235 (2)0.8842 (2)0.16192 (9)0.0473 (5)
H100.31740.93540.19410.057*
C110.42115 (16)0.90547 (17)0.12431 (8)0.0337 (4)
C120.42760 (15)0.83001 (15)0.07660 (7)0.0300 (3)
H120.49190.84090.05060.036*
C130.52264 (18)1.00306 (17)0.13694 (9)0.0385 (4)
C140.5631 (3)1.0659 (3)0.07985 (13)0.0469 (7)0.858 (4)
H14A0.62401.12900.08800.070*0.858 (4)
H14B0.49211.10320.06140.070*0.858 (4)
H14C0.59821.00420.05480.070*0.858 (4)
C150.4803 (2)1.1039 (2)0.17774 (13)0.0487 (7)0.858 (4)
H15A0.54451.16540.18190.073*0.858 (4)
H15B0.46311.06780.21460.073*0.858 (4)
H15C0.40641.14240.16260.073*0.858 (4)
C160.6396 (2)0.9343 (2)0.16123 (10)0.0411 (6)0.858 (4)
H16A0.66560.87340.13300.049*0.858 (4)
H16B0.70620.99470.16530.049*0.858 (4)
C170.6253 (4)0.8689 (4)0.2178 (2)0.0504 (9)0.858 (4)
H17A0.60490.92860.24700.076*0.858 (4)
H17B0.70170.82800.22790.076*0.858 (4)
H17C0.56000.80820.21470.076*0.858 (4)
C180.1446 (3)0.7613 (4)0.20390 (14)0.0438 (9)0.665 (6)
C190.1599 (8)0.6321 (8)0.2290 (3)0.074 (3)0.665 (6)
H19A0.15160.57120.19890.111*0.665 (6)
H19B0.09710.61820.25740.111*0.665 (6)
H19C0.24050.62480.24670.111*0.665 (6)
C200.1569 (5)0.8554 (6)0.2538 (2)0.0737 (16)0.665 (6)
H20A0.08700.84710.27880.111*0.665 (6)
H20B0.15930.93850.23850.111*0.665 (6)
H20C0.23220.83910.27510.111*0.665 (6)
C210.0133 (4)0.7707 (5)0.17880 (18)0.0579 (12)0.665 (6)
H21A0.00120.69950.15390.069*0.665 (6)
H21B0.04550.76570.21010.069*0.665 (6)
C220.0119 (8)0.8872 (9)0.1452 (4)0.077 (3)0.665 (6)
H22A0.00890.95850.16840.115*0.665 (6)
H22B0.09830.89050.13470.115*0.665 (6)
H22C0.03750.88750.11110.115*0.665 (6)
C14A0.4359 (15)1.1429 (13)0.1393 (7)0.050 (4)0.142 (4)
H14D0.49031.21130.14830.075*0.142 (4)
H14E0.37351.13640.16840.075*0.142 (4)
H14F0.39671.15700.10260.075*0.142 (4)
C15A0.608 (2)1.017 (2)0.1012 (8)0.072 (7)0.142 (4)
H15D0.66221.08300.11370.108*0.142 (4)
H15E0.57321.03710.06420.108*0.142 (4)
H15F0.65490.94080.09840.108*0.142 (4)
C16A0.5538 (15)0.9979 (14)0.2060 (7)0.053 (5)0.142 (4)
H16C0.62401.05160.21480.064*0.142 (4)
H16D0.48291.02750.22750.064*0.142 (4)
C17A0.584 (2)0.865 (2)0.2231 (15)0.057 (8)0.142 (4)
H17D0.64930.83420.19940.086*0.142 (4)
H17E0.51120.81440.21810.086*0.142 (4)
H17F0.60990.86340.26270.086*0.142 (4)
C18A0.0932 (7)0.8057 (6)0.1834 (3)0.0426 (18)0.335 (6)
C19A0.0218 (17)0.8360 (16)0.1471 (10)0.079 (5)0.335 (6)
H19D0.02110.78710.11240.119*0.335 (6)
H19E0.02160.92290.13730.119*0.335 (6)
H19F0.09510.81690.16850.119*0.335 (6)
C20A0.1012 (10)0.9032 (11)0.2329 (5)0.076 (3)0.335 (6)
H20D0.02470.90340.25380.115*0.335 (6)
H20E0.11530.98450.21690.115*0.335 (6)
H20F0.16850.88200.25850.115*0.335 (6)
C21A0.0677 (6)0.6779 (7)0.2073 (3)0.053 (2)0.335 (6)
H21C0.00160.68300.23360.063*0.335 (6)
H21D0.04360.62290.17600.063*0.335 (6)
C22A0.1766 (17)0.623 (2)0.2383 (10)0.104 (8)0.335 (6)
H22D0.23930.60110.21100.156*0.335 (6)
H22E0.15100.54990.25880.156*0.335 (6)
H22F0.20970.68300.26510.156*0.335 (6)
O20.04159 (12)0.38894 (12)0.01836 (7)0.0469 (4)
Si0.07437 (5)0.25351 (5)0.04705 (3)0.04524 (15)
C310.1120 (3)0.2751 (3)0.12478 (12)0.0821 (9)
H31A0.17900.33360.12890.123*
H31B0.13630.19670.14130.123*
H31C0.04020.30630.14430.123*
C320.0656 (2)0.1519 (2)0.03794 (14)0.0664 (7)
H32A0.13080.18140.06230.100*
H32B0.04470.06780.04830.100*
H32C0.09320.15420.00150.100*
C330.2097 (2)0.1835 (2)0.01087 (12)0.0587 (6)
H33A0.18930.16790.02880.088*
H33B0.23120.10630.02940.088*
H33C0.27890.23970.01320.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02557 (11)0.03335 (12)0.06619 (17)0.00948 (8)0.00779 (9)0.01189 (10)
N10.0250 (7)0.0330 (7)0.0445 (9)0.0044 (6)0.0011 (6)0.0085 (6)
N20.0242 (6)0.0257 (7)0.0334 (7)0.0041 (5)0.0036 (5)0.0012 (6)
N30.0256 (7)0.0323 (8)0.0356 (8)0.0021 (5)0.0073 (6)0.0020 (6)
O10.0534 (9)0.0619 (10)0.0614 (10)0.0350 (8)0.0272 (7)0.0197 (8)
C10.0347 (9)0.0295 (9)0.0368 (9)0.0014 (7)0.0009 (7)0.0044 (7)
C20.0486 (12)0.0468 (12)0.0550 (13)0.0027 (9)0.0036 (10)0.0172 (10)
C30.0704 (15)0.0440 (12)0.0437 (12)0.0053 (10)0.0009 (10)0.0134 (9)
C40.0694 (15)0.0422 (11)0.0358 (11)0.0127 (10)0.0137 (10)0.0002 (9)
C50.0446 (11)0.0417 (10)0.0394 (10)0.0054 (8)0.0142 (8)0.0062 (9)
C60.0343 (9)0.0271 (8)0.0318 (9)0.0015 (6)0.0058 (7)0.0033 (7)
C70.0276 (8)0.0294 (8)0.0316 (9)0.0042 (6)0.0037 (6)0.0028 (7)
C80.0391 (10)0.0416 (10)0.0436 (11)0.0146 (8)0.0133 (8)0.0064 (8)
C90.0557 (13)0.0615 (14)0.0503 (12)0.0258 (11)0.0254 (10)0.0175 (11)
C100.0538 (12)0.0485 (12)0.0398 (11)0.0158 (9)0.0125 (9)0.0150 (9)
C110.0323 (9)0.0307 (9)0.0381 (10)0.0039 (7)0.0002 (7)0.0020 (7)
C120.0249 (8)0.0293 (8)0.0358 (9)0.0043 (6)0.0033 (6)0.0014 (7)
C130.0378 (10)0.0320 (9)0.0454 (11)0.0069 (7)0.0053 (8)0.0043 (8)
C140.0487 (15)0.0391 (15)0.0529 (18)0.0178 (11)0.0057 (12)0.0055 (12)
C150.0412 (13)0.0354 (12)0.0696 (19)0.0012 (10)0.0023 (12)0.0172 (12)
C160.0363 (11)0.0396 (12)0.0472 (14)0.0009 (9)0.0062 (9)0.0127 (10)
C170.052 (2)0.0496 (17)0.0491 (19)0.0103 (15)0.0082 (18)0.0078 (13)
C180.0370 (19)0.059 (2)0.0358 (18)0.0071 (15)0.0102 (14)0.0003 (15)
C190.089 (7)0.079 (4)0.054 (3)0.005 (4)0.023 (3)0.021 (3)
C200.068 (3)0.110 (4)0.044 (2)0.024 (3)0.029 (2)0.023 (3)
C210.031 (2)0.086 (3)0.057 (2)0.0003 (19)0.0150 (16)0.009 (2)
C220.041 (3)0.123 (7)0.067 (4)0.032 (4)0.007 (2)0.011 (4)
C14A0.061 (10)0.029 (7)0.060 (10)0.009 (6)0.018 (8)0.009 (7)
C15A0.093 (17)0.076 (15)0.046 (12)0.060 (13)0.000 (10)0.024 (10)
C16A0.046 (9)0.050 (9)0.064 (11)0.008 (7)0.014 (7)0.016 (8)
C17A0.054 (11)0.062 (10)0.055 (10)0.019 (8)0.010 (8)0.004 (7)
C18A0.027 (4)0.060 (4)0.041 (4)0.003 (3)0.011 (3)0.004 (3)
C19A0.048 (6)0.094 (12)0.097 (10)0.004 (7)0.024 (6)0.021 (9)
C20A0.064 (6)0.108 (8)0.058 (6)0.001 (5)0.033 (5)0.025 (6)
C21A0.040 (4)0.075 (5)0.044 (4)0.008 (3)0.011 (3)0.014 (3)
C22A0.036 (6)0.131 (12)0.146 (15)0.010 (6)0.017 (7)0.102 (11)
O20.0287 (7)0.0296 (7)0.0825 (11)0.0064 (5)0.0036 (6)0.0067 (7)
Si0.0301 (3)0.0374 (3)0.0683 (4)0.0064 (2)0.0056 (2)0.0033 (3)
C310.0734 (19)0.103 (2)0.0703 (18)0.0146 (17)0.0130 (15)0.0026 (17)
C320.0414 (12)0.0404 (12)0.117 (2)0.0124 (9)0.0017 (13)0.0114 (13)
C330.0401 (12)0.0518 (13)0.0841 (17)0.0052 (9)0.0028 (11)0.0113 (12)
Geometric parameters (Å, º) top
Zn—O11.8822 (16)C19—H19A0.9600
Zn—O21.9453 (13)C19—H19B0.9600
Zn—O2i1.9609 (15)C19—H19C0.9600
Zn—N12.0077 (14)C20—H20A0.9600
Zn—Zni2.8402 (4)C20—H20B0.9600
N1—N21.3507 (19)C20—H20C0.9600
N1—C11.352 (2)C21—C221.497 (9)
N2—N31.3245 (18)C21—H21A0.9700
N2—C71.440 (2)C21—H21B0.9700
N3—C61.353 (2)C22—H22A0.9600
O1—C81.326 (2)C22—H22B0.9600
C1—C61.400 (2)C22—H22C0.9600
C1—C21.406 (3)C14A—H14D0.9600
C2—C31.365 (3)C14A—H14E0.9600
C2—H20.9300C14A—H14F0.9600
C3—C41.408 (3)C15A—H15D0.9600
C3—H30.9300C15A—H15E0.9600
C4—C51.366 (3)C15A—H15F0.9600
C4—H40.9300C16A—C17A1.510 (18)
C5—C61.414 (2)C16A—H16C0.9700
C5—H50.9300C16A—H16D0.9700
C7—C121.398 (2)C17A—H17D0.9600
C7—C81.411 (2)C17A—H17E0.9600
C8—C91.429 (3)C17A—H17F0.9600
C9—C101.383 (3)C18A—C21A1.506 (9)
C9—C181.548 (3)C18A—C19A1.526 (16)
C9—C18A1.682 (7)C18A—C20A1.556 (10)
C10—C111.392 (3)C19A—H19D0.9600
C10—H100.9300C19A—H19E0.9600
C11—C121.375 (2)C19A—H19F0.9600
C11—C131.539 (2)C20A—H20D0.9600
C12—H120.9300C20A—H20E0.9600
C13—C15A1.255 (18)C20A—H20F0.9600
C13—C151.512 (3)C21A—C22A1.490 (13)
C13—C141.554 (4)C21A—H21C0.9700
C13—C161.560 (3)C21A—H21D0.9700
C13—C16A1.636 (15)C22A—H22D0.9600
C13—C14A1.768 (15)C22A—H22E0.9600
C14—H14A0.9600C22A—H22F0.9600
C14—H14B0.9600O2—Si1.6354 (15)
C14—H14C0.9600O2—Zni1.9609 (15)
C15—H15A0.9600Si—C331.849 (2)
C15—H15B0.9600Si—C311.861 (3)
C15—H15C0.9600Si—C321.870 (2)
C16—C171.498 (5)C31—H31A0.9600
C16—H16A0.9700C31—H31B0.9600
C16—H16B0.9700C31—H31C0.9600
C17—H17A0.9600C32—H32A0.9600
C17—H17B0.9600C32—H32B0.9600
C17—H17C0.9600C32—H32C0.9600
C18—C191.512 (9)C33—H33A0.9600
C18—C211.527 (5)C33—H33B0.9600
C18—C201.542 (5)C33—H33C0.9600
O1—Zn—O2122.40 (7)C22—C21—C18114.6 (5)
O1—Zn—O2i126.59 (7)C22—C21—H21A108.6
O2—Zn—O2i86.71 (6)C18—C21—H21A108.6
O1—Zn—N192.49 (6)C22—C21—H21B108.6
O2—Zn—N1116.72 (6)C18—C21—H21B108.6
O2i—Zn—N1114.39 (6)H21A—C21—H21B107.6
O1—Zn—Zni141.13 (4)C13—C14A—H14D109.5
O2—Zn—Zni43.57 (4)C13—C14A—H14E109.5
O2i—Zn—Zni43.14 (4)H14D—C14A—H14E109.5
N1—Zn—Zni126.37 (5)C13—C14A—H14F109.5
N2—N1—C1104.54 (14)H14D—C14A—H14F109.5
N2—N1—Zn122.55 (11)H14E—C14A—H14F109.5
C1—N1—Zn131.73 (12)C13—C15A—H15D109.5
N3—N2—N1114.63 (13)C13—C15A—H15E109.5
N3—N2—C7121.05 (13)H15D—C15A—H15E109.5
N1—N2—C7124.25 (13)C13—C15A—H15F109.5
N2—N3—C6104.11 (13)H15D—C15A—H15F109.5
C8—O1—Zn125.31 (13)H15E—C15A—H15F109.5
N1—C1—C6107.47 (15)C17A—C16A—C13109.3 (17)
N1—C1—C2130.33 (18)C17A—C16A—H16C109.8
C6—C1—C2122.20 (18)C13—C16A—H16C109.8
C3—C2—C1116.2 (2)C17A—C16A—H16D109.8
C3—C2—H2121.9C13—C16A—H16D109.8
C1—C2—H2121.9H16C—C16A—H16D108.3
C2—C3—C4122.0 (2)C16A—C17A—H17D109.5
C2—C3—H3119.0C16A—C17A—H17E109.5
C4—C3—H3119.0H17D—C17A—H17E109.5
C5—C4—C3122.71 (19)C16A—C17A—H17F109.5
C5—C4—H4118.6H17D—C17A—H17F109.5
C3—C4—H4118.6H17E—C17A—H17F109.5
C4—C5—C6116.30 (19)C21A—C18A—C19A104.4 (8)
C4—C5—H5121.8C21A—C18A—C20A110.4 (7)
C6—C5—H5121.8C19A—C18A—C20A107.7 (10)
N3—C6—C1109.24 (15)C21A—C18A—C9103.7 (5)
N3—C6—C5130.11 (17)C19A—C18A—C9122.2 (9)
C1—C6—C5120.61 (17)C20A—C18A—C9108.0 (6)
C12—C7—C8122.51 (16)C18A—C19A—H19D109.5
C12—C7—N2115.43 (14)C18A—C19A—H19E109.5
C8—C7—N2122.01 (15)H19D—C19A—H19E109.5
O1—C8—C7124.11 (17)C18A—C19A—H19F109.5
O1—C8—C9119.63 (16)H19D—C19A—H19F109.5
C7—C8—C9116.22 (16)H19E—C19A—H19F109.5
C10—C9—C8119.11 (17)C18A—C20A—H20D109.5
C10—C9—C18119.8 (2)C18A—C20A—H20E109.5
C8—C9—C18120.4 (2)H20D—C20A—H20E109.5
C10—C9—C18A121.0 (3)C18A—C20A—H20F109.5
C8—C9—C18A114.7 (3)H20D—C20A—H20F109.5
C9—C10—C11124.20 (18)H20E—C20A—H20F109.5
C9—C10—H10117.9C22A—C21A—C18A113.1 (11)
C11—C10—H10117.9C22A—C21A—H21C109.0
C12—C11—C10117.02 (16)C18A—C21A—H21C109.0
C12—C11—C13120.84 (16)C22A—C21A—H21D109.0
C10—C11—C13122.04 (16)C18A—C21A—H21D109.0
C11—C12—C7120.92 (15)H21C—C21A—H21D107.8
C11—C12—H12119.5C21A—C22A—H22D109.5
C7—C12—H12119.5C21A—C22A—H22E109.5
C15A—C13—C15124.0 (9)H22D—C22A—H22E109.5
C15A—C13—C11118.6 (7)C21A—C22A—H22F109.5
C15—C13—C11112.85 (17)H22D—C22A—H22F109.5
C15—C13—C14108.3 (2)H22E—C22A—H22F109.5
C11—C13—C14109.68 (17)Si—O2—Zn135.70 (9)
C15—C13—C16111.04 (18)Si—O2—Zni129.97 (8)
C11—C13—C16108.42 (16)Zn—O2—Zni93.29 (6)
C14—C13—C16106.35 (19)O2—Si—C33110.09 (10)
C15A—C13—C16A120.5 (11)O2—Si—C31109.18 (13)
C11—C13—C16A107.6 (6)C33—Si—C31109.09 (14)
C14—C13—C16A142.6 (6)O2—Si—C32107.56 (10)
C15A—C13—C14A108.2 (13)C33—Si—C32110.43 (12)
C11—C13—C14A102.1 (5)C31—Si—C32110.46 (14)
C16—C13—C14A144.5 (5)Si—C31—H31A109.5
C13—C14—H14A109.5Si—C31—H31B109.5
C13—C14—H14B109.5H31A—C31—H31B109.5
C13—C14—H14C109.5Si—C31—H31C109.5
C13—C15—H15A109.5H31A—C31—H31C109.5
C13—C15—H15B109.5H31B—C31—H31C109.5
C13—C15—H15C109.5Si—C32—H32A109.5
C17—C16—C13116.6 (2)Si—C32—H32B109.5
C17—C16—H16A108.1H32A—C32—H32B109.5
C13—C16—H16A108.1Si—C32—H32C109.5
C17—C16—H16B108.1H32A—C32—H32C109.5
C13—C16—H16B108.1H32B—C32—H32C109.5
H16A—C16—H16B107.3Si—C33—H33A109.5
C19—C18—C21107.7 (5)Si—C33—H33B109.5
C19—C18—C20107.6 (4)H33A—C33—H33B109.5
C21—C18—C20108.4 (3)Si—C33—H33C109.5
C19—C18—C9114.5 (4)H33A—C33—H33C109.5
C21—C18—C9106.9 (3)H33B—C33—H33C109.5
C20—C18—C9111.6 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn2(C22H28N3O)2(C3H9OSi)2]
Mr1010.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.7640 (4), 10.7280 (4), 23.2314 (9)
β (°) 90.597 (2)
V3)2682.53 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.92, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
39361, 8000, 5487
Rint0.053
(sin θ/λ)max1)0.711
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.01
No. of reflections8000
No. of parameters387
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.40

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Research Foundation of Korea grant funded by the Korean Government [NRF-2009–352-C00068].

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229–3238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCheng, M., Attygalle, A. B., Lobkovsky, E. B. & Coates, G. W. (1999). J. Am. Chem. Soc. 121, 11583–11584.  Web of Science CSD CrossRef CAS Google Scholar
First citationChisholm, M. H., Huffman, J. C. & Phomphrai, K. J. (2001). J. Chem. Soc. Dalton Trans. pp. 222–224.  Web of Science CSD CrossRef Google Scholar
First citationDrouin, F., Oguadinma, P. O., Whitehorne, T. T. J., Prud'homme, R. E. & Schaper, F. (2010). Organometallics, 29, 2139–2147.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, J., Kim, S. H., Lee, K. M., Hwang, K. Y., Kim, H., Huh, J. O., Kim, D. J., Lee, Y. S., Do, Y. & Kim, Y. (2010). Organometallics, 29, 347–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, K. M., Yoon, S., Lee, J., Kim, J., Do, Y., You, T.-S. & Kim, Y. (2011). Polyhedron, 30, 809–813.  CAS Google Scholar
First citationLi, J.-Y., Li, C.-Y., Tai, W.-J., Lin, C.-H. & Ko, B.-T. (2011). Inorg. Chem. Commun. 14, 1140–1144.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, Y.-E., Le, C.-Y., Lin, C.-H., Liu, Y.-C., Ko, B.-T. & Sun, Y.-S. (2011). J. Polym. Sci. Part A Polym. Chem. 49, 4027–4036.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds