organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­chloro-2-{[(E)-(3-{[(E)-3,5-di­chloro-2-hy­dr­oxy­benzyl­­idene]amino}-2,2-di­methyl­prop­yl)imino]­meth­yl}phenol

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I.R. of Iran, bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 9 December 2011; accepted 12 December 2011; online 17 December 2011)

In the title compound, C19H18Cl4N2O2, a potential tetra­dentate Schiff base ligand, the dihedral angle between the two benzene rings is 48.01 (10)°. The configuration about the two C=N bonds is E and two intra­molecular O—H⋯N hydrogen bonds make S(6) ring motifs. In the crystal, mol­ecules are linked along the b axis via inter­molecular C—H⋯Cl inter­actions. The crystal structure is further stabilized by an inter­molecular ππ inter­action [centroid–centroid distance = 3.5744 (12) Å].

Related literature

For standard bond-lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Cl4N2O2

  • Mr = 448.15

  • Monoclinic, P 21 /c

  • a = 16.5265 (5) Å

  • b = 10.3242 (3) Å

  • c = 12.6433 (4) Å

  • β = 104.796 (1)°

  • V = 2085.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.18 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.902, Tmax = 0.955

  • 19903 measured reflections

  • 5165 independent reflections

  • 3427 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 1.03

  • 5165 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.93 1.73 2.553 (2) 147
O2—H2A⋯N2 0.90 1.71 2.553 (2) 155
C12—H12B⋯Cl1i 0.97 2.80 3.749 (2) 167
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on Schiff base ligands (Kargar et al., 2011; Kia et al., 2010), we present herein the crystal structure of the title compound.

The title molecule, Fig. 1, is a potential tetradentate Schiff base ligand. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found for similar structures, for example 4,4-Dimethoxy-2,2-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)] diphenol (Kargar et al., 2011) and 5,5-Bis(diethylamino)-2,2-[2,2-dimethylpropane-1,3-diylbis(nitrilomethylidyne)] diphenol (Kia et al., 2010). There are two intramolecular O—H···N hydrogen bonds (Table 1) making S(6) ring motifs (Bernstein et al., 1995), and the configuration about both C N bonds is E. The two benzene rings, (C1-C6) and (C14-C19), are inclined to one another by 48.01 (10)°.

In the crystal, neighbouring molecules are linked along the b-axis direction through intermolecular C—H···Cl interactions (Table 1 and Fig. 2). The crystal structure is further stabilized by an intermolecular π-π interaction involving inversion related molecules [Cg1···Cg1i = 3.5744 (12)Å; (i) -x, -y, -z; Cg1 is the centroid of ring (C1-C6)].

Related literature top

For standard bond-lengths, see: Allen et al. (1987). For hydrogen bond motifs, see: Bernstein et al. (1995). For related structures, see: Kargar et al. (2011); Kia et al. (2010).

Experimental top

The title compound was synthesized by adding 3,5-dichloro-salicylaldehyde (2 mmol) to a solution of 2,2-dimethyl-1,3-propanediamine (1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Yellow single crystals of the title compound, suitable for X-ray analysis, were obtained by recrystallization from ethanol on slow evaporation of the solvent at room temperature over several days.

Refinement top

The OH H-atoms were located in a difference Fourier map and were allowed to ride on the parent O-atom with Uiso(H) = 1.5Ueq(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H-atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed lines indicate the intramolecular N-H···O hydrogen bonds (see Table 1 for details).
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, viewed down the c-axis, showing the intermolecular C—H···Cl interactions (dashed lines; only the H atoms involved in these interactions are shown].
4,6-Dichloro-2-{[(E)-(3-{[(E)-3,5-dichloro-2- hydroxybenzylidene]amino}-2,2-dimethylpropyl)imino]methyl}phenol top
Crystal data top
C19H18Cl4N2O2F(000) = 920
Mr = 448.15Dx = 1.427 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2540 reflections
a = 16.5265 (5) Åθ = 2.5–27.4°
b = 10.3242 (3) ŵ = 0.58 mm1
c = 12.6433 (4) ÅT = 296 K
β = 104.796 (1)°Block, yellow
V = 2085.70 (11) Å30.18 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5165 independent reflections
Radiation source: fine-focus sealed tube3427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2222
Tmin = 0.902, Tmax = 0.955k = 1313
19903 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.5514P]
where P = (Fo2 + 2Fc2)/3
5165 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C19H18Cl4N2O2V = 2085.70 (11) Å3
Mr = 448.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.5265 (5) ŵ = 0.58 mm1
b = 10.3242 (3) ÅT = 296 K
c = 12.6433 (4) Å0.18 × 0.12 × 0.08 mm
β = 104.796 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5165 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3427 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 0.955Rint = 0.027
19903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
5165 reflectionsΔρmin = 0.38 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.21903 (4)0.02100 (8)0.20278 (6)0.0929 (2)
Cl20.10588 (6)0.11487 (9)0.21661 (6)0.1149 (4)
Cl30.46259 (4)0.99049 (7)0.34212 (5)0.0831 (2)
Cl40.41065 (4)1.19135 (6)0.06309 (6)0.0755 (2)
O10.03427 (11)0.22770 (15)0.14769 (12)0.0690 (4)
H10.07910.25440.12160.104*
O20.39245 (10)0.75500 (14)0.22723 (12)0.0621 (4)
H2A0.37250.68890.18180.093*
N10.11973 (11)0.27146 (15)0.00940 (14)0.0512 (4)
N20.33256 (10)0.61812 (16)0.05705 (15)0.0540 (4)
C10.01322 (12)0.16963 (17)0.04155 (15)0.0436 (4)
C20.07424 (13)0.1108 (2)0.12407 (17)0.0529 (5)
H20.06800.10850.19510.063*
C30.14354 (12)0.0562 (2)0.10131 (19)0.0561 (5)
C40.15422 (13)0.05939 (19)0.0031 (2)0.0583 (5)
H40.20160.02310.01810.070*
C50.09431 (14)0.11660 (19)0.08457 (18)0.0561 (5)
C60.02244 (13)0.17359 (17)0.06566 (16)0.0488 (5)
C70.06112 (13)0.22448 (17)0.06553 (16)0.0484 (5)
H70.06570.22510.13730.058*
C80.19538 (14)0.32198 (19)0.01584 (19)0.0563 (5)
H8A0.18450.33630.09400.068*
H8B0.23990.25850.00490.068*
C90.22377 (12)0.44956 (17)0.04474 (16)0.0478 (4)
C100.15394 (14)0.5495 (2)0.0148 (2)0.0665 (6)
H10A0.17290.63000.05080.100*
H10B0.10620.51920.03770.100*
H10C0.13870.56250.06300.100*
C110.24805 (17)0.4257 (3)0.16823 (19)0.0722 (6)
H11A0.26590.50570.20570.108*
H11B0.29290.36390.18620.108*
H11C0.20060.39270.19030.108*
C120.30059 (13)0.49455 (19)0.00771 (19)0.0565 (5)
H12A0.34420.42960.02770.068*
H12B0.28570.50310.07130.068*
C130.33932 (12)0.71454 (19)0.00290 (18)0.0517 (5)
H130.32380.70550.07860.062*
C140.37085 (11)0.83825 (18)0.04477 (17)0.0476 (4)
C150.39724 (12)0.85146 (19)0.15984 (17)0.0496 (5)
C160.42908 (12)0.9726 (2)0.20143 (18)0.0541 (5)
C170.43340 (13)1.0753 (2)0.1340 (2)0.0594 (6)
H170.45461.15460.16360.071*
C180.40590 (13)1.0599 (2)0.02195 (19)0.0552 (5)
C190.37588 (12)0.9427 (2)0.02257 (18)0.0523 (5)
H190.35880.93320.09820.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0543 (4)0.1232 (6)0.0882 (5)0.0138 (4)0.0059 (3)0.0123 (4)
Cl20.1553 (8)0.1295 (7)0.0893 (5)0.0722 (6)0.0850 (6)0.0384 (5)
Cl30.0872 (5)0.0918 (5)0.0674 (4)0.0259 (4)0.0148 (3)0.0268 (3)
Cl40.0754 (4)0.0543 (3)0.1042 (5)0.0008 (3)0.0363 (4)0.0125 (3)
O10.0863 (11)0.0739 (10)0.0535 (9)0.0326 (9)0.0301 (8)0.0173 (7)
O20.0711 (10)0.0547 (8)0.0578 (9)0.0074 (7)0.0115 (8)0.0026 (7)
N10.0587 (10)0.0428 (9)0.0580 (10)0.0102 (7)0.0258 (8)0.0038 (7)
N20.0503 (9)0.0469 (9)0.0671 (11)0.0085 (7)0.0191 (8)0.0114 (8)
C10.0483 (10)0.0370 (9)0.0478 (10)0.0032 (7)0.0166 (8)0.0044 (8)
C20.0533 (12)0.0557 (12)0.0478 (11)0.0066 (9)0.0094 (9)0.0042 (9)
C30.0422 (10)0.0541 (12)0.0670 (14)0.0042 (9)0.0052 (9)0.0007 (10)
C40.0523 (12)0.0457 (11)0.0840 (16)0.0002 (9)0.0305 (11)0.0033 (11)
C50.0687 (13)0.0475 (11)0.0625 (13)0.0057 (10)0.0358 (11)0.0058 (10)
C60.0617 (12)0.0361 (9)0.0540 (11)0.0032 (8)0.0248 (10)0.0040 (8)
C70.0611 (12)0.0419 (10)0.0468 (11)0.0022 (9)0.0223 (9)0.0032 (8)
C80.0621 (13)0.0464 (11)0.0688 (14)0.0103 (9)0.0319 (11)0.0100 (10)
C90.0514 (11)0.0403 (10)0.0552 (11)0.0026 (8)0.0202 (9)0.0067 (8)
C100.0596 (13)0.0503 (12)0.0909 (17)0.0019 (10)0.0214 (12)0.0018 (12)
C110.0799 (16)0.0775 (16)0.0589 (14)0.0062 (13)0.0171 (12)0.0038 (12)
C120.0573 (12)0.0485 (11)0.0693 (14)0.0104 (9)0.0262 (11)0.0170 (10)
C130.0462 (11)0.0539 (12)0.0560 (12)0.0055 (9)0.0148 (9)0.0109 (10)
C140.0375 (9)0.0459 (10)0.0605 (12)0.0032 (8)0.0147 (9)0.0068 (9)
C150.0398 (10)0.0483 (11)0.0615 (13)0.0013 (8)0.0145 (9)0.0078 (9)
C160.0440 (10)0.0583 (12)0.0610 (13)0.0061 (9)0.0150 (9)0.0164 (10)
C170.0486 (11)0.0473 (11)0.0863 (17)0.0085 (9)0.0244 (11)0.0151 (11)
C180.0461 (11)0.0479 (11)0.0763 (15)0.0008 (9)0.0244 (10)0.0006 (10)
C190.0432 (10)0.0545 (11)0.0613 (13)0.0014 (9)0.0173 (9)0.0036 (10)
Geometric parameters (Å, º) top
Cl1—C31.738 (2)C8—H8A0.9700
Cl2—C51.728 (2)C8—H8B0.9700
Cl3—C161.733 (2)C9—C101.522 (3)
Cl4—C181.745 (2)C9—C111.529 (3)
O1—C61.330 (2)C9—C121.533 (3)
O1—H10.9260C10—H10A0.9600
O2—C151.326 (2)C10—H10B0.9600
O2—H2A0.8989C10—H10C0.9600
N1—C71.266 (3)C11—H11A0.9600
N1—C81.463 (2)C11—H11B0.9600
N2—C131.273 (3)C11—H11C0.9600
N2—C121.459 (2)C12—H12A0.9700
C1—C21.392 (3)C12—H12B0.9700
C1—C61.403 (3)C13—C141.451 (3)
C1—C71.453 (3)C13—H130.9300
C2—C31.371 (3)C14—C191.390 (3)
C2—H20.9300C14—C151.415 (3)
C3—C41.377 (3)C15—C161.406 (3)
C4—C51.367 (3)C16—C171.374 (3)
C4—H40.9300C17—C181.382 (3)
C5—C61.400 (3)C17—H170.9300
C7—H70.9300C18—C191.373 (3)
C8—C91.536 (3)C19—H190.9300
C6—O1—H1108.4C9—C10—H10B109.5
C15—O2—H2A103.5H10A—C10—H10B109.5
C7—N1—C8120.43 (17)C9—C10—H10C109.5
C13—N2—C12120.43 (19)H10A—C10—H10C109.5
C2—C1—C6120.03 (18)H10B—C10—H10C109.5
C2—C1—C7120.20 (18)C9—C11—H11A109.5
C6—C1—C7119.76 (18)C9—C11—H11B109.5
C3—C2—C1120.40 (19)H11A—C11—H11B109.5
C3—C2—H2119.8C9—C11—H11C109.5
C1—C2—H2119.8H11A—C11—H11C109.5
C2—C3—C4120.7 (2)H11B—C11—H11C109.5
C2—C3—Cl1120.95 (18)N2—C12—C9111.85 (16)
C4—C3—Cl1118.37 (17)N2—C12—H12A109.2
C5—C4—C3119.14 (19)C9—C12—H12A109.2
C5—C4—H4120.4N2—C12—H12B109.2
C3—C4—H4120.4C9—C12—H12B109.2
C4—C5—C6122.4 (2)H12A—C12—H12B107.9
C4—C5—Cl2119.05 (16)N2—C13—C14121.18 (19)
C6—C5—Cl2118.52 (17)N2—C13—H13119.4
O1—C6—C5120.20 (18)C14—C13—H13119.4
O1—C6—C1122.47 (17)C19—C14—C15120.27 (18)
C5—C6—C1117.33 (19)C19—C14—C13120.01 (19)
N1—C7—C1121.28 (18)C15—C14—C13119.72 (18)
N1—C7—H7119.4O2—C15—C16120.39 (19)
C1—C7—H7119.4O2—C15—C14122.35 (17)
N1—C8—C9111.48 (16)C16—C15—C14117.26 (19)
N1—C8—H8A109.3C17—C16—C15121.9 (2)
C9—C8—H8A109.3C17—C16—Cl3120.06 (16)
N1—C8—H8B109.3C15—C16—Cl3118.02 (17)
C9—C8—H8B109.3C16—C17—C18119.44 (19)
H8A—C8—H8B108.0C16—C17—H17120.3
C10—C9—C11110.33 (18)C18—C17—H17120.3
C10—C9—C12110.66 (17)C19—C18—C17120.8 (2)
C11—C9—C12109.80 (18)C19—C18—Cl4120.06 (18)
C10—C9—C8110.00 (18)C17—C18—Cl4119.17 (16)
C11—C9—C8109.78 (17)C18—C19—C14120.3 (2)
C12—C9—C8106.19 (15)C18—C19—H19119.8
C9—C10—H10A109.5C14—C19—H19119.8
C6—C1—C2—C30.1 (3)C13—N2—C12—C9123.0 (2)
C7—C1—C2—C3178.47 (18)C10—C9—C12—N258.9 (2)
C1—C2—C3—C40.4 (3)C11—C9—C12—N263.2 (2)
C1—C2—C3—Cl1178.43 (15)C8—C9—C12—N2178.20 (18)
C2—C3—C4—C50.7 (3)C12—N2—C13—C14179.89 (17)
Cl1—C3—C4—C5178.21 (16)N2—C13—C14—C19178.60 (18)
C3—C4—C5—C60.6 (3)N2—C13—C14—C152.1 (3)
C3—C4—C5—Cl2177.50 (16)C19—C14—C15—O2179.00 (18)
C4—C5—C6—O1179.76 (19)C13—C14—C15—O21.7 (3)
Cl2—C5—C6—O11.6 (3)C19—C14—C15—C160.8 (3)
C4—C5—C6—C10.3 (3)C13—C14—C15—C16178.51 (17)
Cl2—C5—C6—C1177.81 (15)O2—C15—C16—C17178.70 (18)
C2—C1—C6—O1179.48 (18)C14—C15—C16—C171.1 (3)
C7—C1—C6—O10.9 (3)O2—C15—C16—Cl30.7 (3)
C2—C1—C6—C50.1 (3)C14—C15—C16—Cl3179.46 (14)
C7—C1—C6—C5178.52 (17)C15—C16—C17—C180.1 (3)
C8—N1—C7—C1177.78 (17)Cl3—C16—C17—C18179.55 (16)
C2—C1—C7—N1175.71 (18)C16—C17—C18—C191.2 (3)
C6—C1—C7—N12.9 (3)C16—C17—C18—Cl4179.39 (15)
C7—N1—C8—C9137.80 (19)C17—C18—C19—C141.5 (3)
N1—C8—C9—C1057.9 (2)Cl4—C18—C19—C14179.09 (15)
N1—C8—C9—C1163.7 (2)C15—C14—C19—C180.5 (3)
N1—C8—C9—C12177.66 (18)C13—C14—C19—C18179.79 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.931.732.553 (2)147
O2—H2A···N20.901.712.553 (2)155
C12—H12B···Cl1i0.972.803.749 (2)167
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H18Cl4N2O2
Mr448.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.5265 (5), 10.3242 (3), 12.6433 (4)
β (°) 104.796 (1)
V3)2085.70 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.18 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.902, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
19903, 5165, 3427
Rint0.027
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.03
No. of reflections5165
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.931.732.553 (2)147
O2—H2A···N20.901.712.553 (2)155
C12—H12B···Cl1i0.972.803.749 (2)167
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

HK and SA thank PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds