organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[(1,3-benzodioxol-5-yl)methyl­­idene]hydrazine

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 23 November 2011; accepted 25 November 2011; online 3 December 2011)

The complete mol­ecule of the title compound, C16H12N2O4, is generated by the application of a centre of inversion. The (1,3-benzodioxol-5-yl)methyl­idene fused-ring system is approximately planar (r.m.s. deviation = 0.020 Å) and is essentially coplanar with the central hydrazine group [dihedral angle = 5.08 (9)°]. Weak ππ inter­molecular inter­actions are observed [centroid–centroid distance = 3.8553 (8) Å], providing some packing stability.

Related literature

For the biological activity of Schiff bases, see: Aydogan et al. (2001[Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]); Desai et al. (2001[Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83-90.]); El-Masry et al. (2000[El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429-1438.]); Hodnett & Dunn (1970[Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768-770.]); Pandey et al. (1999[Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624-628.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]); Xu et al. (1997[Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.]). For the crystallography and coordination chemistry of compounds containing the azine functionality or a diimine linkage, see: Xu et al. (1997[Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985-3995.]); Kundu et al. (2005[Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583-m1585.]). For related structures, see: Liu et al. (2007[Liu, G., Xie, L., Wang, Y. & Wang, J.-D. (2007). Acta Cryst. E63, o2611.]); Odabaşoğlu et al. (2007[Odabaşoğlu, M., Büyükgüngör, O., Sunil, K. & Narayana, B. (2007). Acta Cryst. E63, o4145-o4146.]); Zhang & Zheng (2008[Zhang, C.-N. & Zheng, Y.-F. (2008). Acta Cryst. E64, o36.]); Zheng et al. (2005a[Zheng, P.-W., Wang, W. & Duan, X.-M. (2005a). Acta Cryst. E61, o3485-o3486.],b[Zheng, P.-W., Wang, W. & Duan, X.-M. (2005b). Acta Cryst. E61, o3020-o3021.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O4

  • Mr = 296.28

  • Monoclinic, P 21 /c

  • a = 6.1835 (2) Å

  • b = 4.5970 (2) Å

  • c = 23.8487 (10) Å

  • β = 96.080 (4)°

  • V = 674.10 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 170 K

  • 0.28 × 0.25 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.971, Tmax = 0.992

  • 4759 measured reflections

  • 1746 independent reflections

  • 1402 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.04

  • 1746 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are used as substrates in the preparation of a number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Moreover, Schiff bases are also known to have biological activities such as antimicrobial (El-Masry et al., 2000 & Pandey et al., 1999), antifungal (Singh & Dash, 1988), antitumor (Hodnett & Dunn, 1970; Desai et al., 2001), and as herbicides. Schiff bases have also been employed as ligands for complexation of metal ions (Aydogan et al., 2001). On the industrial scale, they have a wide range of applications such as dyes and pigments (Taggi et al., 2002). Compounds containing an azine functionality or a diimine linkage have been investigated in terms of their crystallography and coordination chemistry (Xu et al., 1997; Kundu et al., 2005).

The crystal structures of some Schiff base hydrazines, viz., 4-fluorobenzaldehyde [(E)-4-fluorobenzylidene]hydrazone (Odabaşoğlu et al., 2007), N,N'-bis(3 nitrobenzylidene)hydrazine (Zheng et al., 2005a), N,N'-bis(4-chlorobenzylidene)hydrazine (Zheng et al., 2005b), 1,2-bis(2-chlorobenzylidene)hydrazine (Zhang & Zheng, 2008), N,N'-bis(4-hydroxybenzylidene)hydrazine (Liu et al., 2007) have been reported. In view of the importance of Schiff base hydrazines, the crystal structure of title compound (I) is reported

In the crystal structure of the title compound, C16H12N2O4, the two 1,3-benzodioxol-5-ylmethylidene rings are planar to the hydrazine group and to each other (Fig. 1). Weak ππ intermolecular interactions are observed (centroid–centroid distance = 3.8553 (8) Å) providing some packing stability (Fig. 2).

Related literature top

For the biological activity of Schiff bases, see: Aydogan et al. (2001); Desai et al. (2001); El-Masry et al. (2000); Hodnett & Dunn (1970); Pandey et al. (1999); Singh & Dash (1988); Taggi et al. (2002); Xu et al. (1997). For the crystallography and coordination chemistry of compounds containing the azine functionality or a diimine linkage, see: Xu et al. (1997); Kundu et al. (2005). For related structures, see: Liu et al. (2007); Odabaşoğlu et al. (2007); Zhang & Zheng (2008); Zheng et al. (2005a,b).

Experimental top

A mixture of piperanal (3.0 g, 0.02 mol) and hydrazine hydrate (0.6 ml, 0.012 mol) was refluxed in 15 ml of absolute alcohol containing 2 drops of sulfuric acid, for about 3 hours. On cooling, the solid separated was filtered and dried. Single crystals were grown from DMF by slow evaporation. Yield: 81%. (M.pt.: 476 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH) or 0.97 Å (CH2), and with Uiso(H) set to 1.19-1.20 (CH, CH2) × Ueq(parent atom).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. The H atoms have been removed for clarity.
1,2-Bis[(1,3-benzodioxol-5-yl)methylidene]hydrazine top
Crystal data top
C16H12N2O4F(000) = 308
Mr = 296.28Dx = 1.460 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1659 reflections
a = 6.1835 (2) Åθ = 3.4–30.1°
b = 4.5970 (2) ŵ = 0.11 mm1
c = 23.8487 (10) ÅT = 170 K
β = 96.080 (4)°Plate, yellow
V = 674.10 (5) Å30.28 × 0.25 × 0.08 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
1746 independent reflections
Radiation source: Enhance (Mo) X-ray Source1402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.1500 pixels mm-1θmax = 30.1°, θmin = 3.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 56
Tmin = 0.971, Tmax = 0.992l = 3223
4759 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.1301P]
where P = (Fo2 + 2Fc2)/3
1746 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H12N2O4V = 674.10 (5) Å3
Mr = 296.28Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.1835 (2) ŵ = 0.11 mm1
b = 4.5970 (2) ÅT = 170 K
c = 23.8487 (10) Å0.28 × 0.25 × 0.08 mm
β = 96.080 (4)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
1746 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
1402 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.992Rint = 0.019
4759 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
1746 reflectionsΔρmin = 0.18 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40433 (16)0.1982 (3)0.30379 (4)0.0593 (4)
O20.05345 (15)0.0196 (2)0.29688 (4)0.0480 (3)
N10.48668 (18)0.9022 (3)0.47706 (4)0.0426 (3)
C10.2915 (2)0.8116 (3)0.46809 (5)0.0382 (3)
H1A0.18910.87900.49090.046*
C20.22381 (19)0.6056 (3)0.42323 (5)0.0347 (3)
C30.0129 (2)0.4965 (3)0.41852 (5)0.0400 (3)
H3A0.08230.56090.44350.048*
C40.0601 (2)0.2930 (3)0.37729 (6)0.0417 (3)
H4A0.20040.21780.37470.050*
C50.0850 (2)0.2105 (3)0.34108 (5)0.0358 (3)
C60.2948 (2)0.3188 (3)0.34523 (5)0.0367 (3)
C70.36960 (19)0.5151 (3)0.38540 (5)0.0385 (3)
H7A0.51110.58620.38770.046*
C80.2520 (2)0.0174 (4)0.27125 (6)0.0469 (4)
H8A0.30790.17940.27010.056*
H8B0.22710.09000.23290.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0448 (6)0.0813 (9)0.0538 (6)0.0115 (5)0.0141 (5)0.0309 (6)
O20.0443 (5)0.0526 (7)0.0463 (6)0.0050 (4)0.0008 (4)0.0174 (5)
N10.0472 (6)0.0415 (7)0.0384 (6)0.0023 (5)0.0016 (5)0.0110 (5)
C10.0428 (7)0.0355 (7)0.0360 (6)0.0014 (5)0.0027 (5)0.0033 (5)
C20.0375 (6)0.0323 (7)0.0335 (6)0.0014 (5)0.0005 (5)0.0003 (5)
C30.0372 (6)0.0429 (8)0.0406 (7)0.0009 (5)0.0067 (5)0.0035 (6)
C40.0321 (6)0.0450 (8)0.0476 (7)0.0035 (5)0.0023 (5)0.0043 (6)
C50.0370 (6)0.0340 (7)0.0347 (6)0.0006 (5)0.0036 (5)0.0020 (5)
C60.0356 (6)0.0405 (7)0.0342 (6)0.0014 (5)0.0039 (5)0.0020 (5)
C70.0327 (6)0.0421 (8)0.0402 (7)0.0036 (5)0.0015 (5)0.0031 (5)
C80.0476 (8)0.0507 (9)0.0420 (7)0.0016 (6)0.0026 (6)0.0110 (6)
Geometric parameters (Å, º) top
O1—C61.3728 (15)C3—C41.3970 (19)
O1—C81.4228 (17)C3—H3A0.9300
O2—C51.3697 (15)C4—C51.3630 (18)
O2—C81.4284 (18)C4—H4A0.9300
N1—C11.2732 (17)C5—C61.3836 (18)
N1—N1i1.413 (2)C6—C71.3607 (18)
C1—C21.4566 (18)C7—H7A0.9300
C1—H1A0.9300C8—H8A0.9700
C2—C31.3907 (18)C8—H8B0.9700
C2—C71.4043 (18)
C6—O1—C8106.27 (10)C4—C5—O2128.05 (12)
C5—O2—C8105.97 (10)C4—C5—C6121.98 (12)
C1—N1—N1i111.66 (14)O2—C5—C6109.97 (11)
N1—C1—C2121.97 (12)C7—C6—O1128.17 (12)
N1—C1—H1A119.0C7—C6—C5122.35 (12)
C2—C1—H1A119.0O1—C6—C5109.48 (11)
C3—C2—C7120.11 (12)C6—C7—C2117.09 (11)
C3—C2—C1119.19 (12)C6—C7—H7A121.5
C7—C2—C1120.69 (12)C2—C7—H7A121.5
C2—C3—C4121.90 (12)O1—C8—O2108.17 (11)
C2—C3—H3A119.1O1—C8—H8A110.1
C4—C3—H3A119.1O2—C8—H8A110.1
C5—C4—C3116.56 (12)O1—C8—H8B110.1
C5—C4—H4A121.7O2—C8—H8B110.1
C3—C4—H4A121.7H8A—C8—H8B108.4
N1i—N1—C1—C2179.47 (14)C8—O1—C6—C52.58 (16)
N1—C1—C2—C3174.71 (13)C4—C5—C6—C70.3 (2)
N1—C1—C2—C74.6 (2)O2—C5—C6—C7179.55 (12)
C7—C2—C3—C41.0 (2)C4—C5—C6—O1179.77 (13)
C1—C2—C3—C4178.40 (13)O2—C5—C6—O10.38 (16)
C2—C3—C4—C51.2 (2)O1—C6—C7—C2179.93 (13)
C3—C4—C5—O2178.96 (13)C5—C6—C7—C20.0 (2)
C3—C4—C5—C60.9 (2)C3—C2—C7—C60.3 (2)
C8—O2—C5—C4177.86 (14)C1—C2—C7—C6179.01 (12)
C8—O2—C5—C61.98 (15)C6—O1—C8—O23.78 (16)
C8—O1—C6—C7177.34 (15)C5—O2—C8—O13.55 (16)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N2O4
Mr296.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)170
a, b, c (Å)6.1835 (2), 4.5970 (2), 23.8487 (10)
β (°) 96.080 (4)
V3)674.10 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.25 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.971, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
4759, 1746, 1402
Rint0.019
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.04
No. of reflections1746
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

ASP thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationDesai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90.  CrossRef CAS Google Scholar
First citationEl-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438.  Web of Science CrossRef CAS Google Scholar
First citationHodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, G., Xie, L., Wang, Y. & Wang, J.-D. (2007). Acta Cryst. E63, o2611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M., Büyükgüngör, O., Sunil, K. & Narayana, B. (2007). Acta Cryst. E63, o4145–o4146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985–3995.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhang, C.-N. & Zheng, Y.-F. (2008). Acta Cryst. E64, o36.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, P.-W., Wang, W. & Duan, X.-M. (2005a). Acta Cryst. E61, o3485–o3486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZheng, P.-W., Wang, W. & Duan, X.-M. (2005b). Acta Cryst. E61, o3020–o3021.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds