organic compounds
1,2-Bis[(1,3-benzodioxol-5-yl)methylidene]hydrazine
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, 574 199, India
*Correspondence e-mail: jjasinski@keene.edu
The complete molecule of the title compound, C16H12N2O4, is generated by the application of a centre of inversion. The (1,3-benzodioxol-5-yl)methylidene fused-ring system is approximately planar (r.m.s. deviation = 0.020 Å) and is essentially coplanar with the central hydrazine group [dihedral angle = 5.08 (9)°]. Weak π–π intermolecular interactions are observed [centroid–centroid distance = 3.8553 (8) Å], providing some packing stability.
Related literature
For the biological activity of et al. (2001); Desai et al. (2001); El-Masry et al. (2000); Hodnett & Dunn (1970); Pandey et al. (1999); Singh & Dash (1988); Taggi et al. (2002); Xu et al. (1997). For the crystallography and coordination chemistry of compounds containing the azine functionality or a diimine linkage, see: Xu et al. (1997); Kundu et al. (2005). For related structures, see: Liu et al. (2007); Odabaşoğlu et al. (2007); Zhang & Zheng (2008); Zheng et al. (2005a,b).
see: AydoganExperimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811050793/tk5026sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811050793/tk5026Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811050793/tk5026Isup3.cml
A mixture of piperanal (3.0 g, 0.02 mol) and hydrazine hydrate (0.6 ml, 0.012 mol) was refluxed in 15 ml of absolute alcohol containing 2 drops of sulfuric acid, for about 3 hours. On cooling, the solid separated was filtered and dried. Single crystals were grown from DMF by slow evaporation. Yield: 81%. (M.pt.: 476 K).
All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH) or 0.97 Å (CH2), and with Uiso(H) set to 1.19-1.20 (CH, CH2) × Ueq(parent atom).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H12N2O4 | F(000) = 308 |
Mr = 296.28 | Dx = 1.460 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1659 reflections |
a = 6.1835 (2) Å | θ = 3.4–30.1° |
b = 4.5970 (2) Å | µ = 0.11 mm−1 |
c = 23.8487 (10) Å | T = 170 K |
β = 96.080 (4)° | Plate, yellow |
V = 674.10 (5) Å3 | 0.28 × 0.25 × 0.08 mm |
Z = 2 |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 1746 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1402 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 16.1500 pixels mm-1 | θmax = 30.1°, θmin = 3.4° |
ω scans | h = −8→8 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | k = −5→6 |
Tmin = 0.971, Tmax = 0.992 | l = −32→23 |
4759 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0592P)2 + 0.1301P] where P = (Fo2 + 2Fc2)/3 |
1746 reflections | (Δ/σ)max < 0.001 |
100 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C16H12N2O4 | V = 674.10 (5) Å3 |
Mr = 296.28 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.1835 (2) Å | µ = 0.11 mm−1 |
b = 4.5970 (2) Å | T = 170 K |
c = 23.8487 (10) Å | 0.28 × 0.25 × 0.08 mm |
β = 96.080 (4)° |
Oxford Diffraction Xcalibur Eos Gemini diffractometer | 1746 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) | 1402 reflections with I > 2σ(I) |
Tmin = 0.971, Tmax = 0.992 | Rint = 0.019 |
4759 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.20 e Å−3 |
1746 reflections | Δρmin = −0.18 e Å−3 |
100 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.40433 (16) | 0.1982 (3) | 0.30379 (4) | 0.0593 (4) | |
O2 | 0.05345 (15) | 0.0196 (2) | 0.29688 (4) | 0.0480 (3) | |
N1 | 0.48668 (18) | 0.9022 (3) | 0.47706 (4) | 0.0426 (3) | |
C1 | 0.2915 (2) | 0.8116 (3) | 0.46809 (5) | 0.0382 (3) | |
H1A | 0.1891 | 0.8790 | 0.4909 | 0.046* | |
C2 | 0.22381 (19) | 0.6056 (3) | 0.42323 (5) | 0.0347 (3) | |
C3 | 0.0129 (2) | 0.4965 (3) | 0.41852 (5) | 0.0400 (3) | |
H3A | −0.0823 | 0.5609 | 0.4435 | 0.048* | |
C4 | −0.0601 (2) | 0.2930 (3) | 0.37729 (6) | 0.0417 (3) | |
H4A | −0.2004 | 0.2178 | 0.3747 | 0.050* | |
C5 | 0.0850 (2) | 0.2105 (3) | 0.34108 (5) | 0.0358 (3) | |
C6 | 0.2948 (2) | 0.3188 (3) | 0.34523 (5) | 0.0367 (3) | |
C7 | 0.36960 (19) | 0.5151 (3) | 0.38540 (5) | 0.0385 (3) | |
H7A | 0.5111 | 0.5862 | 0.3877 | 0.046* | |
C8 | 0.2520 (2) | 0.0174 (4) | 0.27125 (6) | 0.0469 (4) | |
H8A | 0.3079 | −0.1794 | 0.2701 | 0.056* | |
H8B | 0.2271 | 0.0900 | 0.2329 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0448 (6) | 0.0813 (9) | 0.0538 (6) | −0.0115 (5) | 0.0141 (5) | −0.0309 (6) |
O2 | 0.0443 (5) | 0.0526 (7) | 0.0463 (6) | −0.0050 (4) | 0.0008 (4) | −0.0174 (5) |
N1 | 0.0472 (6) | 0.0415 (7) | 0.0384 (6) | −0.0023 (5) | 0.0016 (5) | −0.0110 (5) |
C1 | 0.0428 (7) | 0.0355 (7) | 0.0360 (6) | 0.0014 (5) | 0.0027 (5) | −0.0033 (5) |
C2 | 0.0375 (6) | 0.0323 (7) | 0.0335 (6) | 0.0014 (5) | −0.0005 (5) | −0.0003 (5) |
C3 | 0.0372 (6) | 0.0429 (8) | 0.0406 (7) | 0.0009 (5) | 0.0067 (5) | −0.0035 (6) |
C4 | 0.0321 (6) | 0.0450 (8) | 0.0476 (7) | −0.0035 (5) | 0.0023 (5) | −0.0043 (6) |
C5 | 0.0370 (6) | 0.0340 (7) | 0.0347 (6) | 0.0006 (5) | −0.0036 (5) | −0.0020 (5) |
C6 | 0.0356 (6) | 0.0405 (7) | 0.0342 (6) | 0.0014 (5) | 0.0039 (5) | −0.0020 (5) |
C7 | 0.0327 (6) | 0.0421 (8) | 0.0402 (7) | −0.0036 (5) | 0.0015 (5) | −0.0031 (5) |
C8 | 0.0476 (8) | 0.0507 (9) | 0.0420 (7) | 0.0016 (6) | 0.0026 (6) | −0.0110 (6) |
O1—C6 | 1.3728 (15) | C3—C4 | 1.3970 (19) |
O1—C8 | 1.4228 (17) | C3—H3A | 0.9300 |
O2—C5 | 1.3697 (15) | C4—C5 | 1.3630 (18) |
O2—C8 | 1.4284 (18) | C4—H4A | 0.9300 |
N1—C1 | 1.2732 (17) | C5—C6 | 1.3836 (18) |
N1—N1i | 1.413 (2) | C6—C7 | 1.3607 (18) |
C1—C2 | 1.4566 (18) | C7—H7A | 0.9300 |
C1—H1A | 0.9300 | C8—H8A | 0.9700 |
C2—C3 | 1.3907 (18) | C8—H8B | 0.9700 |
C2—C7 | 1.4043 (18) | ||
C6—O1—C8 | 106.27 (10) | C4—C5—O2 | 128.05 (12) |
C5—O2—C8 | 105.97 (10) | C4—C5—C6 | 121.98 (12) |
C1—N1—N1i | 111.66 (14) | O2—C5—C6 | 109.97 (11) |
N1—C1—C2 | 121.97 (12) | C7—C6—O1 | 128.17 (12) |
N1—C1—H1A | 119.0 | C7—C6—C5 | 122.35 (12) |
C2—C1—H1A | 119.0 | O1—C6—C5 | 109.48 (11) |
C3—C2—C7 | 120.11 (12) | C6—C7—C2 | 117.09 (11) |
C3—C2—C1 | 119.19 (12) | C6—C7—H7A | 121.5 |
C7—C2—C1 | 120.69 (12) | C2—C7—H7A | 121.5 |
C2—C3—C4 | 121.90 (12) | O1—C8—O2 | 108.17 (11) |
C2—C3—H3A | 119.1 | O1—C8—H8A | 110.1 |
C4—C3—H3A | 119.1 | O2—C8—H8A | 110.1 |
C5—C4—C3 | 116.56 (12) | O1—C8—H8B | 110.1 |
C5—C4—H4A | 121.7 | O2—C8—H8B | 110.1 |
C3—C4—H4A | 121.7 | H8A—C8—H8B | 108.4 |
N1i—N1—C1—C2 | −179.47 (14) | C8—O1—C6—C5 | 2.58 (16) |
N1—C1—C2—C3 | 174.71 (13) | C4—C5—C6—C7 | −0.3 (2) |
N1—C1—C2—C7 | −4.6 (2) | O2—C5—C6—C7 | 179.55 (12) |
C7—C2—C3—C4 | 1.0 (2) | C4—C5—C6—O1 | 179.77 (13) |
C1—C2—C3—C4 | −178.40 (13) | O2—C5—C6—O1 | −0.38 (16) |
C2—C3—C4—C5 | −1.2 (2) | O1—C6—C7—C2 | 179.93 (13) |
C3—C4—C5—O2 | −178.96 (13) | C5—C6—C7—C2 | 0.0 (2) |
C3—C4—C5—C6 | 0.9 (2) | C3—C2—C7—C6 | −0.3 (2) |
C8—O2—C5—C4 | 177.86 (14) | C1—C2—C7—C6 | 179.01 (12) |
C8—O2—C5—C6 | −1.98 (15) | C6—O1—C8—O2 | −3.78 (16) |
C8—O1—C6—C7 | −177.34 (15) | C5—O2—C8—O1 | 3.55 (16) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H12N2O4 |
Mr | 296.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 170 |
a, b, c (Å) | 6.1835 (2), 4.5970 (2), 23.8487 (10) |
β (°) | 96.080 (4) |
V (Å3) | 674.10 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.28 × 0.25 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.971, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4759, 1746, 1402 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.706 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.118, 1.04 |
No. of reflections | 1746 |
No. of parameters | 100 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.18 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
ASP thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.
References
Aydogan, F., Ocal, N., Turgut, Z. & Yolacan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480. CAS Google Scholar
Desai, S. B., Desai, P. B. & Desai, K. R. (2001). Heterocycl. Commun. 7, 83–90. CrossRef CAS Google Scholar
El-Masry, A. H., Fahmy, H. H. & Abdelwahed, S. H. A. (2000). Molecules, 5, 1429–1438. Web of Science CrossRef CAS Google Scholar
Hodnett, E. M. & Dunn, W. J. (1970). J. Med. Chem. 13, 768–770. CrossRef CAS PubMed Web of Science Google Scholar
Kundu, N., Chatterjee, P. B., Chaudhury, M. & Tiekink, E. R. T. (2005). Acta Cryst. E61, m1583–m1585. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, G., Xie, L., Wang, Y. & Wang, J.-D. (2007). Acta Cryst. E63, o2611. Web of Science CSD CrossRef IUCr Journals Google Scholar
Odabaşoğlu, M., Büyükgüngör, O., Sunil, K. & Narayana, B. (2007). Acta Cryst. E63, o4145–o4146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Pandey, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37. Google Scholar
Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635. Web of Science CrossRef PubMed CAS Google Scholar
Xu, Z., Thompson, L. K. & Miller, D. O. (1997). Inorg. Chem. 36, 3985–3995. CSD CrossRef CAS Web of Science Google Scholar
Zhang, C.-N. & Zheng, Y.-F. (2008). Acta Cryst. E64, o36. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, P.-W., Wang, W. & Duan, X.-M. (2005a). Acta Cryst. E61, o3485–o3486. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zheng, P.-W., Wang, W. & Duan, X.-M. (2005b). Acta Cryst. E61, o3020–o3021. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases are used as substrates in the preparation of a number of industrial and biologically active compounds via ring closure, cycloaddition and replacement reactions. Moreover, Schiff bases are also known to have biological activities such as antimicrobial (El-Masry et al., 2000 & Pandey et al., 1999), antifungal (Singh & Dash, 1988), antitumor (Hodnett & Dunn, 1970; Desai et al., 2001), and as herbicides. Schiff bases have also been employed as ligands for complexation of metal ions (Aydogan et al., 2001). On the industrial scale, they have a wide range of applications such as dyes and pigments (Taggi et al., 2002). Compounds containing an azine functionality or a diimine linkage have been investigated in terms of their crystallography and coordination chemistry (Xu et al., 1997; Kundu et al., 2005).
The crystal structures of some Schiff base hydrazines, viz., 4-fluorobenzaldehyde [(E)-4-fluorobenzylidene]hydrazone (Odabaşoğlu et al., 2007), N,N'-bis(3 nitrobenzylidene)hydrazine (Zheng et al., 2005a), N,N'-bis(4-chlorobenzylidene)hydrazine (Zheng et al., 2005b), 1,2-bis(2-chlorobenzylidene)hydrazine (Zhang & Zheng, 2008), N,N'-bis(4-hydroxybenzylidene)hydrazine (Liu et al., 2007) have been reported. In view of the importance of Schiff base hydrazines, the crystal structure of title compound (I) is reported
In the crystal structure of the title compound, C16H12N2O4, the two 1,3-benzodioxol-5-ylmethylidene rings are planar to the hydrazine group and to each other (Fig. 1). Weak π–π intermolecular interactions are observed (centroid–centroid distance = 3.8553 (8) Å) providing some packing stability (Fig. 2).