organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Bromo­phen­yl)-3,5-di­nitro­benzamide

aChemistry Department, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan, and cDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com

(Received 28 November 2011; accepted 29 November 2011; online 3 December 2011)

The title mol­ecule, C13H8BrN3O5, is slightly twisted, with the dihedral angle between the two benzene rings being 5.9 (1)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into one-dimensional chains running along [101]. Further stabilization of the crystal structure is provided by ππ inter­actions [shortest centroid–centroid distance = 3.6467 (17) Å].

Related literature

For background to the biological activity of N-substituted benzamides, their use in synthesis and for related structures, see: Saeed et al. (2011a[Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.],b[Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8BrN3O5

  • Mr = 366.13

  • Monoclinic, P 21 /n

  • a = 7.1273 (2) Å

  • b = 26.6676 (7) Å

  • c = 7.5428 (2) Å

  • β = 101.652 (2)°

  • V = 1404.10 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 296 K

  • 0.56 × 0.34 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.288, Tmax = 0.471

  • 18250 measured reflections

  • 2476 independent reflections

  • 2007 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.108

  • S = 1.10

  • 2476 reflections

  • 204 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.93 (3) 1.93 (3) 2.818 (3) 159 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a,b), we recently determined the crystal structure of 3,5-dinitro-N-(1,3-thiazol-2-yl)-benzamide monohydrate (Saeed et al., 2011a). In this paper we present the crystal structure of the title compound (I), Fig. 1.

Intermolecular N1—H1N···O1 hydrogen bonds link the molecules into 1-D chains running along [101], Table 1 and Fig. 2. The dihedral angle between the two phenyl ring planes is 5.9 (1)°. Both nitro groups are slightly twisted, 3.3 (2)° and 4.6 (2)°, respectively, from the benzene ring plane, C2—C7. There are also weak ππ interactions between neighbouring molecules, Table 2.

Related literature top

For background to the biological activity of N-substituted benzamides, their use in synthesis and for related structures, see: Saeed et al. (2011a,b).

Experimental top

To a 250 ml round flask fitted with a condenser was added ethyl 4-bromoaniline (0.1 mol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. 3,5-Dinitrobenzoyl chloride (0.1 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a colourless powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement top

All of the C-bound H atoms are observable in a difference Fourier map but were placed at geometrical positions with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(Carrier). The N-bound H-atoms were located from difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule showing at the 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The packing diagram projected down the a axis of the compound showing 50% probability displacement ellipsoids. The cyan dotted lines indicate N—H···O hydrogen bonding interactions.
N-(4-Bromophenyl)-3,5-dinitrobenzamide top
Crystal data top
C13H8BrN3O5F(000) = 728
Mr = 366.13Dx = 1.732 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18250 reflections
a = 7.1273 (2) Åθ = 2.9–25.0°
b = 26.6676 (7) ŵ = 2.96 mm1
c = 7.5428 (2) ÅT = 296 K
β = 101.652 (2)°Block, colourless
V = 1404.10 (7) Å30.56 × 0.34 × 0.30 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2476 independent reflections
Radiation source: fine-focus sealed tube2007 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω and ϕ scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.288, Tmax = 0.471k = 3131
18250 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.9282P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2476 reflectionsΔρmax = 0.25 e Å3
204 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (12)
Crystal data top
C13H8BrN3O5V = 1404.10 (7) Å3
Mr = 366.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1273 (2) ŵ = 2.96 mm1
b = 26.6676 (7) ÅT = 296 K
c = 7.5428 (2) Å0.56 × 0.34 × 0.30 mm
β = 101.652 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2476 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2007 reflections with I > 2σ(I)
Tmin = 0.288, Tmax = 0.471Rint = 0.060
18250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.25 e Å3
2476 reflectionsΔρmin = 0.46 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.80856 (6)0.046874 (16)0.25109 (7)0.0884 (2)
O10.6333 (3)0.28369 (8)0.5032 (3)0.0569 (6)
O20.9867 (5)0.31665 (12)1.3107 (3)0.0879 (9)
O30.9761 (6)0.39563 (13)1.3387 (4)0.1162 (14)
O40.8205 (5)0.50043 (9)0.8040 (5)0.0986 (10)
O50.7279 (6)0.46522 (10)0.5447 (5)0.0967 (11)
N10.8777 (3)0.24105 (8)0.6787 (3)0.0395 (6)
N20.9563 (5)0.35817 (13)1.2475 (4)0.0651 (9)
N30.7853 (5)0.46389 (11)0.7070 (6)0.0655 (9)
C10.7638 (4)0.28096 (10)0.6368 (4)0.0393 (6)
C20.8027 (3)0.32503 (10)0.7622 (4)0.0341 (6)
C30.8632 (4)0.32045 (10)0.9473 (4)0.0362 (6)
H30.88340.28901.00130.043*
C40.8932 (4)0.36369 (11)1.0508 (4)0.0430 (7)
C50.8704 (4)0.41094 (11)0.9800 (4)0.0487 (8)
H50.89340.43941.05240.058*
C60.8110 (4)0.41394 (10)0.7935 (5)0.0456 (7)
C70.7736 (4)0.37237 (10)0.6849 (4)0.0405 (6)
H70.72930.37590.56080.049*
C80.8647 (4)0.19583 (10)0.5760 (4)0.0392 (6)
C90.8261 (4)0.19669 (12)0.3885 (4)0.0488 (7)
H90.81070.22710.32680.059*
C100.8108 (5)0.15204 (15)0.2943 (5)0.0580 (9)
H100.78280.15220.16850.070*
C110.8370 (4)0.10718 (13)0.3874 (5)0.0576 (9)
C120.8826 (5)0.10586 (12)0.5729 (5)0.0561 (8)
H120.90450.07540.63380.067*
C130.8955 (4)0.15065 (11)0.6683 (4)0.0481 (8)
H130.92470.15040.79420.058*
H1N0.958 (4)0.2412 (10)0.792 (4)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0662 (3)0.0737 (3)0.1252 (5)0.01117 (19)0.0187 (3)0.0669 (3)
O10.0609 (13)0.0435 (11)0.0499 (13)0.0067 (10)0.0278 (11)0.0061 (10)
O20.134 (3)0.084 (2)0.0409 (14)0.0258 (18)0.0057 (15)0.0037 (14)
O30.205 (4)0.095 (2)0.0539 (16)0.049 (2)0.038 (2)0.0396 (17)
O40.105 (2)0.0269 (13)0.161 (3)0.0038 (13)0.020 (2)0.0076 (16)
O50.133 (3)0.0518 (16)0.104 (3)0.0173 (17)0.022 (2)0.0374 (16)
N10.0429 (13)0.0309 (12)0.0361 (13)0.0010 (10)0.0123 (11)0.0037 (10)
N20.089 (2)0.070 (2)0.0407 (16)0.0319 (17)0.0224 (15)0.0123 (15)
N30.0619 (19)0.0326 (15)0.104 (3)0.0066 (13)0.0229 (18)0.0138 (16)
C10.0383 (15)0.0335 (14)0.0394 (15)0.0015 (11)0.0079 (12)0.0023 (12)
C20.0309 (14)0.0294 (13)0.0381 (15)0.0005 (10)0.0024 (11)0.0013 (11)
C30.0344 (14)0.0323 (13)0.0394 (15)0.0027 (11)0.0016 (11)0.0020 (11)
C40.0448 (16)0.0465 (16)0.0389 (16)0.0090 (13)0.0116 (13)0.0087 (13)
C50.0530 (18)0.0356 (15)0.060 (2)0.0102 (13)0.0159 (15)0.0130 (14)
C60.0410 (16)0.0261 (14)0.071 (2)0.0006 (11)0.0144 (15)0.0024 (13)
C70.0370 (15)0.0359 (15)0.0447 (16)0.0038 (12)0.0012 (12)0.0058 (13)
C80.0331 (14)0.0350 (14)0.0440 (16)0.0016 (11)0.0051 (11)0.0108 (12)
C90.0471 (17)0.0522 (18)0.0446 (18)0.0024 (14)0.0035 (13)0.0088 (14)
C100.0495 (19)0.075 (2)0.0485 (19)0.0023 (16)0.0085 (15)0.0248 (18)
C110.0373 (17)0.057 (2)0.077 (2)0.0065 (14)0.0087 (16)0.0346 (18)
C120.0495 (19)0.0402 (16)0.075 (2)0.0007 (14)0.0032 (16)0.0147 (16)
C130.0492 (17)0.0358 (15)0.0517 (18)0.0011 (13)0.0077 (14)0.0076 (13)
Geometric parameters (Å, º) top
Br1—C111.898 (3)C4—C51.366 (4)
O1—C11.228 (3)C5—C61.387 (5)
O2—N21.208 (4)C5—H50.9300
O3—N21.205 (4)C6—C71.372 (4)
O4—N31.214 (4)C7—H70.9300
O5—N31.211 (5)C8—C91.385 (4)
N1—C11.337 (4)C8—C131.387 (4)
N1—C81.426 (3)C9—C101.380 (5)
N1—H1N0.93 (3)C9—H90.9300
N2—C41.468 (4)C10—C111.381 (5)
N3—C61.478 (4)C10—H100.9300
C1—C21.499 (4)C11—C121.371 (5)
C2—C31.381 (4)C12—C131.388 (4)
C2—C71.388 (4)C12—H120.9300
C3—C41.385 (4)C13—H130.9300
C3—H30.9300
C1—N1—C8125.1 (2)C7—C6—C5122.8 (3)
C1—N1—H1N116.5 (17)C7—C6—N3118.2 (3)
C8—N1—H1N117.7 (17)C5—C6—N3119.0 (3)
O3—N2—O2123.0 (3)C6—C7—C2119.3 (3)
O3—N2—C4118.1 (3)C6—C7—H7120.3
O2—N2—C4119.0 (3)C2—C7—H7120.3
O5—N3—O4124.9 (3)C9—C8—C13120.4 (3)
O5—N3—C6117.3 (3)C9—C8—N1121.2 (3)
O4—N3—C6117.7 (4)C13—C8—N1118.4 (3)
O1—C1—N1124.4 (3)C10—C9—C8119.4 (3)
O1—C1—C2118.9 (2)C10—C9—H9120.3
N1—C1—C2116.7 (2)C8—C9—H9120.3
C3—C2—C7119.6 (2)C9—C10—C11119.8 (3)
C3—C2—C1123.3 (2)C9—C10—H10120.1
C7—C2—C1117.1 (2)C11—C10—H10120.1
C2—C3—C4118.5 (2)C12—C11—C10121.4 (3)
C2—C3—H3120.7C12—C11—Br1120.6 (3)
C4—C3—H3120.7C10—C11—Br1118.0 (3)
C5—C4—C3123.7 (3)C11—C12—C13118.9 (3)
C5—C4—N2118.4 (3)C11—C12—H12120.5
C3—C4—N2117.8 (3)C13—C12—H12120.5
C4—C5—C6116.0 (3)C8—C13—C12120.0 (3)
C4—C5—H5122.0C8—C13—H13120.0
C6—C5—H5122.0C12—C13—H13120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.93 (3)1.93 (3)2.818 (3)159 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H8BrN3O5
Mr366.13
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.1273 (2), 26.6676 (7), 7.5428 (2)
β (°) 101.652 (2)
V3)1404.10 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.56 × 0.34 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.288, 0.471
No. of measured, independent and
observed [I > 2σ(I)] reflections
18250, 2476, 2007
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.108, 1.10
No. of reflections2476
No. of parameters204
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.46

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.93 (3)1.93 (3)2.818 (3)159 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Table 2. ππ interactions (Å, °)
Cg1 and Cg2 are centroids of the rings C2-C7 and C8-C13 respectively, CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgJ_Perp is the perpendicular distance of CgJ from ring I.
top
IJCgI···CgJDihedral angleCgI_PerpCgJ_Perp
12i3.7391 (17)6.24 (14)3.5945 (11)-3.6827 (13)
12ii3.6467 (17)6.24 (14)-3.5254 (12)3.4038 (13)
symmetry operators: i: -1/2+x, 1/2-y, 1/2+z ii: 1/2+x, 1/2-y, 1/2+z
 

Acknowledgements

Dr Wesley T.-K. Chan, Professor Z.-Y. Zhou and the Hong Kong Polytechnic University are sincerely thanked for helping to collect the X-ray data.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds