organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(4-chloro-3-iodo­phen­yl)-4-(methyl­sulfon­yl)benzamide

aDepartment of Pharmaceutical and Biological Engineering, College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: cusack@scu.edu.cn

(Received 10 December 2011; accepted 13 December 2011; online 21 December 2011)

In the title compound, C14H10Cl2INO3S, the dihedral angle between the benzene rings is 52.13 (10)°. In the crystal, the components are linked by pairs of N—H⋯O(sulfon­yl) hydrogen bonds into centrosymmetric dimers.

Related literature

For background to benzamides, see: Castanedo et al. (2010[Castanedo, G. M., et al. (2010). Bioorg. Med. Chem. Lett. 20, 6748-6753.]); Tremblay et al. (2010[Tremblay, M. R., McGovern, K., Read, M. A. & Castro, A. C. (2010). Curr. Opin. Chem. Biol. 14, 428-435.]); Mahindroo et al. (2010[Mahindroo, N., Connelly, M. C., Punchihewa, C., Yang, L., Yan, B. & Fujii, N. (2010). Bioorg. Med. Chem. 18, 4801-4811.]). For the preparation of the title compound, see: Robarge et al. (2009[Robarge, K. D., et al. (2009). Bioorg. Med. Chem. Lett. 19, 5576-5581.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10Cl2INO3S

  • Mr = 470.09

  • Triclinic, [P \overline 1]

  • a = 8.8694 (6) Å

  • b = 10.3837 (8) Å

  • c = 10.4288 (5) Å

  • α = 103.862 (5)°

  • β = 96.452 (5)°

  • γ = 114.949 (7)°

  • V = 820.25 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.41 mm−1

  • T = 290 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.887, Tmax = 1.000

  • 6770 measured reflections

  • 3323 independent reflections

  • 2957 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.07

  • 3323 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.15 2.991 (3) 167
Symmetry code: (i) -x, -y+1, -z+3.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The benzamide moiety is the constituent of many biologically significant compounds including anticancer compounds (Castanedo et al., 2010; Tremblay et al., 2010; Mahindroo et al., 2010). The title compound is one of the key intermediates in our synthetic investigations of anticancer drugs. In this paper, we synthesized the title compound and report its crystal structure, Fig. 1. The dihedral angle between the two benzene rings is 52.13 (10)°. In the crystal, the molecules are connected via intermolecular N—H···O hydrogen bonds to form a centrosymmetric dimer, in which the amide H atom acts as a donor and the sulfonyl-O atom act as an acceptor, Table 1.

Related literature top

For background to benzamides, see: Castanedo et al. (2010); Tremblay et al. (2010); Mahindroo et al. (2010). For the preparation of the title compound, see: Robarge et al. (2009).

Experimental top

The title compound was prepared by a method similar to that of Robarge et al. (2009). Crystals were obtained by slow evaporation from its methanol-acetic acid (5:2) solution.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93–0.96 Å; N—H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
2-Chloro-N-(4-chloro-3-iodophenyl)-4-(methylsulfonyl)benzamide top
Crystal data top
C14H10Cl2INO3SZ = 2
Mr = 470.09F(000) = 456
Triclinic, P1Dx = 1.903 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.8694 (6) ÅCell parameters from 2872 reflections
b = 10.3837 (8) Åθ = 2.9–26.3°
c = 10.4288 (5) ŵ = 2.41 mm1
α = 103.862 (5)°T = 290 K
β = 96.452 (5)°Block, colourless
γ = 114.949 (7)°0.30 × 0.30 × 0.25 mm
V = 820.25 (9) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3323 independent reflections
Radiation source: Enhance (Mo) X-ray Source2957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 2.9°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1212
Tmin = 0.887, Tmax = 1.000l = 1213
6770 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.4057P]
where P = (Fo2 + 2Fc2)/3
3323 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C14H10Cl2INO3Sγ = 114.949 (7)°
Mr = 470.09V = 820.25 (9) Å3
Triclinic, P1Z = 2
a = 8.8694 (6) ÅMo Kα radiation
b = 10.3837 (8) ŵ = 2.41 mm1
c = 10.4288 (5) ÅT = 290 K
α = 103.862 (5)°0.30 × 0.30 × 0.25 mm
β = 96.452 (5)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3323 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2957 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 1.000Rint = 0.020
6770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.07Δρmax = 0.43 e Å3
3323 reflectionsΔρmin = 0.55 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.61447 (3)0.68561 (3)0.77089 (2)0.04648 (9)
Cl10.29725 (14)0.32782 (12)0.59427 (9)0.0627 (3)
Cl20.29306 (15)0.99624 (11)1.34350 (10)0.0603 (3)
S20.11153 (10)0.80692 (9)1.76536 (8)0.03759 (19)
O10.4697 (3)0.8156 (3)1.2278 (2)0.0620 (8)
O20.0367 (3)0.6656 (3)1.7893 (2)0.0536 (7)
O30.0121 (4)0.8840 (4)1.7587 (3)0.0676 (8)
N10.2439 (3)0.5816 (3)1.1495 (2)0.0344 (6)
H10.15760.52141.17210.041*
C10.4083 (4)0.5502 (4)0.8367 (3)0.0328 (7)
C20.2898 (4)0.4068 (4)0.7585 (3)0.0390 (8)
C30.1603 (4)0.3219 (4)0.8106 (3)0.0478 (9)
H30.08210.22400.75880.057*
C40.1467 (4)0.3817 (4)0.9391 (3)0.0412 (8)
H40.05780.32460.97290.049*
C50.2643 (4)0.5261 (3)1.0182 (3)0.0303 (6)
C60.3978 (4)0.6101 (3)0.9675 (3)0.0326 (7)
H60.47980.70611.02100.039*
C70.3431 (4)0.7173 (4)1.2433 (3)0.0370 (7)
C80.2843 (4)0.7407 (3)1.3728 (3)0.0315 (7)
C90.2612 (4)0.8646 (3)1.4266 (3)0.0346 (7)
C100.2081 (4)0.8860 (3)1.5459 (3)0.0346 (7)
H100.19170.96911.58060.042*
C110.1800 (3)0.7808 (3)1.6127 (3)0.0307 (6)
C120.2046 (4)0.6571 (3)1.5633 (3)0.0332 (7)
H120.18650.58801.60990.040*
C130.2566 (4)0.6382 (4)1.4433 (3)0.0336 (7)
H130.27340.55531.40900.040*
C140.3027 (5)0.9225 (5)1.8925 (3)0.0601 (11)
H14A0.27620.94741.97890.090*
H14B0.36671.01261.87170.090*
H14C0.36970.87051.89630.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05672 (15)0.05233 (16)0.04928 (15)0.02995 (12)0.03477 (12)0.02942 (12)
Cl10.0823 (7)0.0685 (7)0.0327 (4)0.0349 (6)0.0224 (5)0.0051 (4)
Cl20.0951 (7)0.0446 (5)0.0564 (5)0.0341 (5)0.0333 (5)0.0322 (4)
S20.0338 (4)0.0384 (4)0.0326 (4)0.0090 (3)0.0162 (3)0.0088 (3)
O10.0644 (16)0.0378 (14)0.0517 (15)0.0044 (13)0.0346 (13)0.0034 (12)
O20.0539 (14)0.0436 (15)0.0454 (13)0.0031 (12)0.0266 (12)0.0140 (11)
O30.0703 (18)0.094 (2)0.0684 (18)0.0555 (18)0.0411 (15)0.0315 (16)
N10.0369 (13)0.0297 (14)0.0319 (13)0.0082 (11)0.0193 (11)0.0108 (11)
C10.0395 (16)0.0390 (18)0.0308 (15)0.0225 (14)0.0159 (13)0.0181 (14)
C20.0490 (18)0.048 (2)0.0240 (15)0.0270 (17)0.0120 (14)0.0086 (14)
C30.0491 (19)0.040 (2)0.0351 (18)0.0103 (17)0.0068 (15)0.0020 (15)
C40.0386 (16)0.0398 (19)0.0350 (17)0.0075 (15)0.0120 (14)0.0134 (14)
C50.0358 (15)0.0330 (16)0.0258 (14)0.0157 (13)0.0129 (12)0.0134 (12)
C60.0356 (15)0.0292 (16)0.0325 (15)0.0128 (13)0.0116 (13)0.0117 (13)
C70.0403 (17)0.0300 (17)0.0345 (16)0.0089 (14)0.0156 (14)0.0107 (14)
C80.0283 (14)0.0296 (16)0.0300 (15)0.0065 (13)0.0098 (12)0.0104 (13)
C90.0421 (16)0.0282 (16)0.0324 (15)0.0126 (14)0.0123 (14)0.0135 (13)
C100.0367 (16)0.0297 (16)0.0345 (16)0.0132 (14)0.0105 (13)0.0083 (13)
C110.0267 (13)0.0341 (17)0.0260 (14)0.0092 (13)0.0078 (12)0.0092 (12)
C120.0357 (15)0.0314 (17)0.0337 (15)0.0135 (13)0.0122 (13)0.0147 (13)
C130.0390 (16)0.0320 (17)0.0332 (16)0.0178 (14)0.0142 (13)0.0112 (13)
C140.056 (2)0.051 (2)0.0362 (19)0.0018 (19)0.0054 (17)0.0050 (17)
Geometric parameters (Å, º) top
I1—C12.090 (3)C4—C51.382 (4)
Cl1—C21.735 (3)C5—C61.391 (4)
Cl2—C91.731 (3)C6—H60.9300
S2—O21.431 (3)C7—C81.504 (4)
S2—O31.426 (3)C8—C91.384 (4)
S2—C111.769 (3)C8—C131.388 (4)
S2—C141.757 (4)C9—C101.381 (4)
O1—C71.218 (4)C10—H100.9300
N1—H10.8600C10—C111.383 (4)
N1—C51.416 (4)C11—C121.380 (4)
N1—C71.348 (4)C12—H120.9300
C1—C21.375 (5)C12—C131.381 (4)
C1—C61.388 (4)C13—H130.9300
C2—C31.381 (5)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C3—C41.378 (4)C14—H14C0.9600
C4—H40.9300
O2—S2—C11107.98 (15)O1—C7—N1124.5 (3)
O2—S2—C14106.74 (19)O1—C7—C8121.2 (3)
O3—S2—O2118.76 (18)N1—C7—C8114.3 (2)
O3—S2—C11108.53 (16)C9—C8—C7121.8 (3)
O3—S2—C14109.7 (2)C9—C8—C13118.5 (3)
C14—S2—C11104.21 (16)C13—C8—C7119.7 (3)
C5—N1—H1116.0C8—C9—Cl2120.7 (2)
C7—N1—H1116.0C10—C9—Cl2117.7 (3)
C7—N1—C5128.0 (2)C10—C9—C8121.6 (3)
C2—C1—I1123.1 (2)C9—C10—H10120.8
C2—C1—C6120.3 (3)C9—C10—C11118.4 (3)
C6—C1—I1116.6 (2)C11—C10—H10120.8
C1—C2—Cl1121.8 (2)C10—C11—S2118.7 (2)
C1—C2—C3119.8 (3)C12—C11—S2119.6 (2)
C3—C2—Cl1118.3 (3)C12—C11—C10121.7 (3)
C2—C3—H3119.9C11—C12—H12120.7
C4—C3—C2120.3 (3)C11—C12—C13118.6 (3)
C4—C3—H3119.9C13—C12—H12120.7
C3—C4—H4119.8C8—C13—H13119.4
C3—C4—C5120.4 (3)C12—C13—C8121.3 (3)
C5—C4—H4119.8C12—C13—H13119.4
C4—C5—N1117.9 (3)S2—C14—H14A109.5
C4—C5—C6119.4 (3)S2—C14—H14B109.5
C6—C5—N1122.7 (3)S2—C14—H14C109.5
C1—C6—C5119.8 (3)H14A—C14—H14B109.5
C1—C6—H6120.1H14A—C14—H14C109.5
C5—C6—H6120.1H14B—C14—H14C109.5
I1—C1—C2—Cl12.5 (4)C4—C5—C6—C12.2 (5)
I1—C1—C2—C3177.7 (3)C5—N1—C7—O10.1 (6)
I1—C1—C6—C5179.8 (2)C5—N1—C7—C8179.6 (3)
Cl1—C2—C3—C4178.1 (3)C6—C1—C2—Cl1179.6 (2)
Cl2—C9—C10—C11179.2 (2)C6—C1—C2—C30.2 (5)
S2—C11—C12—C13179.4 (2)C7—N1—C5—C4179.5 (3)
O1—C7—C8—C951.1 (5)C7—N1—C5—C60.2 (5)
O1—C7—C8—C13127.0 (4)C7—C8—C9—Cl22.0 (4)
O2—S2—C11—C10160.6 (2)C7—C8—C9—C10179.6 (3)
O2—S2—C11—C1219.6 (3)C7—C8—C13—C12179.2 (3)
O3—S2—C11—C1030.7 (3)C8—C9—C10—C110.8 (5)
O3—S2—C11—C12149.6 (3)C9—C8—C13—C121.0 (4)
N1—C5—C6—C1178.5 (3)C9—C10—C11—S2179.9 (2)
N1—C7—C8—C9128.4 (3)C9—C10—C11—C120.4 (4)
N1—C7—C8—C1353.5 (4)C10—C11—C12—C130.8 (4)
C1—C2—C3—C41.8 (6)C11—C12—C13—C80.1 (4)
C2—C1—C6—C51.7 (5)C13—C8—C9—Cl2179.8 (2)
C2—C3—C4—C51.3 (6)C13—C8—C9—C101.5 (4)
C3—C4—C5—N1180.0 (3)C14—S2—C11—C1086.2 (3)
C3—C4—C5—C60.7 (5)C14—S2—C11—C1293.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.991 (3)167
Symmetry code: (i) x, y+1, z+3.

Experimental details

Crystal data
Chemical formulaC14H10Cl2INO3S
Mr470.09
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)8.8694 (6), 10.3837 (8), 10.4288 (5)
α, β, γ (°)103.862 (5), 96.452 (5), 114.949 (7)
V3)820.25 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.41
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.887, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6770, 3323, 2957
Rint0.020
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.07
No. of reflections3323
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.55

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.152.991 (3)167
Symmetry code: (i) x, y+1, z+3.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationCastanedo, G. M., et al. (2010). Bioorg. Med. Chem. Lett. 20, 6748–6753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahindroo, N., Connelly, M. C., Punchihewa, C., Yang, L., Yan, B. & Fujii, N. (2010). Bioorg. Med. Chem. 18, 4801–4811.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRobarge, K. D., et al. (2009). Bioorg. Med. Chem. Lett. 19, 5576–5581.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTremblay, M. R., McGovern, K., Read, M. A. & Castro, A. C. (2010). Curr. Opin. Chem. Biol. 14, 428–435.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds