organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Form II of adipic acid–nicotinohydrazide (1/2)

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa, bFaculty of Science, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates, and cInstitute of Mineralogy and Petrography, University of Innsbruck, Innsbruck 6020, Austria
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 12 December 2011; accepted 15 December 2011; online 21 December 2011)

The crystal structure of the title co-crystal, 2C6H7N3O·C6H10O4, is a second polymorph, designated form II, of the co-crystal formed between the two mol­ecules [Lemmerer et al. (2011[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2011). CrystEngComm, 13, 55-59.]). CrystEngComm, 13, 55–59]. The asymmetric unit comprises one mol­ecule of nicotinic acid hydrazide, and one half-mol­ecule of adipic acid (the entire mol­ecule is completed by the application of a centre of inversion). In the crystal, mol­ecules assemble into a three-dimensional network of hydrogen bonds, formed by three N—H⋯O hydrogen bonds and one O—H⋯N hydrogen bond. The O—H⋯N hydrogen bond formed between the carboxyl group and the pyridine ring is supported by a C—H⋯O hydrogen bond.

Related literature

For the first polymorph, see: Lemmerer et al. (2011[Lemmerer, A., Bernstein, J. & Kahlenberg, V. (2011). CrystEngComm, 13, 55-59.]). For experimental techniques, see: Friščić et al. (2009[Friščić, T., Childs, S. L., Rizvi, S. A. A. & Jones, W. (2009). CrystEngComm, 11, 418-426.]); Skovsgaard & Bond (2009[Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444-453.]); Karki et al. (2009[Karki, S., Friščić, T. & Jones, W. (2009). CrystEngComm, 11, 470-481.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H7N3O·C6H10O4

  • Mr = 420.43

  • Monoclinic, P 21 /c

  • a = 15.9747 (4) Å

  • b = 7.3309 (2) Å

  • c = 8.7451 (2) Å

  • β = 103.729 (3)°

  • V = 994.87 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.32 × 0.28 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini ultra Mo) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.92, Tmax = 0.98

  • 6207 measured reflections

  • 1845 independent reflections

  • 1487 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.02

  • 1845 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.877 (14) 2.174 (15) 3.0409 (14) 169.7 (11)
N3—H3A⋯O1ii 0.934 (14) 2.129 (14) 3.0349 (14) 163.0 (12)
N3—H3B⋯O1iii 0.888 (15) 2.258 (16) 3.1426 (14) 173.7 (13)
O2—H2⋯N2 0.950 (19) 1.671 (19) 2.6126 (13) 170.3 (16)
C2—H2A⋯O3 0.95 2.73 3.3838 (14) 126
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Form I of the title compound was obtained by solution crystallization, where 1 equivalent of adipic acid was dissolved with two equivalents of niazid in methanol, and then the solution left to slowly evaporate over a few days (Lemmerer et al., 2011). The ratio of the two starting materials was determined by the two expected primary hydrogen bond interactions, namely the two carboxylic acids hydrogen bonding to the single pyridine of two niazid molecules. Form II was obtained by first grinding the two starting materials in the same stoichiometric ratio as form I for 20 minutes, followed by conventional solution crystallization by dissolving the ground powder in methanol. Crystals were obtained after a few days from the methanol solution. Obtaining polymorphs by either grinding or solution crystallization is a focus of recent research (Friščić et al., 2009; Skovsgaard & Bond, 2009; Karki et al., 2009).

The crystallographic asymmetric unit of the resulting crystal structure of form II reflects this stoichiometry, containing one niazid molecule in a general position and one half adipic acid molecule on a special position (Fig. 1). The two molecules lie approximately co-planar. The expected heterosynthon is formed between two niazid and one adipic acid molecule lying on a crystallographic center of symmetry (which requires the pyridine ring and carboxylic acid to be co-planar). The heterosynthon between the dicarboxylic acid molecule and the pyridine ring is formed by a O—H···N hydrogen bond, as well as a C—H···O hydrogen bond, to form a R22(7) ring (Bernstein et al., 1995). The niazid molecules are connected by a centrosymmetric R22(10) ring using N—H···O hydrogen bonds from one of the amine H atoms. Adjacent dimers are joined by a N—H···O bond using the second amine H atom, which together with the C—H···O hydrogen bond and the N—H···O hydrogen bond from the amide H forms a R24(13) ring (Fig. 2). Hence, all four H bond donors are used to form a 3-D network. In form I, the same R22(7) ring is observed but the amide H atom forms a C(4) chain to form a 2-D sheet, which is then connected into a 3-D network by the amine H atoms hydrogen bonding to adjacent sheets (Lemmerer et al., 2011).

Related literature top

For the first polymorph, see: Lemmerer et al. (2011). For experimental techniques, see: Friščić et al. (2009); Skovsgaard & Bond (2009); Karki et al. (2009). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

A stoichiometric amount in the ratio of 2:1 of nicotinic acid hydrazide to adipic acid was ground together in a mortar with a pestle under the drop-wise addition of methanol over 20 minutes. The resulting powder was then dissolved in 10 ml of AR-grade methanol, and the solution slowly left to evaporate to afford colourless block-like crystals after one week.

Refinement top

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.95 (aromatic CH) and 0.99 (methylene CH2) Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound and O-bound H atoms were located in the difference map and coordinates refined freely together with their isotropic displacement parameters.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) extended to show the entire dicarboxylic acid and showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Symmetry code: (i): -x, -y, -z.
[Figure 2] Fig. 2. Hydrogen bonding diagram of (I), Form II, showing the various ring shaped hydrogen bonding motifs. Intermolecular N—H···N, O—H···N and C—H···O hydrogen bonds are shown as dashed red lines.
adipic acid–nicotinohydrazide (1/2) top
Crystal data top
2C6H7N3O·C6H10O4F(000) = 444
Mr = 420.43Dx = 1.403 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3572 reflections
a = 15.9747 (4) Åθ = 3.1–28.5°
b = 7.3309 (2) ŵ = 0.11 mm1
c = 8.7451 (2) ÅT = 173 K
β = 103.729 (3)°Block, colourless
V = 994.87 (4) Å30.32 × 0.28 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo) detector
1487 reflections with I > 2σ(I)
ω scansRint = 0.020
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
θmax = 25.5°, θmin = 3.1°
Tmin = 0.92, Tmax = 0.98h = 1319
6207 measured reflectionsk = 88
1845 independent reflectionsl = 109
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.077Δρmax = 0.18 e Å3
S = 1.02Δρmin = 0.14 e Å3
1845 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
153 parametersExtinction coefficient: 0.0095 (18)
0 restraints
Crystal data top
2C6H7N3O·C6H10O4V = 994.87 (4) Å3
Mr = 420.43Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.9747 (4) ŵ = 0.11 mm1
b = 7.3309 (2) ÅT = 173 K
c = 8.7451 (2) Å0.32 × 0.28 × 0.04 mm
β = 103.729 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo) detector
1845 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
1487 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.98Rint = 0.020
6207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.18 e Å3
1845 reflectionsΔρmin = 0.14 e Å3
153 parameters
Special details top

Experimental. Absorption corrections were made using the program Crysalis Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm in CrysAlisPro.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16016 (7)0.37907 (15)0.35826 (13)0.0237 (3)
C20.22411 (7)0.44813 (15)0.47997 (13)0.0248 (3)
H2A0.22940.57670.49220.03*
C30.27134 (8)0.16066 (15)0.56223 (15)0.0296 (3)
H30.31050.08410.63260.036*
C40.20920 (8)0.08110 (15)0.44526 (15)0.0317 (3)
H40.20560.04790.43550.038*
C50.15231 (8)0.19064 (16)0.34265 (14)0.0291 (3)
H50.10820.13840.26220.035*
C60.09817 (8)0.49832 (15)0.24735 (13)0.0243 (3)
N10.13026 (7)0.65323 (12)0.20370 (11)0.0259 (2)
H10.1859 (9)0.6738 (17)0.2300 (15)0.030 (3)*
N20.27881 (6)0.34156 (13)0.58100 (11)0.0276 (3)
N30.07997 (7)0.77311 (15)0.09121 (13)0.0303 (3)
H3A0.0389 (9)0.8250 (17)0.1382 (16)0.036 (4)*
H3B0.0508 (9)0.7022 (19)0.0145 (18)0.042 (4)*
O10.02225 (5)0.45309 (11)0.19861 (10)0.0327 (2)
C70.38377 (7)0.67377 (15)0.82289 (13)0.0259 (3)
C80.45756 (8)0.75709 (16)0.94010 (16)0.0352 (3)
H8A0.51190.70850.92060.042*
H8B0.45430.71721.04670.042*
C90.46178 (7)0.96301 (15)0.93861 (14)0.0281 (3)
H9A0.40791.01330.95880.034*
H9B0.4661.00450.8330.034*
O20.39428 (6)0.49783 (11)0.80455 (11)0.0341 (2)
O30.32068 (5)0.75783 (10)0.75195 (11)0.0353 (2)
H20.3478 (12)0.449 (2)0.727 (2)0.069 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0214 (6)0.0264 (6)0.0251 (6)0.0031 (5)0.0090 (5)0.0026 (5)
C20.0240 (6)0.0226 (6)0.0279 (7)0.0018 (5)0.0062 (5)0.0018 (5)
C30.0293 (7)0.0270 (7)0.0342 (7)0.0028 (5)0.0105 (6)0.0043 (5)
C40.0374 (8)0.0216 (6)0.0387 (7)0.0023 (5)0.0144 (6)0.0018 (5)
C50.0280 (7)0.0281 (6)0.0317 (7)0.0065 (5)0.0083 (5)0.0057 (5)
C60.0221 (7)0.0279 (6)0.0231 (6)0.0031 (5)0.0055 (5)0.0062 (4)
N10.0207 (6)0.0276 (6)0.0280 (6)0.0013 (4)0.0030 (5)0.0001 (4)
N20.0245 (6)0.0274 (6)0.0301 (6)0.0012 (4)0.0048 (4)0.0009 (4)
N30.0284 (6)0.0319 (6)0.0290 (6)0.0001 (5)0.0038 (5)0.0023 (5)
O10.0232 (5)0.0372 (5)0.0346 (5)0.0062 (4)0.0010 (4)0.0019 (4)
C70.0228 (7)0.0276 (7)0.0266 (6)0.0012 (5)0.0042 (5)0.0027 (5)
C80.0291 (7)0.0348 (8)0.0350 (7)0.0021 (5)0.0058 (6)0.0030 (5)
C90.0206 (7)0.0321 (7)0.0292 (7)0.0011 (5)0.0014 (5)0.0023 (5)
O20.0296 (5)0.0276 (5)0.0382 (6)0.0027 (4)0.0059 (4)0.0015 (4)
O30.0244 (5)0.0306 (5)0.0444 (5)0.0030 (4)0.0047 (4)0.0000 (4)
Geometric parameters (Å, º) top
C1—C21.3845 (16)N1—H10.877 (14)
C1—C51.3908 (15)N3—H3A0.934 (14)
C1—C61.4932 (16)N3—H3B0.888 (15)
C2—N21.3371 (15)C7—O31.2180 (13)
C2—H2A0.95C7—O21.3154 (13)
C3—N21.3382 (15)C7—C81.4965 (17)
C3—C41.3747 (18)C8—C91.5113 (16)
C3—H30.95C8—H8A0.99
C4—C51.3744 (17)C8—H8B0.99
C4—H40.95C9—C9i1.522 (2)
C5—H50.95C9—H9A0.99
C6—O11.2317 (14)C9—H9B0.99
C6—N11.3383 (15)O2—H20.950 (19)
N1—N31.4178 (14)
C2—C1—C5118.13 (10)C2—N2—C3118.21 (10)
C2—C1—C6122.68 (10)N1—N3—H3A106.8 (8)
C5—C1—C6119.16 (10)N1—N3—H3B105.7 (9)
N2—C2—C1122.79 (10)H3A—N3—H3B105.8 (12)
N2—C2—H2A118.6O3—C7—O2123.24 (11)
C1—C2—H2A118.6O3—C7—C8124.36 (10)
N2—C3—C4122.64 (11)O2—C7—C8112.40 (10)
N2—C3—H3118.7C7—C8—C9115.55 (10)
C4—C3—H3118.7C7—C8—H8A108.4
C5—C4—C3119.13 (11)C9—C8—H8A108.4
C5—C4—H4120.4C7—C8—H8B108.4
C3—C4—H4120.4C9—C8—H8B108.4
C4—C5—C1119.08 (11)H8A—C8—H8B107.5
C4—C5—H5120.5C8—C9—C9i112.33 (12)
C1—C5—H5120.5C8—C9—H9A109.1
O1—C6—N1122.82 (11)C9i—C9—H9A109.1
O1—C6—C1120.92 (10)C8—C9—H9B109.1
N1—C6—C1116.25 (10)C9i—C9—H9B109.1
C6—N1—N3122.12 (10)H9A—C9—H9B107.9
C6—N1—H1120.3 (8)C7—O2—H2110.9 (10)
N3—N1—H1116.6 (8)
C5—C1—C2—N20.84 (16)C5—C1—C6—N1143.68 (10)
C6—C1—C2—N2178.88 (10)O1—C6—N1—N33.28 (17)
N2—C3—C4—C50.17 (17)C1—C6—N1—N3175.83 (10)
C3—C4—C5—C11.15 (17)C1—C2—N2—C30.45 (15)
C2—C1—C5—C41.61 (15)C4—C3—N2—C20.97 (15)
C6—C1—C5—C4179.73 (10)O3—C7—C8—C914.84 (18)
C2—C1—C6—O1142.57 (11)O2—C7—C8—C9165.28 (10)
C5—C1—C6—O135.46 (15)C7—C8—C9—C9i179.74 (12)
C2—C1—C6—N138.30 (15)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3ii0.877 (14)2.174 (15)3.0409 (14)169.7 (11)
N3—H3A···O1iii0.934 (14)2.129 (14)3.0349 (14)163.0 (12)
N3—H3B···O1iv0.888 (15)2.258 (16)3.1426 (14)173.7 (13)
O2—H2···N20.950 (19)1.671 (19)2.6126 (13)170.3 (16)
C2—H2A···O30.952.733.3838 (14)126
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C6H7N3O·C6H10O4
Mr420.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)15.9747 (4), 7.3309 (2), 8.7451 (2)
β (°) 103.729 (3)
V3)994.87 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.28 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini ultra Mo) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.92, 0.98
No. of measured, independent and
observed [I > 2σ(I)] reflections
6207, 1845, 1487
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.02
No. of reflections1845
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.877 (14)2.174 (15)3.0409 (14)169.7 (11)
N3—H3A···O1ii0.934 (14)2.129 (14)3.0349 (14)163.0 (12)
N3—H3B···O1iii0.888 (15)2.258 (16)3.1426 (14)173.7 (13)
O2—H2···N20.950 (19)1.671 (19)2.6126 (13)170.3 (16)
C2—H2A···O30.952.733.3838 (14)126.2
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported in part by grant No. 2004118 from the United States–Israel Binational Science Foundation (Jerusalem). AL thanks the South African National Research Foundation for a postdoctoral scholarship (SFP2007070400002) and the Oppenheimer Memorial Trust for financial support, and the Mol­ecular Sciences Institute for infrastucture.

References

First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriščić, T., Childs, S. L., Rizvi, S. A. A. & Jones, W. (2009). CrystEngComm, 11, 418–426.  Google Scholar
First citationKarki, S., Friščić, T. & Jones, W. (2009). CrystEngComm, 11, 470–481.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A., Bernstein, J. & Kahlenberg, V. (2011). CrystEngComm, 13, 55–59.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds