organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,7-Dimeth­­oxy-8-(2,4,6-tri­methyl­benzo­yl)naphthalen-1-yl](2,4,6-tri­methyl­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 17 November 2011; accepted 30 November 2011; online 3 December 2011)

In the title compound, C32H32O4, the dihedral angle between the two benzene rings of the 2,4,6-trimethyl­benzoyl groups is 71.43 (7)°. The dihedral angles between the two benzene rings and the naphthalene ring system are 81.58 (5) and 84.92 (6)°. An intra­molecular C—H⋯O inter­action is observed.

Related literature

For electrophilic aromatic substitution of naphthalene deriv­atives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.], 2011a[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.],b[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.]).

[Scheme 1]

Experimental

Crystal data
  • C32H32O4

  • Mr = 480.58

  • Monoclinic, P 21 /n

  • a = 7.71685 (14) Å

  • b = 29.2344 (5) Å

  • c = 11.5567 (2) Å

  • β = 102.879 (1)°

  • V = 2541.57 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 193 K

  • 0.60 × 0.40 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.697, Tmax = 0.938

  • 45450 measured reflections

  • 4657 independent reflections

  • 4131 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.121

  • S = 1.09

  • 4657 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29C⋯O2 0.98 2.33 3.1669 (19) 143

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on the electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the crystal structures of several 1,8-diaroylated naphthalene analogues exemplified by 1,8-bis(4-methylbenzoyl)-2,7-dimethoxynaphthalene (Muto et al., 2010). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are connected in an almost perpendicular fashion. Besides, the crystal structures of 1-monoaroylated naphthalene derivatives and the β-isomers of 3-monoaroylated derivatives have also been clarified such as (2,7-dimethoxynaphthalen-1-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011a) and (3,6-dimethoxynaphthalen-2-yl)(2,4,6-trimethylphenyl)methanone (Muto et al., 2011b).

As a part of our continuing study on the molecular structures of these homologous molecules, the crystal structure of title compound, peri-aroylnaphthalene bearing three methyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. Two 2,4,6-trimethylphenyl groups are out of the plane of the naphthalene ring. The interplanar angle between the best planes of the two phenyl rings is 71.43 (7)°. On the other hand, the two interplanar angles between the best planes of the 2,4,6-trimethylphenyl rings and the naphthalene ring are 81.58 (5) and 84.92 (6)°, respectively. The torsion angles between the carbonyl groups and the naphthalene ring [C2—C1—C11—O1 = -104.68 (15)° and C10—C9—C18—O2 = 52.5 (2)°] are comparable with those between the carbonyl groups and 2,4,6-trimethylphenyl groups [O1—C11—C12—C17 = -141.08 (14)° and O2—C18—C19—C24 = -127.49 (14)°].

In addition, an intramolecular C—H···O interaction between a methyl group and carbonyl group is observed (C29—H29c···O2 = 2.33 Å; Fig. 2 and Table 1).

Related literature top

For electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Muto et al. (2010, 2011a,b).

Experimental top

To a 10 ml flask, 1,8-bis(2,4,6-trimethylbenzoyl)-2-hydroxy-7-methoxynaphthalene (0.20 mmol, 0.093 g), dimethyl sulfate (0.40 mmol, 0.050 g), 2 M aqueous NaOH (0.162 g) and acetone (0.50 ml) were placed and stirred at 0°C for 1 h. The pale yellow precipitates were collected with suction filtration after removal of acetone from the solution under reduced pressure. The crude product was purified by recrystallization from hexane and CHCl3(3:1 v/v, yield 65%).

1H NMR δ (400 MHz, CDCl3); 2.23 (12H, s), 2.25 (6H, s), 3.45 (6H, s), 6.80 (4H, s), 7.16 (2H, d, J = 9.2 Hz), 7.92 (2H, d, J = 9.2 Hz) p.p.m..

13C NMR δ (75 MHz, CDCl3); 21.08, 21.69, 56.84, 112.64, 125.31, 125.70, 129.06, 129.60, 132.79, 137.66, 138.74, 139.18, 158.30, 198.80 p.p.m..

IR (KBr); 1666 (C=O), 1608, 1512, 1460 (Ar, naphthalene), 1271 (=C—O—C) cm-1.

HRMS (m/z); [M + H]+ Calcd for C32H33O4, 481.2379; found, 481.2386.

m.p. = 531.5–535.0 K.

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and with Uĩso(H) = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Intramolecular C—H···O interaction shown as dashed line.
[2,7-Dimethoxy-8-(2,4,6-trimethylbenzoyl)naphthalen-1-yl](2,4,6- trimethylphenyl)methanone top
Crystal data top
C32H32O4F(000) = 1024
Mr = 480.58Dx = 1.256 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 38210 reflections
a = 7.71685 (14) Åθ = 3.0–68.2°
b = 29.2344 (5) ŵ = 0.65 mm1
c = 11.5567 (2) ÅT = 193 K
β = 102.879 (1)°Platelet, colorless
V = 2541.57 (8) Å30.60 × 0.40 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4657 independent reflections
Radiation source: rotaiting anode4131 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.0°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 3535
Tmin = 0.697, Tmax = 0.938l = 1313
45450 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.6531P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4657 reflectionsΔρmax = 0.26 e Å3
334 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (4)
Crystal data top
C32H32O4V = 2541.57 (8) Å3
Mr = 480.58Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.71685 (14) ŵ = 0.65 mm1
b = 29.2344 (5) ÅT = 193 K
c = 11.5567 (2) Å0.60 × 0.40 × 0.10 mm
β = 102.879 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4657 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4131 reflections with I > 2σ(I)
Tmin = 0.697, Tmax = 0.938Rint = 0.054
45450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
4657 reflectionsΔρmin = 0.26 e Å3
334 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.95452 (13)0.10635 (4)0.36709 (9)0.0395 (3)
O20.76176 (14)0.18514 (4)0.40208 (9)0.0422 (3)
O30.77613 (16)0.00902 (3)0.40754 (9)0.0468 (3)
O40.79237 (15)0.22810 (4)0.69327 (9)0.0442 (3)
C10.77923 (17)0.08017 (4)0.49609 (12)0.0308 (3)
C20.76256 (19)0.03309 (5)0.50610 (12)0.0358 (3)
C30.7396 (2)0.01203 (5)0.61097 (14)0.0427 (4)
H30.72730.02020.61530.051*
C40.7356 (2)0.03912 (5)0.70604 (14)0.0438 (4)
H40.71870.02540.77720.053*
C50.75588 (19)0.08698 (5)0.70228 (13)0.0381 (3)
C60.7490 (2)0.11343 (6)0.80360 (14)0.0465 (4)
H60.73390.09840.87350.056*
C70.7631 (2)0.15955 (6)0.80389 (13)0.0454 (4)
H70.75430.17670.87210.054*
C80.79116 (19)0.18170 (5)0.70152 (13)0.0364 (3)
C90.80823 (17)0.15785 (5)0.60088 (12)0.0311 (3)
C100.78159 (17)0.10901 (5)0.59634 (12)0.0313 (3)
C110.80692 (18)0.09463 (4)0.37597 (12)0.0307 (3)
C120.65793 (18)0.08897 (4)0.26807 (12)0.0321 (3)
C130.6975 (2)0.06856 (5)0.16618 (13)0.0387 (3)
C140.5607 (2)0.06311 (5)0.06553 (13)0.0480 (4)
H140.58600.04820.00190.058*
C150.3893 (2)0.07852 (6)0.06005 (14)0.0503 (4)
C160.3537 (2)0.09796 (5)0.16122 (15)0.0458 (4)
H160.23690.10880.15890.055*
C170.48211 (19)0.10231 (5)0.26663 (13)0.0353 (3)
C180.85140 (18)0.18669 (4)0.50261 (12)0.0309 (3)
C191.00640 (18)0.21930 (4)0.53521 (11)0.0305 (3)
C200.97596 (19)0.26619 (5)0.51092 (12)0.0336 (3)
C211.1143 (2)0.29681 (5)0.54902 (12)0.0359 (3)
H211.09220.32860.53690.043*
C221.28434 (19)0.28241 (5)0.60434 (12)0.0357 (3)
C231.31281 (19)0.23591 (5)0.62309 (12)0.0357 (3)
H231.42930.22540.65790.043*
C241.17612 (18)0.20406 (5)0.59248 (11)0.0317 (3)
C250.7598 (2)0.03941 (5)0.40790 (15)0.0455 (4)
H25A0.63840.04770.41230.055*
H25B0.84400.05200.47680.055*
H25C0.78580.05190.33490.055*
C260.8348 (3)0.25455 (6)0.79970 (17)0.0618 (5)
H26A0.93250.23990.85640.074*
H26B0.73030.25660.83440.074*
H26C0.87090.28540.78140.074*
C270.8788 (2)0.05058 (6)0.16233 (15)0.0494 (4)
H27A0.91960.02960.22900.059*
H27B0.96230.07620.16810.059*
H27C0.87250.03430.08740.059*
C280.2463 (3)0.07440 (8)0.05266 (18)0.0767 (7)
H28A0.24480.10220.10030.092*
H28B0.13040.07050.03240.092*
H28C0.27110.04790.09820.092*
C290.42200 (19)0.12170 (5)0.37219 (13)0.0398 (3)
H29A0.43760.09860.43520.048*
H29B0.29630.13020.34850.048*
H29C0.49310.14880.40140.048*
C301.2171 (2)0.15426 (5)0.62151 (14)0.0394 (3)
H30A1.17810.14620.69400.047*
H30B1.34540.14910.63370.047*
H30C1.15430.13520.55570.047*
C311.4320 (2)0.31654 (5)0.64281 (15)0.0475 (4)
H31A1.44340.32390.72690.057*
H31B1.40480.34450.59530.057*
H31C1.54390.30350.63130.057*
C320.7958 (2)0.28456 (5)0.45048 (15)0.0442 (4)
H32A0.70510.27180.48860.053*
H32B0.76930.27580.36650.053*
H32C0.79600.31800.45710.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (5)0.0438 (6)0.0404 (6)0.0039 (4)0.0090 (4)0.0047 (4)
O20.0482 (6)0.0403 (6)0.0350 (6)0.0085 (4)0.0023 (5)0.0027 (4)
O30.0756 (8)0.0246 (5)0.0426 (6)0.0006 (5)0.0183 (5)0.0012 (4)
O40.0570 (7)0.0351 (5)0.0450 (6)0.0031 (5)0.0210 (5)0.0096 (4)
C10.0301 (7)0.0292 (7)0.0325 (7)0.0001 (5)0.0060 (5)0.0036 (5)
C20.0391 (8)0.0315 (7)0.0362 (7)0.0001 (6)0.0072 (6)0.0024 (6)
C30.0519 (9)0.0318 (7)0.0440 (8)0.0024 (6)0.0100 (7)0.0091 (6)
C40.0529 (9)0.0416 (8)0.0382 (8)0.0021 (7)0.0130 (7)0.0128 (6)
C50.0389 (8)0.0414 (8)0.0342 (7)0.0010 (6)0.0088 (6)0.0051 (6)
C60.0581 (10)0.0502 (9)0.0340 (8)0.0015 (7)0.0162 (7)0.0057 (6)
C70.0535 (9)0.0515 (9)0.0342 (8)0.0009 (7)0.0161 (7)0.0054 (6)
C80.0353 (7)0.0374 (7)0.0372 (7)0.0014 (6)0.0097 (6)0.0032 (6)
C90.0286 (7)0.0321 (7)0.0324 (7)0.0006 (5)0.0062 (5)0.0000 (5)
C100.0289 (7)0.0330 (7)0.0318 (7)0.0000 (5)0.0061 (5)0.0031 (5)
C110.0344 (7)0.0234 (6)0.0349 (7)0.0007 (5)0.0092 (6)0.0005 (5)
C120.0383 (7)0.0258 (6)0.0321 (7)0.0053 (5)0.0076 (6)0.0038 (5)
C130.0527 (9)0.0300 (7)0.0351 (7)0.0083 (6)0.0130 (6)0.0006 (6)
C140.0721 (12)0.0388 (8)0.0333 (8)0.0163 (8)0.0120 (7)0.0025 (6)
C150.0599 (11)0.0436 (9)0.0397 (8)0.0170 (8)0.0053 (7)0.0063 (7)
C160.0405 (8)0.0410 (8)0.0508 (9)0.0075 (6)0.0007 (7)0.0079 (7)
C170.0364 (7)0.0298 (7)0.0386 (8)0.0059 (5)0.0057 (6)0.0059 (5)
C180.0335 (7)0.0264 (6)0.0334 (7)0.0027 (5)0.0090 (6)0.0021 (5)
C190.0354 (7)0.0276 (6)0.0299 (6)0.0009 (5)0.0105 (5)0.0011 (5)
C200.0391 (8)0.0301 (7)0.0340 (7)0.0015 (5)0.0134 (6)0.0001 (5)
C210.0471 (8)0.0257 (6)0.0383 (7)0.0007 (6)0.0170 (6)0.0013 (5)
C220.0411 (8)0.0336 (7)0.0352 (7)0.0060 (6)0.0147 (6)0.0068 (6)
C230.0345 (7)0.0368 (7)0.0359 (7)0.0008 (6)0.0079 (6)0.0038 (6)
C240.0358 (7)0.0301 (7)0.0300 (7)0.0002 (5)0.0089 (5)0.0017 (5)
C250.0571 (10)0.0264 (7)0.0514 (9)0.0004 (6)0.0084 (7)0.0006 (6)
C260.0659 (12)0.0492 (10)0.0612 (11)0.0019 (9)0.0051 (9)0.0211 (8)
C270.0612 (10)0.0424 (9)0.0512 (9)0.0043 (7)0.0262 (8)0.0096 (7)
C280.0904 (16)0.0686 (13)0.0539 (11)0.0208 (11)0.0208 (10)0.0034 (10)
C290.0332 (7)0.0397 (8)0.0472 (9)0.0016 (6)0.0105 (6)0.0059 (6)
C300.0392 (8)0.0314 (7)0.0456 (8)0.0026 (6)0.0051 (6)0.0006 (6)
C310.0489 (9)0.0403 (8)0.0551 (10)0.0114 (7)0.0151 (7)0.0115 (7)
C320.0467 (9)0.0338 (7)0.0508 (9)0.0070 (6)0.0081 (7)0.0027 (6)
Geometric parameters (Å, º) top
O1—C111.2155 (17)C19—C241.4020 (19)
O2—C181.2133 (17)C19—C201.4085 (18)
O3—C21.3624 (17)C20—C211.388 (2)
O3—C251.4217 (17)C20—C321.509 (2)
O4—C81.3600 (18)C21—C221.390 (2)
O4—C261.4279 (19)C21—H210.9500
C1—C21.3895 (19)C22—C231.387 (2)
C1—C101.4297 (19)C22—C311.505 (2)
C1—C111.5111 (18)C23—C241.3923 (19)
C2—C31.405 (2)C23—H230.9500
C3—C41.360 (2)C24—C301.5115 (19)
C3—H30.9500C25—H25A0.9800
C4—C51.410 (2)C25—H25B0.9800
C4—H40.9500C25—H25C0.9800
C5—C61.414 (2)C26—H26A0.9800
C5—C101.4357 (19)C26—H26B0.9800
C6—C71.353 (2)C26—H26C0.9800
C6—H60.9500C27—H27A0.9800
C7—C81.407 (2)C27—H27B0.9800
C7—H70.9500C27—H27C0.9800
C8—C91.3873 (19)C28—H28A0.9800
C9—C101.4418 (19)C28—H28B0.9800
C9—C181.5100 (18)C28—H28C0.9800
C11—C121.5051 (19)C29—H29A0.9800
C12—C171.408 (2)C29—H29B0.9800
C12—C131.413 (2)C29—H29C0.9800
C13—C141.395 (2)C30—H30A0.9800
C13—C271.504 (2)C30—H30B0.9800
C14—C151.385 (3)C30—H30C0.9800
C14—H140.9500C31—H31A0.9800
C15—C161.382 (3)C31—H31B0.9800
C15—C281.513 (2)C31—H31C0.9800
C16—C171.394 (2)C32—H32A0.9800
C16—H160.9500C32—H32B0.9800
C17—C291.509 (2)C32—H32C0.9800
C18—C191.5102 (18)
C2—O3—C25119.24 (11)C19—C20—C32122.29 (13)
C8—O4—C26118.92 (13)C20—C21—C22122.09 (13)
C2—C1—C10120.10 (12)C20—C21—H21119.0
C2—C1—C11112.84 (12)C22—C21—H21119.0
C10—C1—C11126.90 (11)C23—C22—C21117.98 (13)
O3—C2—C1114.59 (12)C23—C22—C31121.37 (14)
O3—C2—C3122.87 (13)C21—C22—C31120.65 (13)
C1—C2—C3122.51 (13)C22—C23—C24122.10 (13)
C4—C3—C2118.13 (14)C22—C23—H23119.0
C4—C3—H3120.9C24—C23—H23119.0
C2—C3—H3120.9C23—C24—C19118.85 (12)
C3—C4—C5122.03 (13)C23—C24—C30118.60 (12)
C3—C4—H4119.0C19—C24—C30122.55 (12)
C5—C4—H4119.0O3—C25—H25A109.5
C4—C5—C6119.49 (13)O3—C25—H25B109.5
C4—C5—C10120.59 (13)H25A—C25—H25B109.5
C6—C5—C10119.92 (14)O3—C25—H25C109.5
C7—C6—C5121.95 (14)H25A—C25—H25C109.5
C7—C6—H6119.0H25B—C25—H25C109.5
C5—C6—H6119.0O4—C26—H26A109.5
C6—C7—C8118.95 (14)O4—C26—H26B109.5
C6—C7—H7120.5H26A—C26—H26B109.5
C8—C7—H7120.5O4—C26—H26C109.5
O4—C8—C9116.04 (12)H26A—C26—H26C109.5
O4—C8—C7121.52 (13)H26B—C26—H26C109.5
C9—C8—C7122.33 (14)C13—C27—H27A109.5
C8—C9—C10119.26 (12)C13—C27—H27B109.5
C8—C9—C18115.35 (12)H27A—C27—H27B109.5
C10—C9—C18125.38 (11)C13—C27—H27C109.5
C1—C10—C5116.56 (12)H27A—C27—H27C109.5
C1—C10—C9126.13 (12)H27B—C27—H27C109.5
C5—C10—C9117.31 (12)C15—C28—H28A109.5
O1—C11—C12121.21 (12)C15—C28—H28B109.5
O1—C11—C1118.92 (12)H28A—C28—H28B109.5
C12—C11—C1119.47 (11)C15—C28—H28C109.5
C17—C12—C13119.60 (13)H28A—C28—H28C109.5
C17—C12—C11122.37 (12)H28B—C28—H28C109.5
C13—C12—C11118.02 (13)C17—C29—H29A109.5
C14—C13—C12118.63 (15)C17—C29—H29B109.5
C14—C13—C27118.13 (14)H29A—C29—H29B109.5
C12—C13—C27123.19 (14)C17—C29—H29C109.5
C15—C14—C13122.58 (15)H29A—C29—H29C109.5
C15—C14—H14118.7H29B—C29—H29C109.5
C13—C14—H14118.7C24—C30—H30A109.5
C16—C15—C14117.59 (14)C24—C30—H30B109.5
C16—C15—C28121.12 (18)H30A—C30—H30B109.5
C14—C15—C28121.29 (17)C24—C30—H30C109.5
C15—C16—C17122.69 (16)H30A—C30—H30C109.5
C15—C16—H16118.7H30B—C30—H30C109.5
C17—C16—H16118.7C22—C31—H31A109.5
C16—C17—C12118.71 (14)C22—C31—H31B109.5
C16—C17—C29116.99 (14)H31A—C31—H31B109.5
C12—C17—C29124.30 (12)C22—C31—H31C109.5
O2—C18—C9121.68 (12)H31A—C31—H31C109.5
O2—C18—C19120.87 (12)H31B—C31—H31C109.5
C9—C18—C19117.39 (11)C20—C32—H32A109.5
C24—C19—C20120.01 (12)C20—C32—H32B109.5
C24—C19—C18121.45 (12)H32A—C32—H32B109.5
C20—C19—C18118.50 (12)C20—C32—H32C109.5
C21—C20—C19118.83 (13)H32A—C32—H32C109.5
C21—C20—C32118.81 (13)H32B—C32—H32C109.5
C25—O3—C2—C1179.58 (13)C1—C11—C12—C13132.32 (13)
C25—O3—C2—C32.5 (2)C17—C12—C13—C141.36 (19)
C10—C1—C2—O3175.05 (12)C11—C12—C13—C14179.99 (12)
C11—C1—C2—O30.71 (17)C17—C12—C13—C27176.01 (13)
C10—C1—C2—C32.9 (2)C11—C12—C13—C272.63 (19)
C11—C1—C2—C3178.64 (13)C12—C13—C14—C152.6 (2)
O3—C2—C3—C4177.08 (14)C27—C13—C14—C15179.89 (14)
C1—C2—C3—C40.7 (2)C13—C14—C15—C163.2 (2)
C2—C3—C4—C50.8 (2)C13—C14—C15—C28176.61 (15)
C3—C4—C5—C6179.44 (15)C14—C15—C16—C170.2 (2)
C3—C4—C5—C100.1 (2)C28—C15—C16—C17179.99 (15)
C4—C5—C6—C7178.31 (16)C15—C16—C17—C124.0 (2)
C10—C5—C6—C71.1 (2)C15—C16—C17—C29176.53 (14)
C5—C6—C7—C82.0 (3)C13—C12—C17—C164.53 (19)
C26—O4—C8—C9159.31 (14)C11—C12—C17—C16176.88 (12)
C26—O4—C8—C724.5 (2)C13—C12—C17—C29176.08 (13)
C6—C7—C8—O4174.71 (15)C11—C12—C17—C292.5 (2)
C6—C7—C8—C91.3 (2)C8—C9—C18—O2126.39 (14)
O4—C8—C9—C10170.79 (12)C10—C9—C18—O252.54 (19)
C7—C8—C9—C105.4 (2)C8—C9—C18—C1950.95 (16)
O4—C8—C9—C188.21 (18)C10—C9—C18—C19130.12 (13)
C7—C8—C9—C18175.61 (13)O2—C18—C19—C24127.50 (14)
C2—C1—C10—C53.44 (19)C9—C18—C19—C2455.14 (17)
C11—C1—C10—C5178.55 (12)O2—C18—C19—C2054.91 (18)
C2—C1—C10—C9176.19 (13)C9—C18—C19—C20122.46 (13)
C11—C1—C10—C91.1 (2)C24—C19—C20—C212.66 (19)
C4—C5—C10—C12.0 (2)C18—C19—C20—C21174.97 (12)
C6—C5—C10—C1177.33 (13)C24—C19—C20—C32179.48 (13)
C4—C5—C10—C9177.62 (13)C18—C19—C20—C321.85 (19)
C6—C5—C10—C93.0 (2)C19—C20—C21—C223.7 (2)
C8—C9—C10—C1174.28 (13)C32—C20—C21—C22179.37 (13)
C18—C9—C10—C14.6 (2)C20—C21—C22—C231.2 (2)
C8—C9—C10—C56.08 (19)C20—C21—C22—C31179.04 (13)
C18—C9—C10—C5175.03 (12)C21—C22—C23—C242.5 (2)
C2—C1—C11—O1104.69 (15)C31—C22—C23—C24177.31 (13)
C10—C1—C11—O170.72 (18)C22—C23—C24—C193.4 (2)
C2—C1—C11—C1268.13 (16)C22—C23—C24—C30177.05 (13)
C10—C1—C11—C12116.46 (15)C20—C19—C24—C230.79 (19)
O1—C11—C12—C17141.06 (14)C18—C19—C24—C23178.34 (12)
C1—C11—C12—C1746.28 (17)C20—C19—C24—C30179.71 (12)
O1—C11—C12—C1340.34 (18)C18—C19—C24—C302.15 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29C···O20.982.333.1669 (19)143

Experimental details

Crystal data
Chemical formulaC32H32O4
Mr480.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)7.71685 (14), 29.2344 (5), 11.5567 (2)
β (°) 102.879 (1)
V3)2541.57 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.60 × 0.40 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.697, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
45450, 4657, 4131
Rint0.054
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.121, 1.09
No. of reflections4657
No. of parameters334
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29C···O20.982.333.1669 (19)143
 

Acknowledgements

The authors express their gratitude to Master Daichi Hijikata, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011a). Acta Cryst. E67, o2813.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2011b). Acta Cryst. E67, o3062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds