metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis(di­methyl­glyoximato-κ2N,N′)(ethyl pyridine-3-carboxyl­ate-κN)cobalt(III)

aHenan University of Technology, School of Chemistry and Chemical Engineering, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: ssdyok@yahoo.com.cn

(Received 7 November 2011; accepted 29 November 2011; online 7 December 2011)

In the title compound, [Co(C4H7N2O2)2Cl(C8H9NO2)], which was prepared as a model complex of vitamin B12, the CoIII atom, which is linked to four N atoms of the pseudo-macrocyclic (dmgH)2 ligand (dmgH is dimethyl­glyoximate) in the equatorial plane and one Cl anion and one N atom of ethyl nicotinate in apical positions, displays an approximately octa­hedral coordination. The Co atom is 0.0187 (8) Å out of the mean plane of the four equatorial N atoms. The structure has an O⋯H⋯O bridge, which is very common in cobaloxime derivatives, with O⋯H distances of 1.24 (2) and 1.25 (2) Å.

Related literature

For background to the chemistry of cobaloximes, see: Schrayzer (1968[Schrayzer, G. N. (1968). Acc. Chem. Res. 1, 97-103.]); Zangrando et al. (2003[Zangrando, E., Trani, M., Stabon, E., Carfagna, C., Milani, B. & Mestroni, G. (2003). Eur. J. Inorg. Chem. pp. 2683-2692.]). For applications of cobaloximes in proton reduction, see: Raza­vet et al. (2005[Razavet, M., Artero, V. & Fontecave, M. (2005). Inorg. Chem. 44, 4786-4795.]). For related structures, see: Mandal & Gupta (2005[Mandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501-1510.], 2007[Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658-670.]); Bhuyan et al. (2007[Bhuyan, M., Laskar, M., Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 3559-3567.]); Dutta et al. (2009[Dutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485-3491.]). For NMR research on O⋯H⋯O bridges, see: Bakac & Espenson (1984[Bakac, A. & Espenson, J. H. (1984). J. Am. Chem. Soc. 106, 5197-5202.]). For deprotonation of O⋯H⋯O bridges by BF3·Et2O, see: Magnuson & Weber (1974[Magnuson, V. E. & Weber, J. H. (1974). J. Organomet. Chem. 74, 135-141.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H7N2O2)2Cl(C8H9NO2)]

  • Mr = 475.77

  • Monoclinic, P 21 /c

  • a = 8.1961 (11) Å

  • b = 14.2224 (19) Å

  • c = 17.365 (2) Å

  • β = 98.340 (2)°

  • V = 2002.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.32 × 0.15 × 0.06 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.940

  • 9364 measured reflections

  • 3532 independent reflections

  • 3104 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.10

  • 3532 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.2326 (6)
Co1—N1 1.8925 (16)
Co1—N2 1.8872 (16)
Co1—N3 1.8970 (16)
Co1—N4 1.9020 (16)
Co1—N5 1.9701 (15)

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cobaloximes have been extensively used to mimic the vitamin B12 coenzyme (Schrayzer, 1968). Recently they have been also used to catalyze the proton reduction as a function model of hydrogenase (Razavet et al., 2005). The cobalt atom in the title compound, [Co(dmgH)2(3-(COOEt)C5H4N)Cl], is in a distorted octahedral geometry by four nitrogen atoms of the pseudomacrocyclic (dmgH)2 ligand in the equatorial plane and by one chlorine atom and a nitrogen atom of ethyl nicotinate, respectively, in mutually trans positions (N5—Co—Cl1 = 179.88° (5)). The mean Co—N bond length is 1.8944 Å (16). The mean O—O distance is 2.513 Å (3). The Co atom is 0.0187 Å (8) out of the mean plane of the four nitrogen atoms. The plane of the four nitrogen atoms is practically planar. The O2···H2···O4 bridge in the structure is very common in cobaloxime derivatives (Mandal & Gupta, 2005, 2007; Bhuyan et al., 2007; Dutta et al., 2009). The presence of the O···H···O bridging moieties in cobaloxime derivatives ensures co-planarity of the two molecules of ligand and promotes the stability of the cobaloxime molecule (Zangrando et al., 2003). The existence of O···H···O bridging is supported by NMR data and further substantiated by their chemical behavior with BF3.Et2O in readily forming an O—BF2—O system by deprotonation of an O···H···O bridge (Magnuson & Weber, 1974; Bakac & Espenson, 1984). The other O···H···O (O1···H1···O3) group is less bridging than the O2···H2···O4 group since H1 is substantially close to O3 than to O1 (O3—H1 = 1.03 (3) Å)

Related literature top

For background to the chemistry of cobaloximes, see: Schrayzer (1968); Zangrando et al. (2003). For applications of cobaloximes in proton reduction, see: Razavet et al. (2005). For related structures, see: Mandal & Gupta (2005, 2007); Bhuyan et al. (2007); Dutta et al. (2009). For NMR research on O···H···O bridges, see: Bakac & Espenson (1984). For deprotonation of O···H···O bridges by BF3.Et2O, see: Magnuson & Weber (1974).

Experimental top

Co(dmgH)(dmgH2)Cl, (3.6 g, 0.01 mol) and ethyl nicotinate (3.0 g, 0.02 mol) were added to chloroform (90 ml). The suspension was stirred for 20 minutes. Water (30 ml) was then added to the flask and the mixture was vigorously stirred for 2 h. The aqueous layer was discarded and the chloroform layer filtered and extracted with water until the washings were nearly colorless. The solution was reduced in volume and the product precipitated by addition of ethanol (95%); yield 69%. Brown single crystals of [Co(dmgH)2(3-(COOEt)C5H4N)Cl] were recrystallized from the solution CHCl3/acetone (v:v = 1:1). 1H NMR(400 MHz, CDCl3): δ 8.85 (s, 1 H, Ha), 8.44 (d, 5.6 Hz, 1 H, Hb), 8.30 (d, 8 Hz, 1 H, Hc), 7.26 (dd, 6 Hz, 8.4 Hz, 1 H, Hd), 4.42 (q, 7.2 Hz, 2 H, CH2), 2.40 (s, 12 H, N=CCH3), 1.42 (t, 7.2 Hz, 3 H, CH3).

Refinement top

H1 and H2 were located from the difference Fourier map and there positions were refined freely. Other hydrogen atoms were placed in calculated positions and refined as riding with C—H = 0.93 Å (CH) and 0.97 Å (CH3). The isotropic atomic displacement parameters of the the protons were constrained as follows: Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C, O) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
Chloridobis(dimethylglyoximato-κ2N,N')(ethyl pyridine-3-carboxylate-κN)cobalt(III) top
Crystal data top
[Co(C4H7N2O2)2Cl(C8H9NO2)]F(000) = 984
Mr = 475.77Dx = 1.578 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4611 reflections
a = 8.1961 (11) Åθ = 2.4–27.8°
b = 14.2224 (19) ŵ = 1.03 mm1
c = 17.365 (2) ÅT = 293 K
β = 98.340 (2)°Needle, brown
V = 2002.8 (5) Å30.32 × 0.15 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3532 independent reflections
Radiation source: fine-focus sealed tube3104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.830, Tmax = 0.940k = 1612
9364 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.6155P]
where P = (Fo2 + 2Fc2)/3
3532 reflections(Δ/σ)max = 0.005
272 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Co(C4H7N2O2)2Cl(C8H9NO2)]V = 2002.8 (5) Å3
Mr = 475.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1961 (11) ŵ = 1.03 mm1
b = 14.2224 (19) ÅT = 293 K
c = 17.365 (2) Å0.32 × 0.15 × 0.06 mm
β = 98.340 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
3532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3104 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.940Rint = 0.020
9364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.27 e Å3
3532 reflectionsΔρmin = 0.28 e Å3
272 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.35812 (3)0.472077 (17)0.212009 (14)0.02362 (10)
Cl10.21204 (7)0.50607 (5)0.09665 (3)0.04574 (16)
N30.2327 (2)0.56109 (11)0.25989 (9)0.0296 (4)
N10.5278 (2)0.55203 (11)0.18744 (9)0.0291 (4)
N40.1851 (2)0.39228 (11)0.23476 (9)0.0288 (4)
O10.53203 (19)0.64264 (10)0.20602 (9)0.0436 (4)
N50.48695 (18)0.44181 (11)0.31377 (9)0.0240 (3)
C10.6351 (2)0.51383 (15)0.14900 (11)0.0316 (5)
N20.4780 (2)0.38275 (11)0.16259 (9)0.0296 (4)
O30.2744 (2)0.65352 (10)0.26840 (10)0.0438 (4)
H10.381 (3)0.6557 (17)0.2433 (14)0.053*
O40.17824 (19)0.30074 (10)0.21648 (9)0.0418 (4)
O20.4320 (2)0.29203 (10)0.15452 (9)0.0431 (4)
H20.298 (3)0.2881 (17)0.1809 (14)0.052*
C70.0736 (2)0.43004 (15)0.27068 (11)0.0300 (4)
C50.1010 (2)0.53125 (14)0.28465 (11)0.0302 (5)
C30.6056 (2)0.41350 (15)0.13459 (11)0.0332 (5)
C100.6455 (2)0.48779 (14)0.43410 (11)0.0298 (4)
C130.5055 (2)0.35154 (13)0.33651 (12)0.0304 (4)
H13A0.45760.30470.30320.036*
C20.7698 (3)0.56681 (18)0.11945 (14)0.0479 (6)
H2A0.74570.57220.06390.072*
H2B0.87220.53400.13320.072*
H2C0.77830.62840.14220.072*
C90.5572 (2)0.50894 (13)0.36194 (11)0.0264 (4)
H9A0.54630.57150.34640.032*
O60.6991 (2)0.64724 (10)0.45873 (8)0.0423 (4)
O50.7992 (3)0.54489 (13)0.55052 (10)0.0663 (6)
C110.6623 (3)0.39457 (15)0.45707 (12)0.0365 (5)
H11A0.71980.37890.50550.044*
C140.7245 (3)0.56221 (16)0.48794 (12)0.0360 (5)
C120.5929 (3)0.32574 (15)0.40745 (12)0.0366 (5)
H12A0.60450.26270.42130.044*
C60.0121 (3)0.59176 (18)0.32237 (14)0.0481 (6)
H6A0.00500.57500.37630.072*
H6B0.12310.58300.29700.072*
H6C0.01890.65650.31810.072*
C80.0657 (3)0.37698 (18)0.29583 (14)0.0450 (6)
H8A0.06900.31470.27430.068*
H8B0.16740.40880.27780.068*
H8C0.05060.37320.35160.068*
C150.7661 (3)0.72628 (16)0.50703 (13)0.0447 (6)
H15A0.76720.71050.56150.054*
H15B0.69540.78070.49540.054*
C40.7100 (3)0.35388 (19)0.09048 (15)0.0545 (7)
H4A0.68360.28880.09680.082*
H4B0.82420.36430.11000.082*
H4C0.68930.37020.03630.082*
C160.9359 (3)0.74998 (19)0.49341 (15)0.0545 (7)
H16A0.97640.80190.52600.082*
H16B0.93470.76680.43980.082*
H16C1.00640.69650.50570.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02584 (16)0.02073 (15)0.02457 (15)0.00085 (10)0.00463 (11)0.00105 (10)
Cl10.0416 (3)0.0654 (4)0.0287 (3)0.0097 (3)0.0002 (2)0.0059 (3)
N30.0331 (9)0.0236 (9)0.0318 (9)0.0045 (7)0.0038 (7)0.0002 (7)
N10.0338 (9)0.0213 (8)0.0328 (9)0.0000 (7)0.0068 (7)0.0037 (7)
N40.0295 (9)0.0256 (9)0.0302 (9)0.0030 (7)0.0007 (7)0.0022 (7)
O10.0527 (10)0.0208 (8)0.0608 (10)0.0049 (7)0.0199 (8)0.0019 (7)
N50.0252 (8)0.0215 (8)0.0260 (8)0.0002 (6)0.0064 (6)0.0001 (6)
C10.0310 (11)0.0358 (12)0.0284 (10)0.0015 (9)0.0057 (9)0.0075 (9)
N20.0364 (10)0.0243 (9)0.0286 (8)0.0022 (7)0.0059 (7)0.0035 (7)
O30.0500 (10)0.0216 (7)0.0626 (10)0.0031 (7)0.0173 (8)0.0051 (7)
O40.0425 (9)0.0280 (8)0.0559 (10)0.0114 (7)0.0100 (8)0.0108 (7)
O20.0538 (10)0.0254 (8)0.0521 (9)0.0034 (7)0.0148 (8)0.0141 (7)
C70.0255 (10)0.0378 (12)0.0261 (10)0.0003 (9)0.0016 (8)0.0005 (8)
C50.0286 (10)0.0358 (12)0.0260 (10)0.0082 (8)0.0035 (8)0.0020 (8)
C30.0347 (11)0.0372 (12)0.0289 (10)0.0070 (9)0.0088 (9)0.0004 (9)
C100.0282 (10)0.0330 (11)0.0285 (10)0.0002 (8)0.0047 (8)0.0006 (8)
C130.0333 (11)0.0223 (10)0.0359 (11)0.0002 (8)0.0063 (9)0.0005 (8)
C20.0439 (13)0.0537 (15)0.0499 (14)0.0018 (11)0.0197 (11)0.0134 (12)
C90.0271 (10)0.0242 (10)0.0284 (10)0.0008 (8)0.0058 (8)0.0005 (8)
O60.0549 (10)0.0320 (8)0.0364 (8)0.0040 (7)0.0056 (7)0.0065 (7)
O50.0923 (15)0.0546 (11)0.0409 (10)0.0077 (10)0.0283 (10)0.0029 (8)
C110.0361 (12)0.0410 (13)0.0313 (11)0.0038 (9)0.0012 (9)0.0082 (9)
C140.0354 (12)0.0421 (13)0.0294 (11)0.0024 (10)0.0014 (9)0.0033 (9)
C120.0402 (12)0.0271 (11)0.0420 (12)0.0036 (9)0.0043 (10)0.0091 (9)
C60.0463 (14)0.0515 (15)0.0493 (14)0.0159 (11)0.0158 (11)0.0007 (11)
C80.0324 (12)0.0562 (15)0.0472 (13)0.0083 (11)0.0084 (10)0.0013 (11)
C150.0485 (14)0.0396 (13)0.0434 (13)0.0036 (11)0.0016 (11)0.0170 (10)
C40.0595 (16)0.0564 (16)0.0530 (15)0.0150 (13)0.0271 (13)0.0061 (12)
C160.0541 (15)0.0545 (16)0.0559 (15)0.0110 (12)0.0109 (12)0.0137 (13)
Geometric parameters (Å, º) top
Co1—Cl12.2326 (6)C13—C121.382 (3)
Co1—N11.8925 (16)C13—H13A0.9300
Co1—N21.8872 (16)C2—H2A0.9600
Co1—N31.8970 (16)C2—H2B0.9600
Co1—N41.9020 (16)C2—H2C0.9600
Co1—N51.9701 (15)C9—H9A0.9300
N3—C51.291 (3)O6—C141.316 (3)
N3—O31.361 (2)O6—C151.461 (2)
N1—C11.298 (3)O5—C141.193 (3)
N1—O11.328 (2)C11—C121.372 (3)
N4—C71.296 (3)C11—H11A0.9300
N4—O41.339 (2)C12—H12A0.9300
N5—C91.343 (2)C6—H6A0.9600
N5—C131.345 (2)C6—H6B0.9600
C1—C31.463 (3)C6—H6C0.9600
C1—C21.488 (3)C8—H8A0.9600
N2—C31.292 (3)C8—H8B0.9600
N2—O21.346 (2)C8—H8C0.9600
O3—H11.03 (3)C15—C161.484 (3)
O4—H21.24 (2)C15—H15A0.9700
O2—H21.25 (2)C15—H15B0.9700
C7—C51.472 (3)C4—H4A0.9600
C7—C81.486 (3)C4—H4B0.9600
C5—C61.485 (3)C4—H4C0.9600
C3—C41.493 (3)C16—H16A0.9600
C10—C91.386 (3)C16—H16B0.9600
C10—C111.386 (3)C16—H16C0.9600
C10—C141.496 (3)
N2—Co1—N181.59 (7)C12—C13—H13A118.8
N2—Co1—N3178.54 (7)C1—C2—H2A109.5
N1—Co1—N399.23 (7)C1—C2—H2B109.5
N2—Co1—N498.39 (7)H2A—C2—H2B109.5
N1—Co1—N4178.87 (7)C1—C2—H2C109.5
N3—Co1—N480.76 (7)H2A—C2—H2C109.5
N2—Co1—N590.80 (7)H2B—C2—H2C109.5
N1—Co1—N591.01 (7)N5—C9—C10121.97 (18)
N3—Co1—N590.38 (7)N5—C9—H9A119.0
N4—Co1—N590.12 (6)C10—C9—H9A119.0
N2—Co1—Cl189.12 (5)C14—O6—C15117.41 (17)
N1—Co1—Cl189.06 (5)C12—C11—C10119.16 (19)
N3—Co1—Cl189.69 (5)C12—C11—H11A120.4
N4—Co1—Cl189.81 (5)C10—C11—H11A120.4
N5—Co1—Cl1179.89 (5)O5—C14—O6124.9 (2)
C5—N3—O3119.37 (16)O5—C14—C10122.8 (2)
C5—N3—Co1117.34 (14)O6—C14—C10112.29 (17)
O3—N3—Co1123.28 (13)C11—C12—C13118.99 (19)
C1—N1—O1122.39 (17)C11—C12—H12A120.5
C1—N1—Co1116.07 (13)C13—C12—H12A120.5
O1—N1—Co1121.49 (12)C5—C6—H6A109.5
C7—N4—O4120.58 (17)C5—C6—H6B109.5
C7—N4—Co1116.87 (14)H6A—C6—H6B109.5
O4—N4—Co1122.54 (12)C5—C6—H6C109.5
N1—O1—H1103.4 (10)H6A—C6—H6C109.5
C9—N5—C13118.40 (17)H6B—C6—H6C109.5
C9—N5—Co1121.94 (13)C7—C8—H8A109.5
C13—N5—Co1119.66 (13)C7—C8—H8B109.5
N1—C1—C3112.86 (17)H8A—C8—H8B109.5
N1—C1—C2123.9 (2)C7—C8—H8C109.5
C3—C1—C2123.21 (19)H8A—C8—H8C109.5
C3—N2—O2121.02 (16)H8B—C8—H8C109.5
C3—N2—Co1116.53 (14)O6—C15—C16111.49 (19)
O2—N2—Co1122.42 (12)O6—C15—H15A109.3
N3—O3—H1101.4 (14)C16—C15—H15A109.3
N4—O4—H2104.4 (11)O6—C15—H15B109.3
N2—O2—H2104.6 (11)C16—C15—H15B109.3
N4—C7—C5112.56 (17)H15A—C15—H15B108.0
N4—C7—C8123.8 (2)C3—C4—H4A109.5
C5—C7—C8123.62 (18)C3—C4—H4B109.5
N3—C5—C7112.44 (16)H4A—C4—H4B109.5
N3—C5—C6124.2 (2)C3—C4—H4C109.5
C7—C5—C6123.35 (19)H4A—C4—H4C109.5
N2—C3—C1112.88 (17)H4B—C4—H4C109.5
N2—C3—C4123.8 (2)C15—C16—H16A109.5
C1—C3—C4123.29 (19)C15—C16—H16B109.5
C9—C10—C11119.00 (19)H16A—C16—H16B109.5
C9—C10—C14122.23 (19)C15—C16—H16C109.5
C11—C10—C14118.77 (19)H16A—C16—H16C109.5
N5—C13—C12122.48 (19)H16B—C16—H16C109.5
N5—C13—H13A118.8

Experimental details

Crystal data
Chemical formula[Co(C4H7N2O2)2Cl(C8H9NO2)]
Mr475.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1961 (11), 14.2224 (19), 17.365 (2)
β (°) 98.340 (2)
V3)2002.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.32 × 0.15 × 0.06
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.830, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
9364, 3532, 3104
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.076, 1.10
No. of reflections3532
No. of parameters272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—Cl12.2326 (6)Co1—N31.8970 (16)
Co1—N11.8925 (16)Co1—N41.9020 (16)
Co1—N21.8872 (16)Co1—N51.9701 (15)
 

Acknowledgements

We are grateful to the Chinese National Natural Science Foundation (grant No. 21101057) and the Doctoral Fund of Henan University of Technology (No. 150389).

References

First citationBakac, A. & Espenson, J. H. (1984). J. Am. Chem. Soc. 106, 5197–5202.  CrossRef CAS Web of Science Google Scholar
First citationBhuyan, M., Laskar, M., Mandal, D. & Gupta, B. D. (2007). Organometallics, 26, 3559–3567.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDutta, G., Kumar, K. & Gupta, B. D. (2009). Organometallics, 28, 3485–3491.  Web of Science CSD CrossRef CAS Google Scholar
First citationMagnuson, V. E. & Weber, J. H. (1974). J. Organomet. Chem. 74, 135–141.  CrossRef CAS Web of Science Google Scholar
First citationMandal, D. & Gupta, B. D. (2005). Organometallics, 24, 1501–1510.  Web of Science CSD CrossRef CAS Google Scholar
First citationMandal, D. & Gupta, B. D. (2007). Organometallics, 26, 658–670.  Web of Science CSD CrossRef CAS Google Scholar
First citationRazavet, M., Artero, V. & Fontecave, M. (2005). Inorg. Chem. 44, 4786–4795.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchrayzer, G. N. (1968). Acc. Chem. Res. 1, 97–103.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZangrando, E., Trani, M., Stabon, E., Carfagna, C., Milani, B. & Mestroni, G. (2003). Eur. J. Inorg. Chem. pp. 2683–2692.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds