metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(1,10-phenanthroline-5,6-dione-κ2N,N′)silver(I) 2-hy­dr­oxy-3,5-di­nitro­benzoate

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 18 November 2011; accepted 14 December 2011; online 21 December 2011)

In the cation of the title salt, [Ag(C12H6N2O2)2](C7H3N2O7), the AgI atom is coordinated in a distorted tetra­hedral geometry by four N atoms from two 1,10-phenanthroline-5,6-dione ligands, while the 3,5-dinitro­salicylate anion has only a short contact [2.847 (6) Å] between one of its O atoms and the AgI atom. The dihedral angle between the two 1,10-phenanthroline-5,6-dione ligands is 58.4 (1)°. There is an intra­molecular O—H⋯O hydrogen bond in the 3,5-dinitro­salicylate anion.

Related literature

For general background to the structures and potential applications of supra­molecular architectures with 1,10-phenantroline-5,6-dione and 3,5-dinitro­salicylic acid, see: Hiort et al. (1993[Hiort, C., Lincoln, P. & Norden, B. (1993). J. Am. Chem. Soc. 115, 3448-3454.]); Song et al. (2007[Song, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399-m401.]); Che et al. (2008[Che, G. B., Liu, C. B., Liu, B., Wang, Q. W. & Xu, Z. L. (2008). CrystEngComm, 10, 184-191.]); Onuegbu et al. (2009[Onuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119-m1120.]). For the synthesis of the 1,10-phenantroline-5,6-dione ligand, see: Dickeson & Sumers (1970[Dickeson, J. E. & Sumers, L. A. (1970). Aust. J. Chem. 23, 1023-1027.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C12H6N2O2)2](C7H3N2O7)

  • Mr = 755.36

  • Monoclinic, P 21 /c

  • a = 11.757 (2) Å

  • b = 18.297 (4) Å

  • c = 13.223 (3) Å

  • β = 103.91 (3)°

  • V = 2761.1 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 174 K

  • 0.30 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.910

  • 12726 measured reflections

  • 5059 independent reflections

  • 3914 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.163

  • S = 1.11

  • 5013 reflections

  • 442 parameters

  • 22 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N1 2.400 (6)
Ag1—N2 2.351 (6)
Ag1—N3 2.337 (6)
Ag1—N4 2.377 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O8 0.82 1.71 2.457 (9) 151

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design and construction of supramolecular architectures have received considerable attention in recent years, mostly motivated by their intriguing structural features and potential applications in molecular adsorption, molecular sensing, magnetism, catalysis and non-linear optics (Che et al., 2008). Metal complexes with 1,10-phenantroline-5,6-dione (L) and 3,5-dinitrosalicylic acid as important ligands for the construction of metal-organic supramolecular architectures have been increasingly studied over recent years (Hiort et al., 1993; Onuegbu et al., 2009; Song et al., 2007). We report herein on the crystal structure of the title compound (Fig. 1). The molecular structure of the title compound, is made up of one [AgL2]+ cation and one 3,5-dinitrosalicylate anion. The AgI atom is surrounded by four N atoms from two 1,10-phenanthroline-5,6-dione ligands, while the 3,5-dinitrosalicylate ligand is uncoordinated. In the compound the dihedral angle between the phendione ligand A (C1-C12, N1, N2, O1 and O2) and B (C13-C24, N3, N4, O3, and O4) is 58.4 (1)°. The dihedral angle between B and 3,5-dinitrosalicylate ligand C (C25-C31, N5, N6, O5-O11) is 56.1 (2)°. The dihedral angle between A and C is 2.4 (9)°, suggesting that the planes of rings A and C are almost parallel. In addition, in the 3,5-dinitrosalicylate ligand, there is one intramolecular O–H···O hydrogen bond (Fig. 2).

Related literature top

For a general background to the structures and potential applications of supramolecular architectures with 1,10-phenantroline-5,6-dione and 3,5-dinitrosalicylic acid, see: Hiort et al. (1993); Song et al. (2007); Che et al. (2008); Onuegbu et al. (2009). For the synthesis of the 1,10-phenantroline-5,6-dione ligand, see: Dickeson & Sumers (1970).

Experimental top

The L ligand was synthesized according to the literature method (Dickeson & Sumers, 1970). The title compound was synthesized under hydrothermal conditions. A mixture of L (0.042 g, 0.2 mmol), 3,5-dinitrosalicylic acid (0.046 g, 0.2 mmol), AgNO3 (0.034 g, 0.2 mmol) and water (10 mL) was placed in a 25 mL Teflon-lined autoclave and heated for 3 days at 433 K under autogenous pressure. Upon cooling and opening the bomb, yellow block-shaped crystals were obtained, then washed with water and dried in air.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C). The hydrogen atom of the hydroxyl group was located in a difference Fourier map, and was refined with a suitable O—H distance restraint; Uiso(H) = 1.5 Ueq(O). The geometry of the aromatic rings was regularized using distance and planariety restraints.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS-97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the crystal packing of the title compound, showing the O–H···O hydrogen bonds interaction.
(I) top
Crystal data top
C24H12AgN4O4·C7H3N2O7F(000) = 1512
Mr = 755.36Dx = 1.817 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5197 reflections
a = 11.757 (2) Åθ = 3.2–25.4°
b = 18.297 (4) ŵ = 0.81 mm1
c = 13.223 (3) ÅT = 174 K
β = 103.91 (3)°Prism, yellow
V = 2761.1 (11) Å30.3 × 0.24 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
5059 independent reflections
Radiation source: fine-focus sealed tube3914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
SADABS (Bruker, 2002)
h = 1411
Tmin = 0.780, Tmax = 0.910k = 1722
12726 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0354P)2 + 13.4705P]
where P = (Fo2 + 2Fc2)/3
5013 reflections(Δ/σ)max < 0.001
442 parametersΔρmax = 1.11 e Å3
22 restraintsΔρmin = 0.72 e Å3
Crystal data top
C24H12AgN4O4·C7H3N2O7V = 2761.1 (11) Å3
Mr = 755.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.757 (2) ŵ = 0.81 mm1
b = 18.297 (4) ÅT = 174 K
c = 13.223 (3) Å0.3 × 0.24 × 0.2 mm
β = 103.91 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
5059 independent reflections
Absorption correction: multi-scan
SADABS (Bruker, 2002)
3914 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.910Rint = 0.052
12726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08322 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0354P)2 + 13.4705P]
where P = (Fo2 + 2Fc2)/3
5013 reflectionsΔρmax = 1.11 e Å3
442 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.21081 (6)0.44038 (3)0.52487 (5)0.0540 (2)
C10.4793 (7)0.5137 (4)0.6222 (5)0.0435 (18)
H10.43990.55800.60740.052*
C20.5976 (7)0.5157 (4)0.6690 (6)0.048 (2)
H20.63710.55990.68450.058*
C30.6552 (7)0.4497 (4)0.6920 (6)0.0470 (19)
H30.73450.44880.72480.056*
C40.5941 (6)0.3844 (4)0.6659 (5)0.0380 (16)
C50.6515 (9)0.3155 (4)0.6883 (7)0.062 (2)
C60.5895 (7)0.2505 (5)0.6710 (7)0.063 (2)
C70.4678 (6)0.2544 (4)0.6244 (5)0.0431 (18)
C80.3994 (8)0.1885 (4)0.6037 (6)0.053 (2)
H80.43400.14330.62290.064*
C90.2836 (9)0.1930 (5)0.5557 (7)0.063 (2)
H90.23880.15080.54030.075*
C100.2342 (7)0.2594 (5)0.5305 (7)0.055 (2)
H100.15520.26130.49660.066*
C110.4090 (6)0.3201 (3)0.5978 (5)0.0338 (16)
C120.4738 (5)0.3869 (3)0.6196 (5)0.0335 (16)
C130.0848 (7)0.4147 (4)0.2775 (7)0.055 (2)
H130.10800.36660.29330.066*
C140.0374 (8)0.4324 (5)0.1743 (7)0.061 (2)
H140.02870.39720.12230.073*
C150.0034 (7)0.5036 (5)0.1506 (6)0.053 (2)
H150.02980.51700.08200.064*
C160.0190 (6)0.5564 (4)0.2312 (5)0.0432 (18)
C170.0122 (5)0.6312 (4)0.2098 (5)0.052 (2)
C180.0077 (7)0.6805 (4)0.2948 (6)0.055 (2)
C190.0460 (6)0.6571 (4)0.3993 (6)0.0447 (18)
C200.0688 (7)0.7058 (4)0.4853 (7)0.055 (2)
H200.04830.75480.47490.067*
C210.1205 (8)0.6816 (5)0.5829 (7)0.059 (2)
H210.13480.71310.63980.071*
C220.1506 (7)0.6090 (5)0.5945 (6)0.056 (2)
H220.18650.59250.66110.067*
C230.0809 (6)0.5844 (3)0.4175 (5)0.0369 (16)
C240.0632 (5)0.5330 (3)0.3334 (5)0.0322 (15)
C250.6149 (7)0.4146 (4)0.9278 (5)0.0419 (18)
C260.5083 (7)0.4530 (4)0.8867 (5)0.0411 (18)
C270.4075 (6)0.4103 (4)0.8430 (5)0.0388 (17)
C280.4092 (7)0.3351 (4)0.8460 (5)0.0433 (18)
H280.34210.30800.81810.052*
C290.5165 (8)0.3002 (4)0.8928 (5)0.0434 (19)
C300.6177 (7)0.3387 (4)0.9327 (6)0.0435 (18)
H300.68710.31430.96250.052*
C310.2956 (8)0.4467 (5)0.7881 (6)0.050 (2)
N10.4178 (5)0.4524 (3)0.5970 (4)0.0347 (13)
N20.2931 (5)0.3228 (3)0.5518 (5)0.0399 (14)
N30.0992 (5)0.4629 (3)0.3562 (5)0.0422 (15)
N40.1319 (5)0.5605 (3)0.5164 (5)0.0423 (14)
N50.7268 (7)0.4516 (5)0.9629 (5)0.0587 (19)
N60.5177 (8)0.2213 (4)0.9005 (5)0.0560 (19)
O10.7645 (7)0.3121 (4)0.7270 (6)0.088 (2)
O20.6419 (7)0.1890 (4)0.6988 (6)0.096 (2)
O30.0430 (5)0.6542 (3)0.1162 (4)0.0700 (18)
O40.0502 (6)0.7445 (3)0.2780 (5)0.080 (2)
O50.8165 (6)0.4147 (4)0.9745 (6)0.091 (2)
O60.7295 (6)0.5175 (4)0.9763 (6)0.085 (2)
O70.5032 (6)0.5236 (3)0.8852 (4)0.0608 (16)
H70.43650.53660.85650.091*
O80.2947 (6)0.5172 (3)0.7949 (5)0.0684 (17)
O90.2133 (5)0.4109 (4)0.7368 (5)0.0641 (16)
O100.4296 (7)0.1876 (3)0.8584 (5)0.0713 (19)
O110.6097 (6)0.1916 (3)0.9511 (5)0.0684 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0472 (4)0.0491 (4)0.0609 (4)0.0150 (3)0.0036 (3)0.0149 (3)
C10.056 (5)0.038 (4)0.039 (4)0.007 (4)0.015 (4)0.001 (3)
C20.054 (5)0.046 (5)0.048 (5)0.011 (4)0.019 (4)0.001 (4)
C30.033 (4)0.065 (6)0.042 (4)0.003 (4)0.008 (3)0.006 (4)
C40.036 (4)0.043 (4)0.037 (4)0.007 (3)0.013 (3)0.001 (3)
C50.084 (7)0.059 (5)0.049 (5)0.022 (5)0.028 (5)0.008 (4)
C60.067 (5)0.068 (6)0.057 (5)0.007 (5)0.019 (4)0.001 (5)
C70.056 (4)0.045 (4)0.033 (4)0.005 (4)0.020 (3)0.001 (3)
C80.085 (5)0.031 (4)0.049 (5)0.014 (4)0.026 (4)0.008 (4)
C90.077 (5)0.053 (5)0.064 (6)0.012 (5)0.027 (4)0.010 (5)
C100.043 (5)0.050 (5)0.072 (6)0.002 (4)0.014 (4)0.009 (4)
C110.044 (4)0.027 (4)0.031 (4)0.008 (3)0.011 (3)0.001 (3)
C120.041 (4)0.031 (4)0.030 (4)0.001 (3)0.011 (3)0.002 (3)
C130.051 (5)0.036 (4)0.072 (6)0.001 (4)0.005 (4)0.002 (4)
C140.056 (6)0.057 (6)0.063 (6)0.002 (4)0.002 (4)0.024 (5)
C150.047 (5)0.060 (6)0.047 (5)0.001 (4)0.003 (4)0.002 (4)
C160.032 (4)0.042 (4)0.053 (5)0.000 (3)0.006 (3)0.004 (4)
C170.041 (5)0.053 (5)0.058 (5)0.003 (4)0.002 (4)0.019 (4)
C180.041 (5)0.049 (5)0.071 (6)0.004 (4)0.004 (4)0.006 (5)
C190.038 (4)0.037 (4)0.058 (5)0.001 (3)0.008 (4)0.001 (4)
C200.045 (5)0.035 (4)0.084 (7)0.001 (4)0.012 (5)0.008 (4)
C210.052 (5)0.055 (5)0.069 (6)0.003 (4)0.012 (5)0.017 (5)
C220.047 (5)0.070 (6)0.047 (5)0.002 (4)0.004 (4)0.005 (4)
C230.028 (4)0.036 (4)0.045 (4)0.003 (3)0.005 (3)0.002 (3)
C240.022 (3)0.029 (4)0.045 (4)0.000 (3)0.006 (3)0.004 (3)
C250.056 (5)0.040 (4)0.029 (4)0.010 (4)0.008 (3)0.003 (3)
C260.061 (5)0.033 (4)0.033 (4)0.001 (4)0.018 (4)0.003 (3)
C270.045 (5)0.039 (4)0.035 (4)0.001 (3)0.016 (3)0.003 (3)
C280.061 (5)0.042 (4)0.032 (4)0.008 (4)0.019 (4)0.002 (3)
C290.071 (6)0.030 (4)0.035 (4)0.006 (4)0.024 (4)0.006 (3)
C300.047 (5)0.046 (5)0.038 (4)0.004 (4)0.013 (3)0.004 (3)
C310.060 (6)0.049 (5)0.048 (5)0.014 (4)0.024 (4)0.011 (4)
N10.036 (3)0.032 (3)0.035 (3)0.002 (3)0.008 (3)0.000 (3)
N20.038 (4)0.037 (3)0.045 (3)0.000 (3)0.009 (3)0.001 (3)
N30.038 (4)0.032 (3)0.053 (4)0.000 (3)0.004 (3)0.002 (3)
N40.037 (3)0.043 (4)0.046 (4)0.003 (3)0.007 (3)0.006 (3)
N50.059 (5)0.071 (6)0.042 (4)0.011 (4)0.006 (3)0.007 (4)
N60.091 (6)0.039 (4)0.046 (4)0.003 (4)0.032 (4)0.003 (3)
O10.081 (5)0.099 (6)0.084 (5)0.033 (4)0.020 (4)0.021 (4)
O20.086 (6)0.079 (5)0.110 (6)0.022 (4)0.003 (4)0.000 (4)
O30.067 (4)0.071 (4)0.067 (4)0.003 (3)0.005 (3)0.024 (3)
O40.097 (5)0.040 (4)0.094 (5)0.018 (3)0.005 (4)0.016 (3)
O50.055 (5)0.099 (6)0.113 (6)0.004 (4)0.008 (4)0.033 (5)
O60.089 (5)0.050 (4)0.098 (5)0.024 (4)0.016 (4)0.002 (4)
O70.086 (5)0.039 (3)0.058 (4)0.000 (3)0.019 (3)0.001 (3)
O80.080 (5)0.057 (4)0.073 (4)0.022 (3)0.028 (3)0.010 (3)
O90.041 (4)0.081 (4)0.069 (4)0.004 (3)0.012 (3)0.002 (3)
O100.110 (6)0.039 (3)0.066 (4)0.015 (4)0.025 (4)0.003 (3)
O110.088 (5)0.042 (3)0.083 (4)0.017 (3)0.036 (4)0.021 (3)
Geometric parameters (Å, º) top
Ag1—N12.400 (6)C16—C241.394 (7)
Ag1—N22.351 (6)C16—C171.428 (7)
Ag1—N32.337 (6)C17—O31.275 (7)
Ag1—N42.377 (6)C17—C181.432 (8)
Ag1—O92.847 (6)C18—O41.272 (9)
C1—N11.333 (9)C18—C191.438 (8)
C1—C21.380 (11)C19—C231.397 (7)
C1—H10.9300C19—C201.419 (11)
C2—C31.383 (11)C20—C211.361 (12)
C2—H20.9300C20—H200.9300
C3—C41.394 (10)C21—C221.374 (12)
C3—H30.9300C21—H210.9300
C4—C121.400 (7)C22—N41.340 (10)
C4—C51.426 (8)C22—H220.9300
C5—O11.304 (11)C23—N41.373 (8)
C5—C61.385 (8)C23—C241.433 (7)
C6—O21.293 (10)C24—N31.362 (8)
C6—C71.417 (8)C25—C301.390 (10)
C7—C111.390 (7)C25—C261.426 (10)
C7—C81.438 (11)C25—N51.454 (10)
C8—C91.358 (12)C26—O71.292 (8)
C8—H80.9300C26—C271.421 (10)
C9—C101.353 (12)C27—C281.377 (10)
C9—H90.9300C27—C311.498 (11)
C10—N21.347 (10)C28—C291.416 (11)
C10—H100.9300C28—H280.9300
C11—N21.353 (8)C29—C301.374 (11)
C11—C121.432 (7)C29—N61.448 (10)
C12—N11.365 (8)C30—H300.9300
C13—N31.343 (10)C31—O91.228 (10)
C13—C141.383 (12)C31—O81.293 (10)
C13—H130.9300N5—O61.218 (9)
C14—C151.376 (11)N5—O51.230 (9)
C14—H140.9300N6—O101.218 (9)
C15—C161.417 (10)N6—O111.252 (9)
C15—H150.9300O7—H70.8200
N3—Ag1—N2115.0 (2)O4—C18—C19120.4 (7)
N3—Ag1—N470.7 (2)C17—C18—C19119.4 (7)
N2—Ag1—N4174.1 (2)C23—C19—C20117.9 (7)
N3—Ag1—N1130.3 (2)C23—C19—C18119.5 (7)
N2—Ag1—N171.5 (2)C20—C19—C18122.5 (7)
N4—Ag1—N1106.3 (2)C21—C20—C19120.8 (7)
N3—Ag1—O9147.53 (19)C21—C20—H20119.6
N2—Ag1—O976.74 (19)C19—C20—H20119.6
N4—Ag1—O997.64 (19)C20—C21—C22117.7 (8)
N1—Ag1—O981.75 (18)C20—C21—H21121.2
N1—C1—C2124.2 (7)C22—C21—H21121.2
N1—C1—H1117.9N4—C22—C21124.4 (8)
C2—C1—H1117.9N4—C22—H22117.8
C1—C2—C3117.6 (7)C21—C22—H22117.8
C1—C2—H2121.2N4—C23—C19120.7 (6)
C3—C2—H2121.2N4—C23—C24118.6 (6)
C2—C3—C4119.9 (7)C19—C23—C24120.6 (6)
C2—C3—H3120.0N3—C24—C16121.9 (6)
C4—C3—H3120.0N3—C24—C23117.9 (6)
C3—C4—C12119.1 (6)C16—C24—C23120.1 (6)
C3—C4—C5121.0 (7)C30—C25—C26121.4 (7)
C12—C4—C5119.9 (7)C30—C25—N5116.1 (7)
O1—C5—C6118.0 (7)C26—C25—N5122.5 (7)
O1—C5—C4120.7 (8)O7—C26—C27120.8 (7)
C6—C5—C4121.3 (9)O7—C26—C25122.2 (7)
O2—C6—C5120.3 (8)C27—C26—C25117.0 (6)
O2—C6—C7122.0 (8)C28—C27—C26122.2 (7)
C5—C6—C7117.8 (8)C28—C27—C31117.6 (7)
C11—C7—C6122.8 (7)C26—C27—C31120.2 (7)
C11—C7—C8117.1 (7)C27—C28—C29117.9 (7)
C6—C7—C8120.1 (7)C27—C28—H28121.0
C9—C8—C7119.4 (7)C29—C28—H28121.0
C9—C8—H8120.3C30—C29—C28122.3 (7)
C7—C8—H8120.3C30—C29—N6119.4 (8)
C10—C9—C8119.5 (8)C28—C29—N6118.2 (8)
C10—C9—H9120.3C29—C30—C25119.0 (7)
C8—C9—H9120.3C29—C30—H30120.5
N2—C10—C9123.6 (8)C25—C30—H30120.5
N2—C10—H10118.2O9—C31—O8123.5 (8)
C9—C10—H10118.2O9—C31—C27120.9 (8)
N2—C11—C7122.1 (6)O8—C31—C27115.5 (8)
N2—C11—C12119.3 (5)C1—N1—C12118.7 (6)
C7—C11—C12118.6 (6)C1—N1—Ag1127.8 (5)
N1—C12—C4120.6 (6)C12—N1—Ag1113.4 (4)
N1—C12—C11119.9 (6)C10—N2—C11118.3 (6)
C4—C12—C11119.5 (6)C10—N2—Ag1125.8 (5)
N3—C13—C14123.8 (8)C11—N2—Ag1115.8 (4)
N3—C13—H13118.1C13—N3—C24118.2 (6)
C14—C13—H13118.1C13—N3—Ag1124.2 (5)
C15—C14—C13118.2 (8)C24—N3—Ag1116.8 (4)
C15—C14—H14120.9C22—N4—C23118.5 (6)
C13—C14—H14120.9C22—N4—Ag1125.9 (5)
C14—C15—C16119.8 (7)C23—N4—Ag1114.5 (4)
C14—C15—H15120.1O6—N5—O5122.3 (8)
C16—C15—H15120.1O6—N5—C25119.8 (8)
C24—C16—C15118.0 (6)O5—N5—C25117.8 (8)
C24—C16—C17120.3 (6)O10—N6—O11123.8 (7)
C15—C16—C17121.7 (6)O10—N6—C29118.7 (8)
O3—C17—C18120.3 (7)O11—N6—C29117.6 (8)
O3—C17—C16120.4 (7)C26—O7—H7109.5
C18—C17—C16119.3 (6)C31—O9—Ag1105.3 (5)
O4—C18—C17120.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O80.821.712.457 (9)151

Experimental details

Crystal data
Chemical formulaC24H12AgN4O4·C7H3N2O7
Mr755.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)174
a, b, c (Å)11.757 (2), 18.297 (4), 13.223 (3)
β (°) 103.91 (3)
V3)2761.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.3 × 0.24 × 0.2
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
SADABS (Bruker, 2002)
Tmin, Tmax0.780, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
12726, 5059, 3914
Rint0.052
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.163, 1.11
No. of reflections5013
No. of parameters442
No. of restraints22
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0354P)2 + 13.4705P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.11, 0.72

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS-97 (Sheldrick, 2008), SHELXL-97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N12.400 (6)Ag1—N32.337 (6)
Ag1—N22.351 (6)Ag1—N42.377 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7···O80.821.712.457 (9)151.1
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G. B., Liu, C. B., Liu, B., Wang, Q. W. & Xu, Z. L. (2008). CrystEngComm, 10, 184–191.  Web of Science CSD CrossRef CAS Google Scholar
First citationDickeson, J. E. & Sumers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.  CrossRef CAS Google Scholar
First citationHiort, C., Lincoln, P. & Norden, B. (1993). J. Am. Chem. Soc. 115, 3448–3454.  CrossRef CAS Web of Science Google Scholar
First citationOnuegbu, J., Butcher, R. J., Hosten, C., Udeochu, U. C. & Bakare, O. (2009). Acta Cryst. E65, m1119–m1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Guo, X.-X. & Zhang, C.-H. (2007). Acta Cryst. E63, m399–m401.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds