inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cs3Sm7Se12

aInstitut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: schleid@iac.uni-stuttgart.de

(Received 14 November 2011; accepted 1 December 2011; online 7 December 2011)

The title compound, tricaesium hepta­samarium(III) dodeca­selenide, is setting a new starting point for realization of the channel structure of the Cs3M7Se12 series, now with M = Sm, Gd–Er. This Cs3Y7Se12-type arrangement is structurally based on the Z-type sesquiselenides M2Se3 adopting the Sc2S3 structure. Thus, the structural set-up of Cs3Sm7Se12 consists of edge- and vertex-connected [SmSe6]9− octa­hedra [dØ(Sm3+ – Se2−) = 2.931 Å], forming a rock-salt-related network [Sm7Se12]3− with channels along [001] that are apt to take up monovalent cations (here Cs+) with coordination numbers of 7 + 1 for one and of 6 for the second cation. The latter cation has a trigonal–prismatic coordination and shows half-occupancy, resulting in an impossible short distance [2.394 (4) Å] between symmetrically coupled Cs+ cations of the same kind. While one Sm atom occupies Wyckoff position 2b with site symmetry ..2/m, all other 11 crystallographically different atoms (namely 2 × Cs, 3 × Sm and 6 × Se) are located at Wyckoff positions 4g with site symmetry ..m.

Related literature

For prototypic Cs3Y7Se12 or Rb3Yb7Se12, see: Folchnandt & Schleid (1996[Folchnandt, M. & Schleid, Th. (1996). Z. Kristallogr. Suppl. 12, 125.]); Kim et al. (1996[Kim, S.-J., Park, S.-J., Yun, H. & Do, J. (1996). Inorg. Chem. 35, 5283-5289.]). For other representatives of the A3M7Ch12 series, see: Folchnandt & Schleid (1997[Folchnandt, M. & Schleid, Th. (1997). Z. Anorg. Allg. Chem. 623, 1501-1502.], 1998[Folchnandt, M. & Schleid, Th. (1998). Z. Anorg. Allg. Chem. 624, 1595-1600.], 2000[Folchnandt, M. & Schleid, Th. (2000). Z. Kristallogr. New Cryst. Struct. 215, 9-10.]); Tougaît et al. (2001[Tougaît, O., Noël, H. & Ibers, J. A. (2001). Solid State Sci. 3, 513-518.]); Lissner et al. (2002[Lissner, F., Hartenbach, I. & Schleid, Th. (2002). Z. Anorg. Allg. Chem. 628, 1552-1555.]). A detailed description of the relation between the crystal structures of the Cs3M7Se12 series and Z-type Sc2Ch3 (Dismukes & White, 1964[Dismukes, J. P. & White, J. G. (1964). Inorg. Chem. 3, 1220-1228.]) is provided by Folchnandt & Schleid (1998[Folchnandt, M. & Schleid, Th. (1998). Z. Anorg. Allg. Chem. 624, 1595-1600.]).

Experimental

Crystal data
  • Cs3Sm7Se12

  • Mr = 2398.70

  • Orthorhombic,

  • a = 13.0387 (9) Å

  • b = 26.6742 (19) Å

  • c = 4.2351 (3) Å

  • V = 1472.95 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 32.19 mm−1

  • T = 293 K

  • 0.10 × 0.07 × 0.05 mm

Data collection
  • Stoe IPDS-I diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.115, Tmax = 0.216

  • 15080 measured reflections

  • 2135 independent reflections

  • 1587 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.072

  • S = 0.97

  • 2135 reflections

  • 72 parameters

  • Δρmax = 2.09 e Å−3

  • Δρmin = −1.78 e Å−3

Table 1
Selected bond lengths (Å)

Cs1—Se4i 3.6071 (12)
Cs1—Se4ii 3.6071 (12)
Cs1—Se6ii 3.7129 (12)
Cs1—Se6i 3.7129 (12)
Cs1—Se3iii 3.7639 (14)
Cs1—Se5i 3.8053 (12)
Cs1—Se5ii 3.8053 (12)
Cs1—Se1 4.5421 (14)
Cs2—Se2ii 3.5286 (16)
Cs2—Se2i 3.5286 (16)
Cs2—Se2v 3.6917 (17)
Cs2—Se2vi 3.6917 (17)
Cs2—Se5iii 3.719 (2)
Cs2—Se6iii 3.924 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) ; (iv) ; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIF4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); cell refinement: DIF4; data reduction: REDU4 (Stoe & Cie, 1992[Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cs3Sm7Se12 crystallizes isotypically to the large family of ternary A3M7Ch12 representatives with a channel-like structure. For Ch = S, A = K, Rb, M = Er, see: Lissner et al. (2002); for Ch = Se, A = Rb, M = Dy, Yb, see: Folchnandt & Schleid (2000), Kim et al. (1996); for Ch = Se, A = Cs, M = Y, Gd – Er, see: Folchnandt & Schleid (1996, 1997, 1998); for Ch = Te, A = Cs, M = Sm, Gd, Tb, see: Tougaît et al. (2001).

In the title compound, [SmSe6]9- octahedra (d(Sm3+–Se2-) = 2.8578 (9)–3.0614 (13) Å) are connected via edges and corners to form a [Sm7Se12]3- network with triple-channels occupied by Cs+ cations (Fig. 1). This network represents a defect rock-salt-type structure strongly related to that of the Z-type sesquiselenides M2Se3 (Dismukes & White, 1964) according to the formula [□]4[M]8[Se]12. In tricaesium heptasamarium(III) dodecaselenide three Cs+ cations replace one Sm3+ for charge balance. The triple-channels are arranged in a herringbone pattern and run through the structure parallel to [001]. They are filled with two crystallographically different Cs+ cations (Fig. 2). While Cs1+ exhibits a coordination number of 7+1 with an extra secondary contact (d(Cs1+–Se2-) = 3.6071 (12)–3.8053 (12) Å and 4.5421 (14) Å; Fig. 2, left), the Cs2+ cations have only six selenide anions as nearest neighbours in the shape of a trigonal prism (d(Cs2+–Se2-) = 3.5286 (16) – 3.924 (2) Å; Fig. 2, right). Owing to the very close distances between these Cs2+ cations (d(Cs2+···Cs2+) = 2.394 (4) Å) only a half-occupation of this position is possible (Fig. 2, right and Fig. 3) and stoichiometrically meaningful.

Related literature top

For prototypic Cs3Y7Se12 or Rb3Yb7Se12, see: Folchnandt & Schleid (1996); Kim et al. (1996). For other representatives of the A3M7Ch12 series, see: Folchnandt & Schleid (1997, 1998, 2000); Tougaît et al. (2001); Lissner et al. (2002). A detailed description of the relation between the crystal structures of the Cs3M7Se12 series and Z-type Sc2Ch3 (Dismukes & White, 1964) is provided by Folchnandt & Schleid (1998).

Experimental top

Yellow, transparent, needle-shaped single crystals of Cs3Sm7Se12 were obtained as the main product of a reaction between 0.10 g Sm, 0.08 g Se and 0.50 g CsCl added as flux and caesium source upon heating at 1073 K for 10 days in a sealed, evacuated fused-silica vessel.

Refinement top

In the final difference Fourier map the highest peak is 1.24 Å away from Se2 and the deepest hole is located 0.83 Å away from Sm2.

Computing details top

Data collection: DIF4 (Stoe & Cie, 1992); cell refinement: DIF4 (Stoe & Cie, 1992); data reduction: REDU4 (Stoe & Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Channel-structure representation of Cs3Sm7Se12 as octahedral framework with indicated unit cell.
[Figure 2] Fig. 2. Coordination spheres of the Cs1+ (left) and Cs2+ (right) cations in Cs3Sm7Se12. Displacement ellipsoids are drawn at the 90% probability level. Symmetry codes: (i) -x+1/2, y-1/2, z+1/2; (ii) -x+1/2, y-1/2, z-1/2; (iii) -x+1, -y+1, -z; (viii) -x+1, -y, -z; (ix) x+1/2, -y+1/2, -z-1/2; (x) x+1/2, -y+1/2, -z+1/2.
[Figure 3] Fig. 3. Interplay of the Cs+ cations situated in the triple-channels of the crystal structure of Cs3Sm7Se12. Displacement ellipsoids are drawn at the 90% probability level.
tricaesium heptasamarium(III) dodecaselenide top
Crystal data top
Cs3Sm7Se12F(000) = 2014
Mr = 2398.70Dx = 5.408 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2 2nCell parameters from 5000 reflections
a = 13.0387 (9) Åθ = 2.1–29.3°
b = 26.6742 (19) ŵ = 32.19 mm1
c = 4.2351 (3) ÅT = 293 K
V = 1472.95 (18) Å3Needle, yellow
Z = 20.10 × 0.07 × 0.05 mm
Data collection top
Stoe IPDS-I
diffractometer
2135 independent reflections
Radiation source: fine-focus sealed tube1587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
imaging plate detector system scansθmax = 29.0°, θmin = 2.8°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
h = 1717
Tmin = 0.115, Tmax = 0.216k = 3636
15080 measured reflectionsl = 55
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0371P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.014
S = 0.97Δρmax = 2.09 e Å3
2135 reflectionsΔρmin = 1.78 e Å3
72 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00017 (4)
Crystal data top
Cs3Sm7Se12V = 1472.95 (18) Å3
Mr = 2398.70Z = 2
Orthorhombic, PnnmMo Kα radiation
a = 13.0387 (9) ŵ = 32.19 mm1
b = 26.6742 (19) ÅT = 293 K
c = 4.2351 (3) Å0.10 × 0.07 × 0.05 mm
Data collection top
Stoe IPDS-I
diffractometer
2135 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1999)
1587 reflections with I > 2σ(I)
Tmin = 0.115, Tmax = 0.216Rint = 0.065
15080 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03572 parameters
wR(F2) = 0.0720 restraints
S = 0.97Δρmax = 2.09 e Å3
2135 reflectionsΔρmin = 1.78 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.28796 (6)0.36600 (3)0.00000.0252 (2)
Cs20.56532 (14)0.03154 (7)0.00000.0311 (5)0.50
Sm10.00000.00000.50000.0124 (2)
Sm20.21848 (5)0.08314 (2)0.00000.01316 (15)
Sm30.40590 (4)0.71214 (2)0.00000.01224 (15)
Sm40.07792 (5)0.68240 (2)0.00000.01271 (15)
Se10.25592 (8)0.19644 (4)0.00000.0125 (3)
Se20.12980 (9)0.57736 (4)0.00000.0142 (3)
Se30.43019 (9)0.60350 (4)0.00000.0129 (3)
Se40.05307 (8)0.78890 (4)0.00000.0133 (3)
Se50.15051 (9)0.98065 (4)0.00000.0142 (3)
Se60.42742 (9)0.82140 (4)0.00000.0133 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0214 (4)0.0295 (4)0.0247 (6)0.0002 (3)0.0000.000
Cs20.0266 (9)0.0273 (9)0.0393 (14)0.0114 (7)0.0000.000
Sm10.0147 (4)0.0109 (4)0.0116 (6)0.0030 (3)0.0000.000
Sm20.0153 (3)0.0135 (3)0.0107 (4)0.0027 (2)0.0000.000
Sm30.0137 (3)0.0117 (3)0.0113 (4)0.0018 (2)0.0000.000
Sm40.0131 (3)0.0130 (3)0.0121 (4)0.0034 (2)0.0000.000
Se10.0123 (5)0.0153 (5)0.0101 (7)0.0004 (4)0.0000.000
Se20.0147 (6)0.0142 (5)0.0137 (8)0.0007 (4)0.0000.000
Se30.0154 (5)0.0096 (5)0.0138 (7)0.0007 (4)0.0000.000
Se40.0144 (5)0.0128 (5)0.0126 (8)0.0000 (4)0.0000.000
Se50.0155 (5)0.0129 (5)0.0141 (8)0.0004 (4)0.0000.000
Se60.0140 (5)0.0134 (5)0.0124 (8)0.0008 (4)0.0000.000
Geometric parameters (Å, º) top
Cs1—Se4i3.6071 (12)Sm1—Se5xi2.9328 (8)
Cs1—Se4ii3.6071 (12)Sm1—Se5xii2.9328 (8)
Cs1—Se6ii3.7129 (12)Sm1—Se5xiii2.9328 (8)
Cs1—Se6i3.7129 (12)Sm2—Se5xiii2.8738 (13)
Cs1—Se3iii3.7639 (14)Sm2—Se2i2.9020 (10)
Cs1—Se5i3.8053 (12)Sm2—Se2ii2.9020 (10)
Cs1—Se5ii3.8053 (12)Sm2—Se3ii2.9217 (9)
Cs1—Se14.5421 (14)Sm2—Se3i2.9217 (9)
Cs1—Cs1iv4.2351 (3)Sm2—Se13.0614 (13)
Cs1—Cs1v4.2351 (3)Sm3—Se4xiv2.8578 (9)
Cs2—Cs2vi2.394 (4)Sm3—Se4xv2.8578 (9)
Cs2—Se2ii3.5286 (16)Sm3—Se32.9152 (13)
Cs2—Se2i3.5286 (16)Sm3—Se62.9279 (13)
Cs2—Se2vii3.6917 (17)Sm3—Se1xvi3.0185 (9)
Cs2—Se2viii3.6917 (17)Sm3—Se1xvii3.0185 (9)
Cs2—Se5iii3.719 (2)Sm4—Se42.8591 (13)
Cs2—Se6iii3.924 (2)Sm4—Se22.8823 (13)
Cs2—Sm2vi4.1597 (18)Sm4—Se6xviii2.8888 (9)
Sm1—Se3i2.9070 (11)Sm4—Se6xix2.8888 (9)
Sm1—Se3ix2.9070 (11)Sm4—Se1xvii3.0526 (9)
Sm1—Se5x2.9328 (8)Sm4—Se1xvi3.0526 (9)
Se4i—Cs1—Se4ii71.90 (3)Se2ii—Sm2—Se186.77 (3)
Se4i—Cs1—Se6ii125.93 (3)Se3ii—Sm2—Se185.54 (3)
Se4ii—Cs1—Se6ii85.24 (2)Se3i—Sm2—Se185.54 (3)
Se4i—Cs1—Se6i85.24 (2)Se4xiv—Sm3—Se4xv95.63 (4)
Se4ii—Cs1—Se6i125.93 (3)Se4xiv—Sm3—Se385.26 (3)
Se6ii—Cs1—Se6i69.55 (3)Se4xv—Sm3—Se385.26 (3)
Se4i—Cs1—Se3iii64.04 (3)Se4xiv—Sm3—Se686.87 (3)
Se4ii—Cs1—Se3iii64.04 (3)Se4xv—Sm3—Se686.87 (3)
Se6ii—Cs1—Se3iii143.874 (16)Se3—Sm3—Se6168.27 (4)
Se6i—Cs1—Se3iii143.874 (16)Se4xiv—Sm3—Se1xvi171.05 (4)
Se4i—Cs1—Se5i90.60 (2)Se4xv—Sm3—Se1xvi87.03 (2)
Se4ii—Cs1—Se5i131.59 (3)Se3—Sm3—Se1xvi86.44 (3)
Se6ii—Cs1—Se5i137.25 (3)Se6—Sm3—Se1xvi101.84 (3)
Se6i—Cs1—Se5i95.72 (2)Se4xiv—Sm3—Se1xvii87.03 (2)
Se3iii—Cs1—Se5i67.69 (3)Se4xv—Sm3—Se1xvii171.05 (4)
Se4i—Cs1—Se5ii131.59 (3)Se3—Sm3—Se1xvii86.44 (3)
Se4ii—Cs1—Se5ii90.60 (2)Se6—Sm3—Se1xvii101.84 (3)
Se6ii—Cs1—Se5ii95.72 (2)Se1xvi—Sm3—Se1xvii89.10 (3)
Se6i—Cs1—Se5ii137.25 (3)Se4—Sm4—Se2172.93 (4)
Se3iii—Cs1—Se5ii67.69 (3)Se4—Sm4—Se6xviii87.59 (3)
Se5i—Cs1—Se5ii67.63 (2)Se2—Sm4—Se6xviii97.20 (3)
Se2ii—Cs2—Se2vii95.31 (3)Se4—Sm4—Se6xix87.59 (3)
Se2i—Cs2—Se2vii141.35 (6)Se2—Sm4—Se6xix97.20 (3)
Se2ii—Cs2—Se2viii141.35 (6)Se6xviii—Sm4—Se6xix94.28 (4)
Se2i—Cs2—Se2viii95.31 (3)Se4—Sm4—Se1xvii87.63 (3)
Se2vii—Cs2—Se2viii70.00 (4)Se2—Sm4—Se1xvii87.29 (3)
Se2ii—Cs2—Se5iii138.46 (3)Se6xviii—Sm4—Se1xvii174.23 (4)
Se2i—Cs2—Se5iii138.46 (3)Se6xix—Sm4—Se1xvii88.74 (2)
Se2vii—Cs2—Se5iii72.81 (4)Se4—Sm4—Se1xvi87.63 (3)
Se2viii—Cs2—Se5iii72.81 (4)Se2—Sm4—Se1xvi87.29 (3)
Se2ii—Cs2—Se6iii70.80 (4)Se6xviii—Sm4—Se1xvi88.74 (2)
Se2i—Cs2—Se6iii70.80 (4)Se6xix—Sm4—Se1xvi174.23 (4)
Se2vii—Cs2—Se6iii141.36 (3)Se1xvii—Sm4—Se1xvi87.85 (3)
Se2viii—Cs2—Se6iii141.36 (3)Sm3ii—Se1—Sm3i89.10 (3)
Se5iii—Cs2—Se6iii93.63 (5)Sm3ii—Se1—Sm4i178.80 (4)
Se3i—Sm1—Se3ix180.000 (14)Sm3i—Se1—Sm4i91.519 (12)
Se3i—Sm1—Se5x92.43 (3)Sm3ii—Se1—Sm4ii91.519 (12)
Se3ix—Sm1—Se5x87.57 (3)Sm3i—Se1—Sm4ii178.80 (4)
Se3i—Sm1—Se5xi87.57 (3)Sm4i—Se1—Sm4ii87.85 (3)
Se3ix—Sm1—Se5xi92.43 (3)Sm3ii—Se1—Sm291.46 (3)
Se5x—Sm1—Se5xi180.00 (4)Sm3i—Se1—Sm291.46 (3)
Se3i—Sm1—Se5xii92.43 (3)Sm4i—Se1—Sm289.55 (3)
Se3ix—Sm1—Se5xii87.57 (3)Sm4ii—Se1—Sm289.55 (3)
Se5x—Sm1—Se5xii92.44 (3)Sm4—Se2—Sm2xvii96.22 (3)
Se5xi—Sm1—Se5xii87.56 (3)Sm4—Se2—Sm2xvi96.22 (3)
Se3i—Sm1—Se5xiii87.57 (3)Sm2xvii—Se2—Sm2xvi93.72 (4)
Se3ix—Sm1—Se5xiii92.43 (3)Sm1viii—Se3—Sm3167.99 (5)
Se5x—Sm1—Se5xiii87.56 (3)Sm1viii—Se3—Sm2xvi91.79 (3)
Se5xi—Sm1—Se5xiii92.44 (3)Sm3—Se3—Sm2xvi96.47 (3)
Se5xii—Sm1—Se5xiii180.0Sm1viii—Se3—Sm2xvii91.79 (3)
Se5xiii—Sm2—Se2i99.19 (3)Sm3—Se3—Sm2xvii96.47 (3)
Se5xiii—Sm2—Se2ii99.19 (3)Sm2xvi—Se3—Sm2xvii92.90 (4)
Se2i—Sm2—Se2ii93.72 (4)Sm3xviii—Se4—Sm3xix95.63 (4)
Se5xiii—Sm2—Se3ii88.41 (3)Sm3xviii—Se4—Sm493.81 (3)
Se2i—Sm2—Se3ii172.31 (4)Sm3xix—Se4—Sm493.81 (3)
Se2ii—Sm2—Se3ii86.18 (2)Sm2xx—Se5—Sm1xxi92.23 (3)
Se5xiii—Sm2—Se3i88.41 (3)Sm2xx—Se5—Sm1xx92.23 (3)
Se2i—Sm2—Se3i86.18 (2)Sm1xxi—Se5—Sm1xx92.44 (3)
Se2ii—Sm2—Se3i172.31 (4)Sm4xiv—Se6—Sm4xv94.28 (4)
Se3ii—Sm2—Se3i92.90 (4)Sm4xiv—Se6—Sm391.72 (3)
Se5xiii—Sm2—Se1171.21 (4)Sm4xv—Se6—Sm391.72 (3)
Se2i—Sm2—Se186.77 (3)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z1/2; (iii) x+1, y+1, z; (iv) x, y, z1; (v) x, y, z+1; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z+1/2; (x) x, y+1, z; (xi) x, y1, z+1; (xii) x, y+1, z+1; (xiii) x, y1, z; (xiv) x+1/2, y+3/2, z+1/2; (xv) x+1/2, y+3/2, z1/2; (xvi) x+1/2, y+1/2, z1/2; (xvii) x+1/2, y+1/2, z+1/2; (xviii) x1/2, y+3/2, z1/2; (xix) x1/2, y+3/2, z+1/2; (xx) x, y+1, z; (xxi) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaCs3Sm7Se12
Mr2398.70
Crystal system, space groupOrthorhombic, Pnnm
Temperature (K)293
a, b, c (Å)13.0387 (9), 26.6742 (19), 4.2351 (3)
V3)1472.95 (18)
Z2
Radiation typeMo Kα
µ (mm1)32.19
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerStoe IPDS-I
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1999)
Tmin, Tmax0.115, 0.216
No. of measured, independent and
observed [I > 2σ(I)] reflections
15080, 2135, 1587
Rint0.065
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 0.97
No. of reflections2135
No. of parameters72
Δρmax, Δρmin (e Å3)2.09, 1.78

Computer programs: DIF4 (Stoe & Cie, 1992), REDU4 (Stoe & Cie, 1992), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Selected bond lengths (Å) top
Cs1—Se4i3.6071 (12)Cs2—Cs2iv2.394 (4)
Cs1—Se4ii3.6071 (12)Cs2—Se2ii3.5286 (16)
Cs1—Se6ii3.7129 (12)Cs2—Se2i3.5286 (16)
Cs1—Se6i3.7129 (12)Cs2—Se2v3.6917 (17)
Cs1—Se3iii3.7639 (14)Cs2—Se2vi3.6917 (17)
Cs1—Se5i3.8053 (12)Cs2—Se5iii3.719 (2)
Cs1—Se5ii3.8053 (12)Cs2—Se6iii3.924 (2)
Cs1—Se14.5421 (14)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y1/2, z1/2; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the State of Baden-Württemberg (Stuttgart) and the German Research Foundation (DFG; Bonn) within the funding programme Open Access Publishing. We thank Dr Falk Lissner for the data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDismukes, J. P. & White, J. G. (1964). Inorg. Chem. 3, 1220–1228.  CrossRef CAS Web of Science Google Scholar
First citationFolchnandt, M. & Schleid, Th. (1996). Z. Kristallogr. Suppl. 12, 125.  Google Scholar
First citationFolchnandt, M. & Schleid, Th. (1997). Z. Anorg. Allg. Chem. 623, 1501–1502.  CrossRef CAS Web of Science Google Scholar
First citationFolchnandt, M. & Schleid, Th. (1998). Z. Anorg. Allg. Chem. 624, 1595–1600.  CrossRef CAS Google Scholar
First citationFolchnandt, M. & Schleid, Th. (2000). Z. Kristallogr. New Cryst. Struct. 215, 9–10.  CAS Google Scholar
First citationKim, S.-J., Park, S.-J., Yun, H. & Do, J. (1996). Inorg. Chem. 35, 5283–5289.  CrossRef CAS Web of Science Google Scholar
First citationLissner, F., Hartenbach, I. & Schleid, Th. (2002). Z. Anorg. Allg. Chem. 628, 1552–1555.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTougaît, O., Noël, H. & Ibers, J. A. (2001). Solid State Sci. 3, 513–518.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds