metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(8-amino­quinoline-κ2N,N′)cadmium]-di-μ-thio­cyanato-κ2N:S;κ2S:N-[(8-amino­quinoline-κ2N,N′)cadmium]-di-μ-chlorido]

aAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, People's Republic of China
*Correspondence e-mail: xuheng312@163.com

(Received 21 November 2011; accepted 29 November 2011; online 3 December 2011)

In the title compound, [CdCl(NCS)(C9H8N2)]n, the CdII atom is in a distorted octa­hedral coordination environment defined by two chloride anions, two N atoms from an 8-amino­quinoline ligand, one N atom from one thio­cyanate anion and one S atom from a symmetry-related thio­cyanate anion. Two CdII atoms are bridged by two chloride anions, forming an inversion-related Cd2Cl2 unit; these units are further linked through thio­cyanate anions, leading to a chain structure extending parallel to [010]. Weak ππ stacking inter­actions with centroid–centroid distances of 3.430 (4) Å and an inter­planar separation of 3.390 (3) Å between the pyridine and benzene rings link the chains into a two-dimensional network parallel to (10[\overline{1}]). Weak inter­molecular C—H⋯Cl hydrogen-bonding inter­actions help to consolidate the crystal packing.

Related literature

For background and applications of 8-amino­quinoline and its derivatives, see: Fritsch et al. (2006[Fritsch, J. M., Thoreson, K. A. & McNeill, K. (2006). Dalton Trans. pp. 4814-4820.]); Kim et al. (2004[Kim, Y.-H., Youk, J.-S., Moon, S.-Y., Choe, J.-I. & Chang, S.-K. (2004). Chem. Lett. 33, 702-703.]); Li et al. (2005[Li, X.-G., Hua, Y.-M. & Huang, M.-R. (2005). Chem. Eur. J. 11, 4247-4256.]); Macias et al. (2003[Macias, B., Garcia, I., Villa, M. V., Borras, J., Casiineiras, A. & Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255-260.]); Bortoluzzi et al. (2006[Bortoluzzi, M., Paolucci, G., Pitteri, B. & Vavasori, A. (2006). Inorg. Chem. Commun. 9, 1301-1303.]); Tekwami & Walker (2006[Tekwami, B. L. & Walker, L. A. (2006). Curr. Opin. Infect. Dis. 19, 623-631.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl(NCS)(C9H8N2)]

  • Mr = 350.10

  • Triclinic, [P \overline 1]

  • a = 7.4965 (6) Å

  • b = 8.6245 (7) Å

  • c = 10.5247 (12) Å

  • α = 106.649 (7)°

  • β = 98.047 (7)°

  • γ = 112.561 (5)°

  • V = 577.53 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.28 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.635, Tmax = 0.685

  • 5150 measured reflections

  • 2104 independent reflections

  • 1961 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.04

  • 2104 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N3i 2.311 (2)
Cd1—N1 2.322 (2)
Cd1—N2 2.382 (3)
Cd1—Cl1 2.5495 (8)
Cd1—S1 2.6413 (8)
Cd1—Cl1ii 2.8088 (7)
Symmetry codes: (i) ; (ii) .

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1iii 0.93 2.84 3.723 (4) 160
Symmetry code: (iii) .

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

8-aminoquinoline and its derivatives are systems that have been recently focused on, because of antiprotozal and other pharmaceutical properties (Tekwami & Walker, 2006). They are also strongly fluorescent and have been employed in the analytical study of heavy metals (Fritsch et al., 2006; Macias et al., 2003). They also have been used to prepare highly conducting co-polymers (Li et al., 2005). Different functionalized molecules of 8- aminoquinoline have been recently reported (Kim et al., 2004). However, the coordination chemistry of 8-aminoquinoline, as such, is scarce (Bortoluzzi et al., 2006). We report here the crystal structure of the title compound, [CdCl(SCN)(C9H8N2)]n, (I).

As shown in Fig. 1, the asymmetric unit of (I) contains one CdII cation, one chloride anion and one thiocyanate anion. Each CdII cation is in a distorted octahedral coordination environment defined by two chloride anions, two nitrogen atoms from one 8-aminoquinoline ligand, one nitrogen atom from one thiocyanate anion and one sulfur atom from another thiocyanate anion. Two CdII atoms are connected by two chloride anions to form a dimer and these dimers are further bridged through two thiocyanate anions, leading to a chain structure extending parallel to [010] (Fig. 2). Moreover, weak π-π stacking interactions (centroid···centroid distances of 3.430 (4) Å and an interplanar separation of 3.390 (3) Å between pyridyl rings and benzene rings) link the chains into a two-dimensional supramolecular network in the (101) plane, which is further consolidated by intermolecular C—H···Cl hydrogen bonds to genrate a three-dimensional supramolecular structure (Fig. 3). It is interesting to note that the amino hydrogen atoms are not involved in any hydrogen bonding interactions.

Related literature top

For background and applications of 8-aminoquinoline and its derivatives, see: Fritsch et al. (2006); Kim et al. (2004); Li et al. (2005); Macias et al. (2003); Bortoluzzi et al. (2006); Tekwami & Walker (2006).

Experimental top

8-aminoquinoline (1 mmol) and potassium thiocyanate (1 mmol) in 20 ml methanol were added to a clear solution of cadmium chloride (1 mmol) in 20 ml methanol. Stirring was continued for 1 h; the colour changed to light yellow. The volume of the solution was reduced to 10 ml, filtered and kept for crystallization after addition of 2 drops of 2-methoxy ethanol. Colorless block-like crystals were obtained by slow evaporation of the solvent. Yield: 59%.

Refinement top

All hydrogen atoms bonded to carbon were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). The amino H atoms were found from difference maps and were refined with distance restraint of N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y - 1, -z + 1; (ii) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the chain structure extending parallel to [010].
[Figure 3] Fig. 3. A view showing part of the three-dimensional supramolecular network linked by C–H···Cl hydrogen bonds and weak ππ stacking interactions. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(8-aminoquinoline-κ2N,N')cadmium]- di-µ-thiocyanato-κ2N:S;κ2S:N-[(8- aminoquinoline-κ2N,N')cadmium]-di-µ-chlorido] top
Crystal data top
[CdCl(NCS)(C9H8N2)]Z = 2
Mr = 350.10F(000) = 340
Triclinic, P1Dx = 2.013 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4965 (6) ÅCell parameters from 5150 reflections
b = 8.6245 (7) Åθ = 2.1–25.5°
c = 10.5247 (12) ŵ = 2.28 mm1
α = 106.649 (7)°T = 293 K
β = 98.047 (7)°Block, colorless
γ = 112.561 (5)°0.22 × 0.20 × 0.18 mm
V = 577.53 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2104 independent reflections
Radiation source: sealed tube1961 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.635, Tmax = 0.685k = 1010
5150 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.2713P]
where P = (Fo2 + 2Fc2)/3
2104 reflections(Δ/σ)max = 0.002
153 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[CdCl(NCS)(C9H8N2)]γ = 112.561 (5)°
Mr = 350.10V = 577.53 (9) Å3
Triclinic, P1Z = 2
a = 7.4965 (6) ÅMo Kα radiation
b = 8.6245 (7) ŵ = 2.28 mm1
c = 10.5247 (12) ÅT = 293 K
α = 106.649 (7)°0.22 × 0.20 × 0.18 mm
β = 98.047 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2104 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1961 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.685Rint = 0.021
5150 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.74 e Å3
2104 reflectionsΔρmin = 0.50 e Å3
153 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.62856 (3)0.10583 (2)0.594940 (19)0.03402 (8)
Cl10.56554 (12)0.11665 (9)0.34743 (7)0.04336 (17)
N10.7549 (3)0.0017 (3)0.8336 (2)0.0356 (5)
N20.9449 (5)0.1523 (4)0.6597 (3)0.0515 (7)
N30.2515 (4)0.6802 (3)0.4552 (3)0.0456 (6)
S10.26442 (11)0.34111 (9)0.57610 (9)0.0464 (2)
C10.6679 (4)0.0751 (4)0.9132 (3)0.0431 (7)
H10.55460.18650.87190.052*
C20.7371 (5)0.0024 (5)1.0580 (3)0.0518 (8)
H20.67100.05691.11100.062*
C30.9004 (5)0.1638 (5)1.1190 (3)0.0525 (8)
H30.94710.21721.21490.063*
C41.0010 (4)0.2524 (4)1.0383 (3)0.0425 (7)
C51.1737 (5)0.4201 (4)1.0939 (3)0.0576 (9)
H51.22590.47941.18930.069*
C61.2648 (5)0.4961 (4)1.0102 (4)0.0610 (9)
H61.37810.60771.04870.073*
C71.1906 (5)0.4087 (4)0.8661 (4)0.0526 (8)
H71.25630.46220.81010.063*
C81.0226 (4)0.2458 (4)0.8069 (3)0.0394 (6)
C90.9235 (4)0.1647 (3)0.8922 (3)0.0322 (6)
C100.2613 (4)0.5392 (4)0.5052 (3)0.0344 (6)
H8A0.925 (7)0.225 (6)0.623 (5)0.097 (16)*
H8B1.026 (8)0.108 (7)0.629 (5)0.110 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03527 (12)0.03000 (12)0.02813 (13)0.01083 (9)0.00321 (9)0.00685 (9)
Cl10.0617 (4)0.0430 (4)0.0277 (4)0.0279 (3)0.0119 (3)0.0102 (3)
N10.0353 (12)0.0390 (12)0.0320 (12)0.0179 (10)0.0070 (10)0.0116 (10)
N20.0512 (16)0.0495 (16)0.0336 (15)0.0056 (13)0.0091 (13)0.0125 (13)
N30.0408 (13)0.0354 (13)0.0548 (16)0.0181 (11)0.0078 (12)0.0098 (12)
S10.0342 (4)0.0322 (3)0.0633 (5)0.0124 (3)0.0163 (4)0.0069 (3)
C10.0396 (15)0.0500 (17)0.0483 (18)0.0219 (14)0.0149 (14)0.0263 (15)
C20.0520 (19)0.081 (2)0.0423 (19)0.0389 (19)0.0210 (16)0.0334 (18)
C30.057 (2)0.081 (2)0.0314 (16)0.047 (2)0.0127 (15)0.0168 (16)
C40.0407 (15)0.0524 (17)0.0318 (15)0.0298 (14)0.0017 (13)0.0036 (13)
C50.0508 (19)0.0547 (19)0.0415 (19)0.0243 (16)0.0083 (16)0.0088 (16)
C60.0453 (18)0.0422 (17)0.061 (2)0.0074 (15)0.0031 (17)0.0022 (16)
C70.0433 (17)0.0392 (16)0.058 (2)0.0078 (14)0.0083 (16)0.0125 (15)
C80.0376 (15)0.0378 (14)0.0349 (16)0.0146 (12)0.0050 (13)0.0082 (12)
C90.0302 (13)0.0328 (13)0.0285 (14)0.0161 (11)0.0021 (11)0.0043 (11)
C100.0237 (12)0.0378 (15)0.0366 (15)0.0096 (11)0.0064 (11)0.0137 (12)
Geometric parameters (Å, º) top
Cd1—N3i2.311 (2)C1—C21.402 (4)
Cd1—N12.322 (2)C1—H10.9300
Cd1—N22.382 (3)C2—C31.345 (5)
Cd1—Cl12.5495 (8)C2—H20.9300
Cd1—S12.6413 (8)C3—C41.408 (5)
Cd1—Cl1ii2.8088 (7)C3—H30.9300
Cl1—Cd1ii2.8088 (7)C4—C51.406 (5)
N1—C11.306 (4)C4—C91.421 (4)
N1—C91.370 (3)C5—C61.352 (5)
N2—C81.436 (4)C5—H50.9300
N2—H8A0.87 (5)C6—C71.402 (5)
N2—H8B0.88 (5)C6—H60.9300
N3—C101.147 (3)C7—C81.367 (4)
N3—Cd1i2.311 (2)C7—H70.9300
S1—C101.646 (3)C8—C91.413 (4)
N3i—Cd1—N196.56 (8)N1—C1—H1118.4
N3i—Cd1—N296.66 (11)C2—C1—H1118.4
N1—Cd1—N272.51 (9)C3—C2—C1119.0 (3)
N3i—Cd1—Cl192.72 (7)C3—C2—H2120.5
N1—Cd1—Cl1161.21 (6)C1—C2—H2120.5
N2—Cd1—Cl190.24 (7)C2—C3—C4120.3 (3)
N3i—Cd1—S194.00 (6)C2—C3—H3119.9
N1—Cd1—S197.09 (6)C4—C3—H3119.9
N2—Cd1—S1165.86 (8)C5—C4—C3123.8 (3)
Cl1—Cd1—S198.53 (3)C5—C4—C9118.6 (3)
N3i—Cd1—Cl1ii172.43 (6)C3—C4—C9117.5 (3)
N1—Cd1—Cl1ii84.41 (6)C6—C5—C4120.7 (3)
N2—Cd1—Cl1ii90.80 (10)C6—C5—H5119.6
Cl1—Cd1—Cl1ii88.55 (2)C4—C5—H5119.6
S1—Cd1—Cl1ii78.43 (2)C5—C6—C7120.8 (3)
Cd1—Cl1—Cd1ii91.45 (2)C5—C6—H6119.6
C1—N1—C9119.4 (2)C7—C6—H6119.6
C1—N1—Cd1124.5 (2)C8—C7—C6120.8 (3)
C9—N1—Cd1115.88 (17)C8—C7—H7119.6
C8—N2—Cd1112.08 (19)C6—C7—H7119.6
C8—N2—H8A109 (3)C7—C8—C9119.5 (3)
Cd1—N2—H8A107 (3)C7—C8—N2121.9 (3)
C8—N2—H8B109 (3)C9—C8—N2118.6 (2)
Cd1—N2—H8B105 (3)N1—C9—C8119.8 (2)
H8A—N2—H8B116 (4)N1—C9—C4120.6 (3)
C10—N3—Cd1i156.0 (2)C8—C9—C4119.6 (3)
C10—S1—Cd1104.03 (9)N3—C10—S1177.4 (2)
N1—C1—C2123.1 (3)
C9—N1—C1—C20.9 (4)Cd1—N2—C8—C98.6 (4)
Cd1—N1—C1—C2173.5 (2)C1—N1—C9—C8177.8 (2)
N1—C1—C2—C30.2 (5)Cd1—N1—C9—C87.3 (3)
C1—C2—C3—C40.6 (5)C1—N1—C9—C41.6 (4)
C2—C3—C4—C5179.3 (3)Cd1—N1—C9—C4173.23 (18)
C2—C3—C4—C90.1 (4)C7—C8—C9—N1179.8 (3)
C3—C4—C5—C6178.9 (3)N2—C8—C9—N11.2 (4)
C9—C4—C5—C60.2 (4)C7—C8—C9—C40.7 (4)
C4—C5—C6—C70.7 (5)N2—C8—C9—C4178.3 (3)
C5—C6—C7—C80.9 (5)C5—C4—C9—N1179.6 (3)
C6—C7—C8—C90.2 (5)C3—C4—C9—N11.2 (4)
C6—C7—C8—N2179.2 (3)C5—C4—C9—C81.0 (4)
Cd1—N2—C8—C7172.4 (2)C3—C4—C9—C8178.2 (2)
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1iii0.932.843.723 (4)160
Symmetry code: (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CdCl(NCS)(C9H8N2)]
Mr350.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4965 (6), 8.6245 (7), 10.5247 (12)
α, β, γ (°)106.649 (7), 98.047 (7), 112.561 (5)
V3)577.53 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.635, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
5150, 2104, 1961
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.04
No. of reflections2104
No. of parameters153
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N3i2.311 (2)Cd1—Cl12.5495 (8)
Cd1—N12.322 (2)Cd1—S12.6413 (8)
Cd1—N22.382 (3)Cd1—Cl1ii2.8088 (7)
Symmetry codes: (i) x+1, y1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1iii0.932.843.723 (4)160
Symmetry code: (iii) x, y, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Education Commission of Anhui Province (No. KJ2010A229)

References

First citationBortoluzzi, M., Paolucci, G., Pitteri, B. & Vavasori, A. (2006). Inorg. Chem. Commun. 9, 1301–1303.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFritsch, J. M., Thoreson, K. A. & McNeill, K. (2006). Dalton Trans. pp. 4814–4820.  Web of Science CSD CrossRef Google Scholar
First citationKim, Y.-H., Youk, J.-S., Moon, S.-Y., Choe, J.-I. & Chang, S.-K. (2004). Chem. Lett. 33, 702–703.  Web of Science CrossRef CAS Google Scholar
First citationLi, X.-G., Hua, Y.-M. & Huang, M.-R. (2005). Chem. Eur. J. 11, 4247–4256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacias, B., Garcia, I., Villa, M. V., Borras, J., Casiineiras, A. & Sanz, F. (2003). Z. Anorg. Allg. Chem. 629, 255–260.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTekwami, B. L. & Walker, L. A. (2006). Curr. Opin. Infect. Dis. 19, 623–631.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds