inorganic compounds
Pyrosmalite-(Fe), Fe8Si6O15(OH,Cl)10
aDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA, and bDepartment of Chemsitry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721-0041, USA
*Correspondence e-mail: hyang@u.arizona.edu
Pyrosmalite-(Fe), ideally FeII8Si6O15(OH,Cl)10 [refined composition in this study: Fe8Si6O15(OH0.814Cl0.186)10·0.45H2O, octairon(II) hexasilicate deca(chloride/hydroxide) 0.45-hydrate], is a phyllosilicate mineral and a member of the pyrosmalite series (Fe,Mn)8Si6O15(OH,Cl)10, which includes pyrosmalite-(Mn), as well as friedelite and mcgillite, two of pyrosmalite-(Mn). This study presents the first of pyrosmalite-(Fe) based on single-crystal X-ray diffraction data from a natural sample from Burguillos del Cerro, Badajos, Spain. Pyrosmalite-(Fe) is isotypic with pyrosmalite-(Mn) and its structure is characterized by a stacking of brucite-type layers of FeO6-octahedra alternating with sheets of SiO4 tetrahedra along [001]. These sheets consist of 12-, six- and four-membered rings of tetrahedra in a 1:2:3 ratio. In contrast to previous studies on pyrosmalite-(Mn), which all assumed that Cl and one of the four OH-groups occupy the same site, our data on pyrosmalite-(Fe) revealed a split-site structure model with Cl and OH occupying distinct sites. Furthermore, our study appears to suggest the presence of disordered structural water in pyrosmalite-(Fe), consistent with infrared spectroscopic data measured from the same sample. Weak hydrogen bonding between the ordered OH-groups that are part of the brucite-type layers and the terminal silicate O atoms is present.
Related literature
For pyrosmalite-(Fe), see: Zambonini (1901); Vaughan (1986); Pan et al. (1993). For other minerals of the pyrosmalite series, see: Frondel & Bauer (1953); Stillwell & McAndrew (1957); Takéuchi et al. (1963, 1969); Kashaev & Drits (1970); Kashaev (1968); Kato & Takéuchi (1983); Kato & Watanabe (1992); Ozawa et al. (1983); Abrecht (1989); Kodera et al. (2003). Correlations between O—H streching frequencies and O—H⋯O donor–acceptor distances were given by Libowitzky (1999). The presence of H2O in the pyrosmalite series was proposed by Kayupova (1964).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811052822/wm2570sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811052822/wm2570Isup2.hkl
The pyrosmalite-(Fe) crystal used in this study is from Burguillos del Cerro, Badajos, Spain and is in the collection of the RRUFF project (deposition No. R050158; http://rruff.info). The empirical chemical formula, (Fe2+0.92Mn2+0.06Mg0.02)8Si6O15(OH0.83Cl0.17)10, was determined with a CAMECA SX50 ele ctron microprobe at the conditions of 15 kV, 20 nA, and a beam size of 10 µm (http//rruff.info).
Three H-atoms were located near OH2, OH3, and OH4 from difference Fourier syntheses and their positions refined freely with a fixed isotropic displacement parameter (Uiso = 0.03). The Ow1 site, partially occupied by H2O, was refined with the isotropic displacement parameter only. During the structure refinements, the small amount of Mn was treated as Fe, because of their similar X-ray scattering powers. In addition, the
assumed full occupancy of all octahedral sites by Fe, as the overall effects of the trace amount of Mg on the final structure results are negligible. The highest residual peak in the difference Fourier maps was located at (0.3388, 0.4390, 0.2383), 0.67 Å from O4, and the deepest hole at (0.5198, 0.4802, 0.9750), 0.49 Å from Fe3.Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).Fe8Si6O15(OH0.814Cl0.186)10·0.45H2O | Dx = 3.253 Mg m−3 |
Mr = 1067.35 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3m1 | Cell parameters from 2724 reflections |
Hall symbol: -P 3 2" | θ = 2.9–32.6° |
a = 13.3165 (2) Å | µ = 5.85 mm−1 |
c = 7.0845 (2) Å | T = 293 K |
V = 1087.98 (4) Å3 | Cuboid, light green |
Z = 2 | 0.09 × 0.08 × 0.08 mm |
F(000) = 1039 |
Bruker APEXII CCD area-detector diffractometer | 1476 independent reflections |
Radiation source: fine-focus sealed tube | 1141 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
ϕ and ω scan | θmax = 32.6°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) | h = −18→20 |
Tmin = 0.622, Tmax = 0.653 | k = −20→16 |
13410 measured reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | All H-atom parameters refined |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0328P)2 + 0.4308P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
1476 reflections | Δρmax = 0.65 e Å−3 |
90 parameters | Δρmin = −0.56 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00082 (13) |
Fe8Si6O15(OH0.814Cl0.186)10·0.45H2O | Z = 2 |
Mr = 1067.35 | Mo Kα radiation |
Trigonal, P3m1 | µ = 5.85 mm−1 |
a = 13.3165 (2) Å | T = 293 K |
c = 7.0845 (2) Å | 0.09 × 0.08 × 0.08 mm |
V = 1087.98 (4) Å3 |
Bruker APEXII CCD area-detector diffractometer | 1476 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2005) | 1141 reflections with I > 2σ(I) |
Tmin = 0.622, Tmax = 0.653 | Rint = 0.032 |
13410 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | 0 restraints |
wR(F2) = 0.068 | All H-atom parameters refined |
S = 1.05 | Δρmax = 0.65 e Å−3 |
1476 reflections | Δρmin = −0.56 e Å−3 |
90 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.0000 | 0.0000 | 0.0000 | 0.01547 (19) | |
Fe2 | 0.25510 (3) | 0.0000 | 0.0000 | 0.01193 (10) | |
Fe3 | 0.5000 | 0.0000 | 0.0000 | 0.01004 (12) | |
Fe4 | 0.50261 (3) | 0.251306 (15) | 0.01962 (5) | 0.00953 (10) | |
Si1 | 0.43696 (4) | 0.10405 (4) | 0.62679 (6) | 0.00674 (11) | |
O1 | 0.34125 (13) | 0.0000 | 0.5000 | 0.0126 (3) | |
O2 | 0.56373 (8) | 0.12746 (15) | 0.5610 (2) | 0.0113 (3) | |
O3 | 0.43070 (15) | 0.21535 (8) | 0.5580 (2) | 0.0122 (3) | |
O4 | 0.41964 (10) | 0.08283 (10) | 0.84971 (18) | 0.0100 (3) | |
Cl1 | 0.16942 (9) | 0.08471 (4) | 0.7741 (2) | 0.0189 (4) | 0.619 (5) |
OH1 | 0.1647 (4) | 0.0824 (2) | 0.8785 (9) | 0.0133 (11) | 0.381 (5) |
OH2 | 0.33476 (14) | 0.16738 (7) | 0.1306 (2) | 0.0129 (4) | |
OH3 | 0.58147 (7) | 0.16295 (14) | 0.1443 (2) | 0.0106 (3) | |
OH4 | 0.3333 | 0.6667 | 0.1263 (4) | 0.0111 (6) | |
OW1 | 0.1055 (17) | 0.1055 (17) | 0.5000 | 0.069 (8)* | 0.147 (8) |
H1 | 0.334 (3) | 0.1671 (14) | 0.255 (5) | 0.030* | |
H2 | 0.5810 (14) | 0.162 (3) | 0.264 (6) | 0.030* | |
H3 | 0.3333 | 0.6667 | 0.271 (8) | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.0118 (3) | 0.0118 (3) | 0.0229 (4) | 0.00589 (14) | 0.000 | 0.000 |
Fe2 | 0.01001 (15) | 0.00849 (18) | 0.01679 (17) | 0.00424 (9) | 0.00094 (6) | 0.00188 (11) |
Fe3 | 0.00893 (19) | 0.0089 (2) | 0.0123 (2) | 0.00444 (12) | 0.00070 (7) | 0.00141 (15) |
Fe4 | 0.00747 (18) | 0.00783 (14) | 0.01318 (15) | 0.00373 (9) | 0.00033 (10) | 0.00016 (5) |
Si1 | 0.0067 (2) | 0.0056 (2) | 0.00817 (17) | 0.00325 (17) | −0.00031 (14) | −0.00047 (14) |
O1 | 0.0101 (6) | 0.0098 (9) | 0.0178 (7) | 0.0049 (4) | −0.0028 (3) | −0.0056 (6) |
O2 | 0.0089 (6) | 0.0146 (9) | 0.0122 (6) | 0.0073 (4) | 0.0002 (3) | 0.0005 (6) |
O3 | 0.0176 (9) | 0.0094 (6) | 0.0124 (6) | 0.0088 (5) | −0.0015 (6) | −0.0008 (3) |
O4 | 0.0105 (6) | 0.0116 (6) | 0.0084 (5) | 0.0060 (5) | 0.0004 (4) | 0.0013 (4) |
Cl1 | 0.0153 (6) | 0.0195 (5) | 0.0205 (8) | 0.0076 (3) | −0.0003 (4) | −0.00016 (18) |
OH1 | 0.018 (3) | 0.0133 (19) | 0.010 (3) | 0.0090 (14) | −0.0013 (16) | −0.0007 (8) |
OH2 | 0.0128 (9) | 0.0130 (7) | 0.0130 (7) | 0.0064 (4) | 0.0030 (6) | 0.0015 (3) |
OH3 | 0.0114 (6) | 0.0127 (9) | 0.0082 (6) | 0.0063 (4) | 0.0006 (3) | 0.0013 (5) |
OH4 | 0.0109 (9) | 0.0109 (9) | 0.0117 (11) | 0.0054 (5) | 0.000 | 0.000 |
Fe1—OH1i | 2.085 (5) | Fe2—Cl1iv | 2.5342 (10) |
Fe1—OH1ii | 2.085 (5) | Fe2—Cl1iii | 2.5342 (10) |
Fe1—OH1iii | 2.085 (5) | Fe3—OH3ix | 2.1394 (16) |
Fe1—OH1iv | 2.085 (5) | Fe3—OH3 | 2.1394 (16) |
Fe1—OH1v | 2.085 (5) | Fe3—O4iv | 2.1624 (11) |
Fe1—OH1vi | 2.085 (5) | Fe3—O4x | 2.1624 (11) |
Fe1—Cl1ii | 2.5255 (12) | Fe3—O4viii | 2.1624 (11) |
Fe1—Cl1i | 2.5255 (12) | Fe3—O4xi | 2.1624 (11) |
Fe1—Cl1vi | 2.5255 (12) | Fe4—OH2 | 2.0893 (17) |
Fe1—Cl1iii | 2.5255 (12) | Fe4—OH3xii | 2.1222 (10) |
Fe1—Cl1iv | 2.5255 (12) | Fe4—OH3 | 2.1222 (10) |
Fe1—Cl1v | 2.5255 (12) | Fe4—OH4xiii | 2.1560 (13) |
Fe2—OH2 | 2.1413 (11) | Fe4—O4iv | 2.2856 (12) |
Fe2—OH2vii | 2.1413 (11) | Fe4—O4xiv | 2.2856 (12) |
Fe2—OH1iv | 2.171 (3) | Si1—O4 | 1.6006 (13) |
Fe2—OH1iii | 2.171 (3) | Si1—O3 | 1.6014 (6) |
Fe2—O4iv | 2.1759 (12) | Si1—O1 | 1.6078 (8) |
Fe2—O4viii | 2.1759 (11) | Si1—O2 | 1.6242 (7) |
OH1i—Fe1—OH1ii | 180.0 (4) | OH2—Fe2—OH1iv | 75.92 (12) |
OH1i—Fe1—OH1iii | 104.15 (19) | OH2vii—Fe2—OH1iv | 101.70 (12) |
OH1ii—Fe1—OH1iii | 75.85 (19) | OH2—Fe2—OH1iii | 101.70 (12) |
OH1i—Fe1—OH1iv | 75.85 (19) | OH2vii—Fe2—OH1iii | 75.92 (12) |
OH1ii—Fe1—OH1iv | 104.15 (19) | OH1iv—Fe2—OH1iii | 72.4 (3) |
OH1iii—Fe1—OH1iv | 75.85 (19) | OH2—Fe2—O4iv | 80.48 (6) |
OH1i—Fe1—OH1v | 75.85 (19) | OH2vii—Fe2—O4iv | 101.72 (5) |
OH1ii—Fe1—OH1v | 104.15 (19) | OH1iv—Fe2—O4iv | 102.83 (15) |
OH1iii—Fe1—OH1v | 180.00 (18) | OH1iii—Fe2—O4iv | 173.86 (16) |
OH1iv—Fe1—OH1v | 104.15 (19) | OH2—Fe2—O4viii | 101.72 (5) |
OH1i—Fe1—OH1vi | 104.15 (19) | OH2vii—Fe2—O4viii | 80.48 (6) |
OH1ii—Fe1—OH1vi | 75.85 (19) | OH1iv—Fe2—O4viii | 173.86 (16) |
OH1iii—Fe1—OH1vi | 104.15 (19) | OH1iii—Fe2—O4viii | 102.83 (15) |
OH1iv—Fe1—OH1vi | 180.0 (4) | O4iv—Fe2—O4viii | 82.21 (6) |
OH1v—Fe1—OH1vi | 75.85 (19) | OH2—Fe2—Cl1iv | 84.75 (4) |
OH1i—Fe1—Cl1ii | 165.06 (15) | OH2vii—Fe2—Cl1iv | 93.31 (5) |
OH1ii—Fe1—Cl1ii | 14.94 (15) | OH1iv—Fe2—Cl1iv | 15.84 (15) |
OH1iii—Fe1—Cl1ii | 84.79 (13) | OH1iii—Fe2—Cl1iv | 82.88 (16) |
OH1iv—Fe1—Cl1ii | 95.21 (13) | O4iv—Fe2—Cl1iv | 91.65 (4) |
OH1v—Fe1—Cl1ii | 95.21 (13) | O4viii—Fe2—Cl1iv | 170.13 (4) |
OH1vi—Fe1—Cl1ii | 84.79 (13) | OH2—Fe2—Cl1iii | 93.31 (5) |
OH1i—Fe1—Cl1i | 14.94 (15) | OH2vii—Fe2—Cl1iii | 84.75 (4) |
OH1ii—Fe1—Cl1i | 165.06 (15) | OH1iv—Fe2—Cl1iii | 82.88 (16) |
OH1iii—Fe1—Cl1i | 95.21 (13) | OH1iii—Fe2—Cl1iii | 15.84 (15) |
OH1iv—Fe1—Cl1i | 84.79 (13) | O4iv—Fe2—Cl1iii | 170.13 (4) |
OH1v—Fe1—Cl1i | 84.79 (13) | O4viii—Fe2—Cl1iii | 91.65 (4) |
OH1vi—Fe1—Cl1i | 95.21 (13) | Cl1iv—Fe2—Cl1iii | 95.43 (6) |
Cl1ii—Fe1—Cl1i | 180.00 (7) | OH3ix—Fe3—OH3 | 180.00 (8) |
OH1i—Fe1—Cl1vi | 95.21 (13) | OH3ix—Fe3—O4iv | 98.78 (4) |
OH1ii—Fe1—Cl1vi | 84.79 (13) | OH3—Fe3—O4iv | 81.22 (4) |
OH1iii—Fe1—Cl1vi | 95.21 (13) | OH3ix—Fe3—O4x | 81.22 (4) |
OH1iv—Fe1—Cl1vi | 165.06 (15) | OH3—Fe3—O4x | 98.78 (4) |
OH1v—Fe1—Cl1vi | 84.79 (13) | O4iv—Fe3—O4x | 180.00 (7) |
OH1vi—Fe1—Cl1vi | 14.94 (15) | OH3ix—Fe3—O4viii | 81.22 (4) |
Cl1ii—Fe1—Cl1vi | 95.87 (4) | OH3—Fe3—O4viii | 98.78 (4) |
Cl1i—Fe1—Cl1vi | 84.13 (4) | O4iv—Fe3—O4viii | 82.83 (6) |
OH1i—Fe1—Cl1iii | 95.21 (13) | O4x—Fe3—O4viii | 97.17 (6) |
OH1ii—Fe1—Cl1iii | 84.79 (13) | OH3ix—Fe3—O4xi | 98.78 (4) |
OH1iii—Fe1—Cl1iii | 14.94 (15) | OH3—Fe3—O4xi | 81.22 (4) |
OH1iv—Fe1—Cl1iii | 84.79 (13) | O4iv—Fe3—O4xi | 97.17 (6) |
OH1v—Fe1—Cl1iii | 165.06 (15) | O4x—Fe3—O4xi | 82.83 (6) |
OH1vi—Fe1—Cl1iii | 95.21 (13) | O4viii—Fe3—O4xi | 180.00 (7) |
Cl1ii—Fe1—Cl1iii | 95.87 (4) | OH2—Fe4—OH3xii | 103.91 (5) |
Cl1i—Fe1—Cl1iii | 84.13 (4) | OH2—Fe4—OH3 | 103.91 (5) |
Cl1vi—Fe1—Cl1iii | 84.13 (4) | OH3xii—Fe4—OH3 | 106.62 (9) |
OH1i—Fe1—Cl1iv | 84.79 (13) | OH2—Fe4—OH4xiii | 173.45 (7) |
OH1ii—Fe1—Cl1iv | 95.21 (13) | OH3xii—Fe4—OH4xiii | 79.84 (5) |
OH1iii—Fe1—Cl1iv | 84.79 (13) | OH3—Fe4—OH4xiii | 79.84 (5) |
OH1iv—Fe1—Cl1iv | 14.94 (15) | OH2—Fe4—O4iv | 79.07 (5) |
OH1v—Fe1—Cl1iv | 95.21 (13) | OH3xii—Fe4—O4iv | 172.72 (5) |
OH1vi—Fe1—Cl1iv | 165.06 (15) | OH3—Fe4—O4iv | 78.78 (5) |
Cl1ii—Fe1—Cl1iv | 84.13 (4) | OH4xiii—Fe4—O4iv | 96.59 (5) |
Cl1i—Fe1—Cl1iv | 95.87 (4) | OH2—Fe4—O4xiv | 79.07 (5) |
Cl1vi—Fe1—Cl1iv | 180.00 (7) | OH3xii—Fe4—O4xiv | 78.78 (5) |
Cl1iii—Fe1—Cl1iv | 95.87 (4) | OH3—Fe4—O4xiv | 172.72 (5) |
OH1i—Fe1—Cl1v | 84.79 (13) | OH4xiii—Fe4—O4xiv | 96.59 (5) |
OH1ii—Fe1—Cl1v | 95.21 (13) | O4iv—Fe4—O4xiv | 95.44 (6) |
OH1iii—Fe1—Cl1v | 165.06 (15) | O4—Si1—O3 | 113.19 (7) |
OH1iv—Fe1—Cl1v | 95.21 (13) | O4—Si1—O1 | 114.64 (5) |
OH1v—Fe1—Cl1v | 14.94 (15) | O3—Si1—O1 | 104.01 (7) |
OH1vi—Fe1—Cl1v | 84.79 (13) | O4—Si1—O2 | 111.17 (7) |
Cl1ii—Fe1—Cl1v | 84.13 (4) | O3—Si1—O2 | 105.38 (9) |
Cl1i—Fe1—Cl1v | 95.87 (4) | O1—Si1—O2 | 107.77 (8) |
Cl1vi—Fe1—Cl1v | 95.87 (4) | Si1—O1—Si1viii | 137.58 (12) |
Cl1iii—Fe1—Cl1v | 180.00 (4) | Si1—O2—Si1xv | 141.27 (11) |
Cl1iv—Fe1—Cl1v | 84.13 (4) | Si1xvi—O3—Si1 | 144.19 (10) |
OH2—Fe2—OH2vii | 177.13 (8) |
Symmetry codes: (i) x−y, x, −z+1; (ii) −x+y, −x, z−1; (iii) y, −x+y, −z+1; (iv) x, y, z−1; (v) −y, x−y, z−1; (vi) −x, −y, −z+1; (vii) y, −x+y, −z; (viii) x−y, −y, −z+1; (ix) −x+1, −y, −z; (x) −x+1, −y, −z+1; (xi) −x+y+1, y, z−1; (xii) −x+y+1, −x+1, z; (xiii) −x+1, −y+1, −z; (xiv) x, x−y, z−1; (xv) −x+y+1, y, z; (xvi) x, x−y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
OH2—H1···O3 | 0.88 (4) | 2.42 (4) | 3.224 (2) | 152 (3) |
OH3—H2···O2 | 0.85 (4) | 2.14 (4) | 2.980 (2) | 170 (3) |
OH4—H3···O2xvii | 1.03 (5) | 2.66 (2) | 3.247 (2) | 117 (1) |
OH4—H3···O2xviii | 1.03 (5) | 2.66 (2) | 3.247 (2) | 117 (1) |
OH4—H3···O2i | 1.03 (5) | 2.66 (2) | 3.247 (2) | 117 (1) |
Symmetry codes: (i) x−y, x, −z+1; (xvii) −x+1, −y+1, −z+1; (xviii) y, −x+y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | Fe8Si6O15(OH0.814Cl0.186)10·0.45H2O |
Mr | 1067.35 |
Crystal system, space group | Trigonal, P3m1 |
Temperature (K) | 293 |
a, c (Å) | 13.3165 (2), 7.0845 (2) |
V (Å3) | 1087.98 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 5.85 |
Crystal size (mm) | 0.09 × 0.08 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2005) |
Tmin, Tmax | 0.622, 0.653 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13410, 1476, 1141 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.757 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.068, 1.05 |
No. of reflections | 1476 |
No. of parameters | 90 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.65, −0.56 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XtalDraw (Downs & Hall-Wallace, 2003), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
OH2—H1···O3 | 0.88 (4) | 2.42 (4) | 3.224 (2) | 152 (3) |
OH3—H2···O2 | 0.85 (4) | 2.14 (4) | 2.980 (2) | 170 (3) |
OH4—H3···O2i | 1.03 (5) | 2.66 (2) | 3.247 (2) | 116.6 (12) |
OH4—H3···O2ii | 1.03 (5) | 2.66 (2) | 3.247 (2) | 116.6 (12) |
OH4—H3···O2iii | 1.03 (5) | 2.66 (2) | 3.247 (2) | 116.6 (12) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) y, −x+y+1, −z+1; (iii) x−y, x, −z+1. |
Acknowledgements
The authors gratefully acknowledge support of this study by the Arizona Science Foundation.
References
Abrecht, J. (1989). Contrib. Mineral. Petrol. 103, 228–241. CrossRef CAS Web of Science Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250. CAS Google Scholar
Frondel, C. & Bauer, L. H. (1953). Am. Mineral. 38, 755–760. CAS Google Scholar
Kashaev, A. A. (1968). Sov. Phys. Crystallogr. 12, 923–924. Google Scholar
Kashaev, A. A. & Drits, V. A. (1970). Sov. Phys. Crystallogr. 15, 40–43. Google Scholar
Kato, T. & Takéuchi, Y. (1983). Can. Mineral. 21, 1–6. CAS Google Scholar
Kato, T. & Watanabe, I. (1992). Yamaguchi Univ. College of Arts Bull. 26, 51–63. Google Scholar
Kayupova, M. M. (1964). Dokl. Akad. Nauk SSSR, 159, 82–85. Google Scholar
Kodera, P., Murphy, P. J. & Rankin, A. H. (2003). Am. Mineral. 88, 151–158. CAS Google Scholar
Libowitzky, E. (1999). Monatsh. Chem. 130, 1047–1059. Web of Science CrossRef CAS Google Scholar
Ozawa, T., Takéuchi, Y., Takahata, T., Donnay, G. & Donnay, J. D. H. (1983). Can. Mineral. 21, 7–17. CAS Google Scholar
Pan, Y., Fleet, M. E., Barnett, R. L. & Chen, Y. (1993). Can. Mineral. 31, 695–710. CAS Google Scholar
Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stillwell, F. & McAndrew, J. (1957). Mineral. Mag. 31, 371–380. CrossRef CAS Google Scholar
Takéuchi, Y., Kawada, I., Irimaziri, S. & Sandanga, R. (1969). Miner. J. 5, 450–467. Google Scholar
Takéuchi, Y., Kawada, I. & Sandanga, R. (1963). Acta Cryst. 16, A16. Google Scholar
Vaughan, J. P. (1986). Mineral. Mag. 50, 527–531. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zambonini, F. (1901). Z. Kristallogr. 34, 554–561. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrosmalite is the name given to the phyllosilicate series with the general chemical formula (Fe,Mn)8Si6O15(OH,Cl)10. Minerals of the pyrosmalite series are generally related to metamorphism in close association with Fe- and Mn-rich silicates and oxides (e.g., Frondel & Bauer, 1953; Stillwell & McAndrew, 1957; Vaughan, 1986; Abrecht, 1989; Pan et al., 1993; Kodera et al., 2003). The Fe-rich members of the series are called pyrosmalite-(Fe) (previously ferropyrosmalite), whereas the Mn-rich members include pyrosmalite-(Mn) (previously manganpyrosmalite), and friedelite, a polytype of the series with the c-axis three times that of pyrosmalite-(Mn), as well as mcgillite, Mn8Si6O15(OH)8Cl2, an ordered form of friedelite with the c-axis twelve times that of pyrosmalite-(Mn) (Ozawa et al., 1983). The polytypism in the pyrosmalite group of minerals has been regarded to be similar to that of the micas (Frondel & Bauer, 1953; Takéuchi et al., 1969; Kashaev & Drits, 1970; Kato & Takéuchi, 1983; Ozawa et al., 1983).
The crystal structure of pyrosmalite-(Mn) was first investigated by Takéuchi et al. (1963) without giving any detailed structure information. Kashaev (1968) reported a partial structure model for pyrosmalite-(Mn) based on photographic X-ray intensity data of 35 reflections collected from a crystal with XFe = Fe / (Fe + Mn) = 0.39. By means of Weissenberg and precession methods, Takéuchi et al. (1969) determined the structure of pyrosmalite-(Mn) from a crystal with XFe = 0.18 (R = 19.8%). Using a four-circle X-ray diffractometer, Kato & Takéuchi (1983) examined two pyrosmalite-(Mn) crystals, one having XFe = 0.46 and the other XFe = 0.18. Their structure refinements on atomic coordinates and isotropic displacement parameters resulted in R = 6.0% and 10.5% for the former and latter crystals, respectively. The structure of friedelite was solved by Kato & Watanabe (1992) in space group C2/m (R = 20.3%). However, despite its first description in the early twentieth century (Zambonini, 1901), the structure of pyrosmalite-(Fe) has remained undetermined hitherto. This study presents the first structure refinement of pyrosmalite-(Fe) on the basis of single-crystal X-ray diffraction data.
Pyrosmalite-(Fe) is isotypic with pyrosmalite-(Mn) (Kashaev, 1968; Takéuchi et al., 1969; Kato & Takéuchi, 1983). Its structure is characterized by brucite-type layers of FeO6-octahedra alternating with sheets of SiO4 tetrahedra along [001]. The tetrahedral sheets consist of 12-, 6-, and 4-membered rings of SiO4 tetrahedra with a ratio of 1:2:3 (Figs. 1 and 2). Kato & Takéuchi (1983) noted that the SiO4 tetrahedra in pyrosmalite-(Mn) are elongated towards their apical oxygen atoms (O4). Similar results have also been found in pyrosmalite-(Fe). The average length (2.678 Å) of the pyramidal edges is 4.3% longer than that (2.568 Å) of the basal edges. It is intriguing to note that all previous structure refinements on pyrosmalite-(Mn) assumed a disordered model with Cl and OH1 occupying the same site, which resulted in a markedly large isotropic displacement parameter for the site that is more than twice as large as that of other anion sites, and R > 6% (Takéuchi et al., 1969; Kato & Takéuchi, 1983). Using the same disorder model for Cl and OH1, we arrived at similar results [R1 = 6.1%, GOF = 1.621, and an unreasonably large Uiso value for the (OH1,Cl) site]. Examination of difference Fourier maps from our structure refinements, nonetheless, uncovered an outstanding residual peak that is 0.74 Å away from OH1. By introducing a split-site model, in which Cl and OH1 occupy symmetrically distinct sites, we obtained R1 = 2.89% and GOF = 1.076. The refined Cl content from the split-site model is 1.86 atoms per formula unit (apfu), in excellent agreement with the value of 1.7 apfu from the electron microprobe analysis.
Another interesting feature from our structure refinement on pyrosmalite-(Fe) is a small, but noticeable residual peak in the difference Fourier synthesis, which is located within the 12-membered tetrahedral rings (Fig. 1). Because the determined structure formula is charge-balanced without considering this site, the best assignment for the site would be a disordered water molecule. With this assumption, a further refinement reduced R1 from 2.89 to 2.32%, which yielded 15% site occupancy of H2O, or an overall structure formula (Fe,Mn)8Si6O15(OH0.814Cl0.186)10.0.45H2O. The detection of the existence of H2O in pyrosmalite-(Fe) appears to be consistent with our infrared spectral measurement on the same sample studied (Fig. 3) (http://rruff.info/R050158). Specifically, the two weak, broad bands at 1450 and 1613 cm-1 can be attributed to the bending modes of H2O and the broad shoulder at ~3367 cm-1 to the stretching mode of H2O. Additionally, three relatively sharp bands at 3550, 3574, and 3625 cm-1 may be assigned to the O—H stretching modes related to three weak hydrogen bonds OH3···O2, OH2···O3, and OH4···O2, respectively, according to the correlation between O—H stretching frequencies and O—H···O hydrogen bond lengths (Libowitzky, 1999). In fact, the presence of H2O in the pyrosmalite series has been proposed by Kayupova (1964), who presented a chemical formula of (Mn,Fe,Zn)8Si6O15(OH,Cl)10.1.1H2O for pyrosmalite-(Mn) from the Broken Hill deposit, Australia, and (Mn,Fe)8Si6O15(OH,Cl)10.1.5H2O for pyrosmalite-(Mn) from the Ushkatyn I deposit, Kazakhstan. Accordingly, our structure determination on pyrosmalite-(Fe) requires more systematic and detailed investigations on the possible existence of structural water in other minerals of the pyrosmalite series.