metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­chloridobis(di-2-pyridyl­amine-κ2N,N′)manganese(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 7 December 2011; accepted 7 December 2011; online 14 December 2011)

In the title complex, [MnCl2(C10H9N3)2], the MnII ion is six-coordinated in a considerably distorted cis-N4Cl2 octa­hedral environment defined by four N atoms of two chelating di-2-pyridyl­amine (dpa) ligands and two Cl anions. In the crystal, the dpa ligands are not planar, the dihedral angles between the two pyridine rings being 29.3 (2) and 30.9 (2)°. The complex mol­ecules are stacked in columns along the c axis and are connected by inter­molecular N—H⋯Cl hydrogen bonds, forming a three-dimensional network. Weak inter- and intra­molecular ππ inter­actions are present between the pyridine rings, the shortest centroid—centroid distance being 4.406 (3) Å.

Related literature

For the crystal structures of related MnII complexes with dpa, see: Bose et al. (2005[Bose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747-758.]); Ha (2011a[Ha, K. (2011a). Acta Cryst. E67, m1751.],b[Ha, K. (2011b). Acta Cryst. E67, m1773.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C10H9N3)2]

  • Mr = 468.24

  • Orthorhombic, P n a 21

  • a = 16.236 (3) Å

  • b = 12.542 (2) Å

  • c = 9.9233 (17) Å

  • V = 2020.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 200 K

  • 0.31 × 0.28 × 0.19 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 1.000

  • 14151 measured reflections

  • 4293 independent reflections

  • 2982 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.092

  • S = 1.01

  • 4293 reflections

  • 262 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1616 Friedel pairs

  • Flack parameter: 0.04 (2)

Table 1
Selected geometric parameters (Å, °)

Mn1—N3 2.276 (3)
Mn1—N1 2.278 (3)
Mn1—N4 2.280 (3)
Mn1—N6 2.353 (3)
Mn1—Cl2 2.4637 (12)
Mn1—Cl1 2.5122 (10)
N3—Mn1—N1 77.32 (13)
N4—Mn1—N6 77.12 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl2i 0.92 2.30 3.211 (3) 171
N5—H5N⋯Cl1ii 0.92 2.45 3.355 (4) 170
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Neutral and cationic MnII complexes of the di-2-pyridylamine (dpa; C10H9N3) ligand, such as [MnX2(dpa)2].H2O, [MnX(dpa)2(H2O)]ClO4 (X = N3-, NCO-) (Bose et al., 2005) and [MnX(dpa)2(H2O)]X (X = I, Br) (Ha, 2011a,b), have been investigated previously.

In the title complex, [MnCl2(dpa)2], the MnII ion is six-coordinated in a considerably distorted cis-N4Cl2 octahedral environment defined by four N atoms of two chelating dpa ligands and two Cl- anions (Fig. 1). The main contributions to the distortion are the tight N—Mn—N chelating angles (Table 1), which results in non-linear trans axes [N3—Mn1—N4 = 161.55 (11)°, N6—Mn1—Cl1 = 173.54 (11)° and N1—Mn1—Cl2 = 170.18 (10)°]. Because the Mn—N bond lengths are nearly equivalent (Table 1), the different trans effects of the Cl and N atoms cannot be observed reliably. In the crystal structure, the dpa ligands are not planar, the dihedral angles between the two pyridine rings being 29.3 (2)° and 30.9 (2)°. The complex molecules are stacked in columns along the c axis and connected by intermolecular N—H···Cl hydrogen bonds, forming a three-dimensional network (Fig. 2, Table 2). In the columns, numerous weak inter- and intramolecular ππ interactions are present between the pyridine rings, the shortest centroid-centroid distance being 4.406 (3) Å.

Related literature top

For the crystal structures of related MnII complexes with dpa, see: Bose et al. (2005); Ha (2011a,b).

Experimental top

To a solution of MnCl2.4H2O (0.1988 g, 1.005 mmol) in EtOH (20 ml) was added di-2-pyridylamine (0.3465 g, 2.024 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration and washed with EtOH and acetone, and dried at 323 K, to give a white powder (0.2982 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)]. Nitrogen-bound H atoms were located from Fourier difference maps then allowed to ride on their parent atoms in the final cycles of refinement with N—H = 0.92 Å and Uiso(H) = 1.5 Ueq(N). The highest peak (0.51 e Å-3) and the deepest hole (-0.56 e Å-3) in the difference Fourier map are located 1.40 Å and 1.08 Å from the atoms H9 and N4, respectively.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with displacement ellipsoids drawn at the 40% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the unit-cell contents of the title complex. Hydrogen-bonding interactions are drawn with dashed lines.
cis-Dichloridobis(di-2-pyridylamine-κ2N,N')manganese(II) top
Crystal data top
[MnCl2(C10H9N3)2]F(000) = 956
Mr = 468.24Dx = 1.539 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4041 reflections
a = 16.236 (3) Åθ = 2.5–27.8°
b = 12.542 (2) ŵ = 0.94 mm1
c = 9.9233 (17) ÅT = 200 K
V = 2020.7 (6) Å3Block, colorless
Z = 40.31 × 0.28 × 0.19 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4293 independent reflections
Radiation source: fine-focus sealed tube2982 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2121
Tmin = 0.849, Tmax = 1.000k = 1615
14151 measured reflectionsl = 139
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0271P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4293 reflectionsΔρmax = 0.51 e Å3
262 parametersΔρmin = 0.57 e Å3
1 restraintAbsolute structure: Flack (1983), 1616 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
[MnCl2(C10H9N3)2]V = 2020.7 (6) Å3
Mr = 468.24Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 16.236 (3) ŵ = 0.94 mm1
b = 12.542 (2) ÅT = 200 K
c = 9.9233 (17) Å0.31 × 0.28 × 0.19 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4293 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2982 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 1.000Rint = 0.072
14151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.51 e Å3
S = 1.01Δρmin = 0.57 e Å3
4293 reflectionsAbsolute structure: Flack (1983), 1616 Friedel pairs
262 parametersAbsolute structure parameter: 0.04 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.20798 (3)0.33815 (4)0.89348 (7)0.02448 (14)
Cl10.14448 (5)0.52067 (7)0.88475 (14)0.0317 (2)
Cl20.09525 (6)0.25950 (9)1.02667 (13)0.0376 (3)
N10.3262 (2)0.4028 (3)0.8006 (4)0.0270 (8)
N20.4152 (2)0.3360 (3)0.9693 (4)0.0293 (8)
H2N0.46430.30160.98420.044*
N30.28805 (19)0.3701 (2)1.0774 (3)0.0251 (8)
N40.16475 (18)0.2772 (2)0.6889 (4)0.0285 (8)
N50.2814 (2)0.1689 (3)0.6387 (4)0.0301 (8)
H5N0.30740.13430.56900.045*
N60.27298 (17)0.1710 (2)0.8770 (4)0.0246 (7)
C10.3191 (3)0.4552 (3)0.6826 (5)0.0330 (10)
H10.26520.47220.65180.040*
C20.3842 (3)0.4853 (3)0.6045 (5)0.0363 (11)
H20.37580.52250.52220.044*
C30.4629 (3)0.4602 (3)0.6481 (5)0.0421 (12)
H30.50950.47870.59500.051*
C40.4730 (2)0.4089 (3)0.7678 (5)0.0346 (11)
H40.52650.39090.79910.042*
C50.4036 (2)0.3830 (3)0.8440 (4)0.0266 (10)
C60.3676 (2)0.3427 (3)1.0850 (4)0.0257 (9)
C70.4062 (3)0.3193 (3)1.2082 (4)0.0356 (11)
H70.46180.29561.21000.043*
C80.3632 (3)0.3312 (3)1.3248 (5)0.0410 (11)
H80.38790.31451.40900.049*
C90.2820 (3)0.3684 (4)1.3191 (5)0.0393 (12)
H90.25190.38271.39920.047*
C100.2472 (2)0.3836 (3)1.1952 (5)0.0318 (10)
H100.19110.40481.19150.038*
C110.0903 (2)0.3143 (3)0.6470 (4)0.0294 (10)
H110.06120.36080.70560.035*
C120.0546 (3)0.2892 (3)0.5268 (5)0.0386 (11)
H120.00290.31860.50200.046*
C130.0957 (3)0.2196 (4)0.4416 (5)0.0446 (13)
H130.07260.20110.35670.054*
C140.1699 (3)0.1775 (3)0.4811 (5)0.0361 (11)
H140.19840.12870.42460.043*
C150.2032 (2)0.2078 (3)0.6067 (4)0.0261 (9)
C160.3129 (3)0.1420 (3)0.7646 (5)0.0256 (10)
C170.3864 (2)0.0827 (3)0.7674 (5)0.0302 (11)
H170.41410.06500.68610.036*
C180.4171 (2)0.0510 (3)0.8890 (6)0.0369 (10)
H180.46800.01390.89360.044*
C190.3733 (3)0.0735 (4)1.0062 (5)0.0366 (12)
H190.39180.04871.09140.044*
C200.3017 (3)0.1336 (3)0.9945 (5)0.0298 (11)
H200.27150.14891.07420.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0197 (3)0.0278 (3)0.0260 (3)0.0000 (2)0.0022 (3)0.0011 (4)
Cl10.0290 (5)0.0306 (5)0.0355 (6)0.0023 (4)0.0053 (6)0.0022 (6)
Cl20.0253 (5)0.0455 (6)0.0421 (6)0.0082 (5)0.0032 (5)0.0019 (6)
N10.0235 (18)0.0270 (18)0.031 (2)0.0015 (14)0.0000 (15)0.0022 (16)
N20.0211 (18)0.038 (2)0.029 (2)0.0048 (15)0.0009 (16)0.0002 (17)
N30.0195 (18)0.0309 (18)0.025 (2)0.0009 (14)0.0034 (15)0.0008 (16)
N40.0236 (18)0.0278 (18)0.034 (2)0.0006 (14)0.0041 (16)0.0060 (16)
N50.0285 (19)0.037 (2)0.024 (2)0.0072 (15)0.0035 (16)0.0052 (16)
N60.0213 (15)0.0248 (15)0.028 (2)0.0013 (12)0.0028 (17)0.0002 (18)
C10.035 (2)0.033 (2)0.032 (3)0.0018 (18)0.003 (2)0.003 (2)
C20.048 (3)0.033 (2)0.028 (3)0.005 (2)0.006 (2)0.005 (2)
C30.042 (3)0.041 (3)0.043 (3)0.012 (2)0.014 (2)0.001 (2)
C40.023 (2)0.037 (2)0.044 (3)0.0021 (18)0.005 (2)0.004 (2)
C50.022 (2)0.025 (2)0.033 (3)0.0015 (17)0.0012 (18)0.0053 (18)
C60.020 (2)0.028 (2)0.028 (2)0.0009 (16)0.0025 (18)0.0011 (19)
C70.026 (2)0.048 (3)0.033 (3)0.0042 (19)0.005 (2)0.005 (2)
C80.044 (3)0.048 (3)0.031 (3)0.002 (2)0.008 (2)0.003 (2)
C90.043 (3)0.046 (3)0.029 (3)0.001 (2)0.001 (2)0.005 (2)
C100.028 (2)0.034 (2)0.033 (3)0.0005 (18)0.001 (2)0.007 (2)
C110.028 (2)0.029 (2)0.031 (3)0.0005 (17)0.0078 (19)0.004 (2)
C120.029 (2)0.038 (2)0.048 (3)0.0030 (19)0.014 (2)0.000 (2)
C130.036 (3)0.057 (3)0.041 (3)0.002 (2)0.020 (2)0.009 (2)
C140.035 (3)0.044 (3)0.029 (3)0.000 (2)0.006 (2)0.011 (2)
C150.025 (2)0.028 (2)0.025 (2)0.0007 (16)0.0013 (18)0.0000 (19)
C160.023 (2)0.029 (2)0.025 (3)0.0015 (18)0.0042 (19)0.000 (2)
C170.021 (2)0.035 (3)0.035 (3)0.0047 (18)0.003 (2)0.000 (2)
C180.027 (2)0.034 (2)0.050 (3)0.0023 (16)0.003 (3)0.004 (3)
C190.034 (3)0.037 (3)0.039 (3)0.001 (2)0.005 (2)0.013 (2)
C200.033 (3)0.022 (2)0.035 (3)0.0028 (19)0.003 (2)0.004 (2)
Geometric parameters (Å, º) top
Mn1—N32.276 (3)C4—C51.395 (5)
Mn1—N12.278 (3)C4—H40.9500
Mn1—N42.280 (3)C6—C71.405 (6)
Mn1—N62.353 (3)C7—C81.360 (6)
Mn1—Cl22.4637 (12)C7—H70.9500
Mn1—Cl12.5122 (10)C8—C91.399 (6)
N1—C11.348 (5)C8—H80.9500
N1—C51.351 (5)C9—C101.367 (6)
N2—C61.386 (5)C9—H90.9500
N2—C51.389 (5)C10—H100.9500
N2—H2N0.9200C11—C121.363 (6)
N3—C61.339 (4)C11—H110.9500
N3—C101.355 (5)C12—C131.386 (6)
N4—C151.346 (5)C12—H120.9500
N4—C111.360 (5)C13—C141.373 (6)
N5—C161.392 (6)C13—H130.9500
N5—C151.396 (5)C14—C151.411 (6)
N5—H5N0.9200C14—H140.9500
N6—C161.340 (6)C16—C171.405 (6)
N6—C201.341 (6)C17—C181.365 (7)
C1—C21.365 (6)C17—H170.9500
C1—H10.9500C18—C191.392 (7)
C2—C31.385 (6)C18—H180.9500
C2—H20.9500C19—C201.389 (6)
C3—C41.361 (6)C19—H190.9500
C3—H30.9500C20—H200.9500
N3—Mn1—N177.32 (13)N2—C5—C4118.3 (4)
N3—Mn1—N4161.55 (11)N3—C6—N2120.4 (4)
N1—Mn1—N491.06 (12)N3—C6—C7122.2 (4)
N3—Mn1—N687.50 (12)N2—C6—C7117.4 (3)
N1—Mn1—N684.90 (11)C8—C7—C6119.2 (4)
N4—Mn1—N677.12 (12)C8—C7—H7120.4
N3—Mn1—Cl293.71 (9)C6—C7—H7120.4
N1—Mn1—Cl2170.18 (10)C7—C8—C9119.1 (4)
N4—Mn1—Cl296.59 (9)C7—C8—H8120.4
N6—Mn1—Cl290.79 (9)C9—C8—H8120.4
N3—Mn1—Cl195.84 (8)C10—C9—C8118.2 (4)
N1—Mn1—Cl190.43 (9)C10—C9—H9120.9
N4—Mn1—Cl198.55 (9)C8—C9—H9120.9
N6—Mn1—Cl1173.54 (11)N3—C10—C9123.8 (4)
Cl2—Mn1—Cl194.50 (4)N3—C10—H10118.1
C1—N1—C5116.5 (4)C9—C10—H10118.1
C1—N1—Mn1116.9 (3)N4—C11—C12124.5 (4)
C5—N1—Mn1126.1 (3)N4—C11—H11117.8
C6—N2—C5129.8 (3)C12—C11—H11117.8
C6—N2—H2N112.2C11—C12—C13118.4 (4)
C5—N2—H2N117.4C11—C12—H12120.8
C6—N3—C10117.1 (3)C13—C12—H12120.8
C6—N3—Mn1123.5 (3)C14—C13—C12119.4 (4)
C10—N3—Mn1115.7 (3)C14—C13—H13120.3
C15—N4—C11116.7 (3)C12—C13—H13120.3
C15—N4—Mn1127.8 (3)C13—C14—C15119.0 (4)
C11—N4—Mn1115.5 (3)C13—C14—H14120.5
C16—N5—C15128.6 (4)C15—C14—H14120.5
C16—N5—H5N113.0N4—C15—N5120.6 (4)
C15—N5—H5N114.3N4—C15—C14122.1 (4)
C16—N6—C20117.4 (3)N5—C15—C14117.1 (4)
C16—N6—Mn1121.1 (3)N6—C16—N5120.2 (4)
C20—N6—Mn1114.0 (3)N6—C16—C17122.5 (4)
N1—C1—C2124.2 (4)N5—C16—C17117.3 (4)
N1—C1—H1117.9C18—C17—C16118.8 (4)
C2—C1—H1117.9C18—C17—H17120.6
C1—C2—C3118.3 (4)C16—C17—H17120.6
C1—C2—H2120.8C17—C18—C19119.5 (3)
C3—C2—H2120.8C17—C18—H18120.2
C4—C3—C2119.4 (4)C19—C18—H18120.2
C4—C3—H3120.3C20—C19—C18117.9 (5)
C2—C3—H3120.3C20—C19—H19121.1
C3—C4—C5119.1 (4)C18—C19—H19121.1
C3—C4—H4120.5N6—C20—C19123.6 (5)
C5—C4—H4120.5N6—C20—H20118.2
N1—C5—N2119.3 (4)C19—C20—H20118.2
N1—C5—C4122.4 (4)
N3—Mn1—N1—C1150.8 (3)Mn1—N1—C5—C4167.7 (3)
N4—Mn1—N1—C143.7 (3)C6—N2—C5—N130.3 (6)
N6—Mn1—N1—C1120.6 (3)C6—N2—C5—C4149.2 (4)
Cl1—Mn1—N1—C154.9 (3)C3—C4—C5—N13.1 (6)
N3—Mn1—N1—C537.5 (3)C3—C4—C5—N2176.5 (4)
N4—Mn1—N1—C5128.0 (3)C10—N3—C6—N2174.7 (4)
N6—Mn1—N1—C551.1 (3)Mn1—N3—C6—N228.0 (5)
Cl1—Mn1—N1—C5133.4 (3)C10—N3—C6—C75.6 (6)
N1—Mn1—N3—C644.8 (3)Mn1—N3—C6—C7151.8 (3)
N4—Mn1—N3—C67.3 (6)C5—N2—C6—N321.9 (6)
N6—Mn1—N3—C640.6 (3)C5—N2—C6—C7158.3 (4)
Cl2—Mn1—N3—C6131.2 (3)N3—C6—C7—C84.2 (6)
Cl1—Mn1—N3—C6133.9 (3)N2—C6—C7—C8176.0 (4)
N1—Mn1—N3—C10157.6 (3)C6—C7—C8—C91.3 (7)
N4—Mn1—N3—C10150.4 (3)C7—C8—C9—C104.9 (7)
N6—Mn1—N3—C10117.1 (3)C6—N3—C10—C91.6 (6)
Cl2—Mn1—N3—C1026.5 (3)Mn1—N3—C10—C9157.5 (4)
Cl1—Mn1—N3—C1068.4 (3)C8—C9—C10—N33.6 (7)
N3—Mn1—N4—C157.8 (6)C15—N4—C11—C122.7 (6)
N1—Mn1—N4—C1558.1 (3)Mn1—N4—C11—C12178.5 (3)
N6—Mn1—N4—C1526.4 (3)N4—C11—C12—C131.3 (7)
Cl2—Mn1—N4—C15115.7 (3)C11—C12—C13—C140.7 (7)
Cl1—Mn1—N4—C15148.7 (3)C12—C13—C14—C151.1 (7)
N3—Mn1—N4—C11173.6 (3)C11—N4—C15—N5177.4 (4)
N1—Mn1—N4—C11123.3 (3)Mn1—N4—C15—N54.1 (5)
N6—Mn1—N4—C11152.2 (3)C11—N4—C15—C142.2 (6)
Cl2—Mn1—N4—C1162.9 (3)Mn1—N4—C15—C14179.2 (3)
Cl1—Mn1—N4—C1132.7 (3)C16—N5—C15—N437.4 (6)
N3—Mn1—N6—C16122.6 (3)C16—N5—C15—C14147.1 (4)
N1—Mn1—N6—C1645.1 (3)C13—C14—C15—N40.4 (6)
N4—Mn1—N6—C1647.1 (3)C13—C14—C15—N5175.7 (4)
Cl2—Mn1—N6—C16143.7 (3)C20—N6—C16—N5173.4 (4)
N3—Mn1—N6—C2026.5 (3)Mn1—N6—C16—N538.6 (5)
N1—Mn1—N6—C20103.9 (3)C20—N6—C16—C175.6 (5)
N4—Mn1—N6—C20163.8 (3)Mn1—N6—C16—C17142.5 (3)
Cl2—Mn1—N6—C2067.2 (3)C15—N5—C16—N612.8 (6)
C5—N1—C1—C22.3 (6)C15—N5—C16—C17166.2 (4)
Mn1—N1—C1—C2170.2 (3)N6—C16—C17—C181.8 (6)
N1—C1—C2—C30.4 (6)N5—C16—C17—C18177.2 (4)
C1—C2—C3—C41.4 (6)C16—C17—C18—C193.0 (6)
C2—C3—C4—C50.2 (6)C17—C18—C19—C203.7 (6)
C1—N1—C5—N2175.5 (4)C16—N6—C20—C194.8 (5)
Mn1—N1—C5—N212.7 (5)Mn1—N6—C20—C19145.5 (3)
C1—N1—C5—C44.0 (6)C18—C19—C20—N60.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl2i0.922.303.211 (3)171
N5—H5N···Cl1ii0.922.453.355 (4)170
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C10H9N3)2]
Mr468.24
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)200
a, b, c (Å)16.236 (3), 12.542 (2), 9.9233 (17)
V3)2020.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.31 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.849, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14151, 4293, 2982
Rint0.072
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 1.01
No. of reflections4293
No. of parameters262
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.57
Absolute structureFlack (1983), 1616 Friedel pairs
Absolute structure parameter0.04 (2)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Mn1—N32.276 (3)Mn1—N62.353 (3)
Mn1—N12.278 (3)Mn1—Cl22.4637 (12)
Mn1—N42.280 (3)Mn1—Cl12.5122 (10)
N3—Mn1—N177.32 (13)N4—Mn1—N677.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl2i0.922.303.211 (3)171.4
N5—H5N···Cl1ii0.922.453.355 (4)169.7
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626).

References

First citationBose, D., Mostafa, G., Fun, H.-K. & Ghosh, B. K. (2005). Polyhedron, 24, 747–758.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHa, K. (2011a). Acta Cryst. E67, m1751.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011b). Acta Cryst. E67, m1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds