organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Hy­dr­oxy-11H-benzo[b]fluoren-11-one

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 25 October 2011; accepted 10 November 2011; online 3 December 2011)

The title compound, C17H10O2, is nearly planar, the maximum atomic deviation being 0.053 (2) Å. In the mol­ecule, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, inversion-related mol­ecules are linked by pairs of weak C—H⋯O hydrogen bonds, forming dimers. ππ stacking is observed in the crystal structure, the closest centroid–centroid distance being 3.7846 (16) Å.

Related literature

For the spectroscopy and preparation of the title compound, see: Aquino et al. (2005[Aquino, A. J. A., Lischka, H. & Hättig, C. (2005). J. Phys. Chem. A, 109, 3201-3208.]); Tang et al. (2011[Tang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738-17745.]). For applications of proton-transfer dyes, see: Chen & Pang (2009[Chen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680-6683.], 2010[Chen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914-1918.]); Chuang et al. (2011[Chuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189-8202.]); Han et al. (2010[Han, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947-1951.]); Ito et al. (2011[Ito, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigments, 89, 319-323.]); Jung et al. (2009[Jung, H. Y., Kim, H. J., Vicens, J. & Kim, J. S. (2009). Tetrahedron Lett. 50, 983-987.]); Lim et al. (2011[Lim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigments, 90, 284-289.]). For related structures, see: Chen et al. (2011a[Chen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.],b[Chen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.]); Li et al. (2007[Li, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.]); Saeed & Bolte (2007[Saeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10O2

  • Mr = 246.25

  • Monoclinic, P 21 /c

  • a = 12.474 (2) Å

  • b = 6.4401 (12) Å

  • c = 15.601 (3) Å

  • β = 109.188 (3)°

  • V = 1183.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 297 K

  • 0.42 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 6331 measured reflections

  • 2310 independent reflections

  • 1322 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.153

  • S = 1.03

  • 2310 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 1.11 (4) 1.90 (4) 2.877 (3) 145 (3)
C3—H3A⋯O1i 0.93 2.52 3.369 (3) 151
Symmetry code: (i) -x+1, -y-1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The excited-state intramolecular proton transfer (ESIPT) reaction of 7-hydroxy-1-indanone and its derivatives has been investigated for past years (Aquino et al., 2005; Tang et al., 2011), which incorporates transfer of a hydroxy proton to the carbonyl oxygen through a intramolecular six-membered-ring hydrogen-bonding system. The unusual photophysical property of the resulting proton-transfer tautomer has found many important applications (Chen et al., 2009, 2010; Lim et al., 2011; Ito et al., 2011; Han et al., 2010; Jung et al., 2009).

The molecular structure of the title compound (HBO) comprises a 7-hydroxy-1-indanone unit having a naphthalene ring fused on one side (Figure 1). The molecule is nearly planar, which is consistent with previous studies (Chen et al., 2011a; Li et al., 2007; Saeed et al., 2007). HBO possesses an intramolecular O—H···O hydrogen bond (Table 1), which generates an S(6) ring motif (Chen et al., 2011b). In the crystal (Figure 2), inversion-related molceules are linked by a pair of weak C—H···O hydrogen bonds (Table 1), forming a cyclic dimers with R22(10) graph-set motif (Bernstein et al., 1995). ππ stacking is observed between the tetracyclic plane and its adjacent one, the closest centroid-centroid distance being 3.7846 (16) Å [symmetry code: 1 - x, -y, 1 - z].

Related literature top

For the spectroscopy and preparation of the title compound, see: Aquino et al. (2005); Tang et al. (2011). For applications of proton-transfer dyes, see: Chen & Pang (2009, 2010); Chuang et al. (2011); Han et al. (2010); Ito et al. (2011); Jung et al. (2009); Lim et al. (2011). For related structures, see: Chen et al. (2011a,b); Li et al. (2007); Saeed & Bolte (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to the literature (Tang et al., 2011). Yellow needle-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of six weeks by slow evaporation from the chloroform solution.

Refinement top

Hydroxy H atom was located in a Fourier map and refined isotropically. Other H atoms ware placed geometrically and refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed down the b axis. Green dashed lines denote the intermolecular C—H···O hydrogen bonds.
1-Hydroxy-11H-benzo[b]fluoren-11-one top
Crystal data top
C17H10O2F(000) = 512
Mr = 246.25Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 1918 reflections
a = 12.474 (2) Åθ = 2.7–24.7°
b = 6.4401 (12) ŵ = 0.09 mm1
c = 15.601 (3) ÅT = 297 K
β = 109.188 (3)°Parallelepiped, yellow
V = 1183.6 (4) Å30.42 × 0.22 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1322 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.087
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ϕ and ω scansh = 1415
6331 measured reflectionsk = 77
2310 independent reflectionsl = 1916
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.2285P]
where P = (Fo2 + 2Fc2)/3
2310 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H10O2V = 1183.6 (4) Å3
Mr = 246.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.474 (2) ŵ = 0.09 mm1
b = 6.4401 (12) ÅT = 297 K
c = 15.601 (3) Å0.42 × 0.22 × 0.12 mm
β = 109.188 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1322 reflections with I > 2σ(I)
6331 measured reflectionsRint = 0.087
2310 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
2310 reflectionsΔρmin = 0.16 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66186 (16)0.4250 (3)0.11797 (12)0.0730 (6)
O20.88146 (17)0.3141 (4)0.24218 (14)0.0836 (6)
H2A0.816 (3)0.412 (6)0.194 (3)0.147 (15)*
C10.6346 (2)0.2548 (4)0.14017 (15)0.0515 (6)
C20.52192 (19)0.1511 (3)0.10894 (14)0.0466 (6)
C30.4220 (2)0.2150 (4)0.04737 (15)0.0527 (6)
H3A0.41710.34290.01870.063*
C40.3259 (2)0.0847 (4)0.02760 (14)0.0505 (6)
C50.2190 (2)0.1414 (5)0.03430 (16)0.0656 (7)
H5A0.21110.26880.06380.079*
C60.1281 (2)0.0144 (6)0.05160 (18)0.0764 (9)
H6A0.05870.05490.09280.092*
C70.1378 (2)0.1778 (6)0.00777 (19)0.0774 (9)
H7A0.07470.26370.01950.093*
C80.2396 (2)0.2395 (4)0.05214 (17)0.0655 (7)
H8A0.24520.36820.08030.079*
C90.33640 (19)0.1115 (4)0.07200 (14)0.0516 (6)
C100.4427 (2)0.1731 (4)0.13508 (15)0.0538 (6)
H10A0.44970.30150.16370.065*
C110.53325 (19)0.0456 (3)0.15340 (14)0.0478 (6)
C120.65335 (19)0.0694 (4)0.21356 (13)0.0485 (6)
C130.7106 (2)0.2252 (4)0.26996 (16)0.0631 (7)
H13A0.67330.34510.27780.076*
C140.8266 (2)0.1985 (5)0.31532 (18)0.0714 (8)
H14A0.86640.30390.35330.086*
C150.8842 (2)0.0228 (5)0.30603 (18)0.0714 (8)
H15A0.96170.01150.33660.086*
C160.8262 (2)0.1378 (4)0.25083 (16)0.0602 (7)
C170.71100 (19)0.1116 (4)0.20486 (14)0.0490 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0818 (13)0.0622 (12)0.0679 (12)0.0176 (10)0.0151 (10)0.0086 (9)
O20.0615 (12)0.1010 (16)0.0844 (14)0.0228 (12)0.0186 (10)0.0023 (12)
C10.0613 (15)0.0508 (14)0.0419 (12)0.0043 (12)0.0163 (11)0.0011 (10)
C20.0527 (14)0.0471 (13)0.0392 (11)0.0003 (11)0.0140 (10)0.0014 (10)
C30.0620 (15)0.0513 (14)0.0431 (12)0.0013 (12)0.0151 (11)0.0029 (10)
C40.0537 (14)0.0595 (15)0.0379 (11)0.0019 (11)0.0146 (10)0.0028 (10)
C50.0568 (16)0.0860 (19)0.0495 (14)0.0037 (15)0.0114 (12)0.0012 (13)
C60.0502 (16)0.116 (3)0.0570 (16)0.0029 (17)0.0098 (13)0.0123 (17)
C70.0581 (18)0.108 (3)0.0659 (18)0.0236 (17)0.0205 (14)0.0195 (18)
C80.0675 (18)0.0757 (18)0.0571 (15)0.0177 (14)0.0256 (14)0.0093 (13)
C90.0511 (14)0.0645 (16)0.0410 (12)0.0086 (12)0.0174 (11)0.0086 (11)
C100.0636 (16)0.0537 (14)0.0463 (13)0.0024 (13)0.0211 (11)0.0014 (11)
C110.0539 (14)0.0511 (14)0.0402 (12)0.0016 (11)0.0177 (10)0.0006 (10)
C120.0541 (14)0.0552 (14)0.0371 (11)0.0062 (11)0.0161 (10)0.0012 (10)
C130.0717 (19)0.0627 (16)0.0529 (14)0.0096 (14)0.0176 (13)0.0059 (12)
C140.0688 (19)0.080 (2)0.0587 (16)0.0256 (16)0.0121 (14)0.0024 (14)
C150.0489 (15)0.101 (2)0.0588 (16)0.0135 (16)0.0096 (12)0.0049 (16)
C160.0574 (16)0.0745 (18)0.0506 (14)0.0049 (14)0.0202 (12)0.0085 (13)
C170.0492 (14)0.0589 (15)0.0384 (11)0.0019 (11)0.0137 (10)0.0009 (10)
Geometric parameters (Å, º) top
O1—C11.231 (3)C7—H7A0.9300
O2—C161.358 (3)C8—C91.409 (3)
O2—H2A1.11 (4)C8—H8A0.9300
C1—C171.465 (3)C9—C101.423 (3)
C1—C21.486 (3)C10—C111.349 (3)
C2—C31.364 (3)C10—H10A0.9300
C2—C111.429 (3)C11—C121.492 (3)
C3—C41.412 (3)C12—C131.370 (3)
C3—H3A0.9300C12—C171.400 (3)
C4—C51.413 (3)C13—C141.397 (4)
C4—C91.426 (3)C13—H13A0.9300
C5—C61.352 (4)C14—C151.374 (4)
C5—H5A0.9300C14—H14A0.9300
C6—C71.399 (4)C15—C161.387 (4)
C6—H6A0.9300C15—H15A0.9300
C7—C81.365 (4)C16—C171.390 (3)
C16—O2—H2A105 (2)C10—C9—C4119.9 (2)
O1—C1—C17125.3 (2)C8—C9—C4118.4 (2)
O1—C1—C2128.8 (2)C11—C10—C9120.1 (2)
C17—C1—C2105.9 (2)C11—C10—H10A119.9
C3—C2—C11122.1 (2)C9—C10—H10A119.9
C3—C2—C1130.0 (2)C10—C11—C2119.6 (2)
C11—C2—C1107.90 (19)C10—C11—C12132.0 (2)
C2—C3—C4119.3 (2)C2—C11—C12108.37 (19)
C2—C3—H3A120.4C13—C12—C17119.8 (2)
C4—C3—H3A120.4C13—C12—C11133.1 (2)
C3—C4—C5122.5 (2)C17—C12—C11107.16 (19)
C3—C4—C9119.0 (2)C12—C13—C14118.0 (3)
C5—C4—C9118.5 (2)C12—C13—H13A121.0
C6—C5—C4121.4 (3)C14—C13—H13A121.0
C6—C5—H5A119.3C15—C14—C13122.6 (3)
C4—C5—H5A119.3C15—C14—H14A118.7
C5—C6—C7120.3 (3)C13—C14—H14A118.7
C5—C6—H6A119.8C14—C15—C16119.7 (2)
C7—C6—H6A119.8C14—C15—H15A120.2
C8—C7—C6120.3 (3)C16—C15—H15A120.2
C8—C7—H7A119.9O2—C16—C17121.5 (2)
C6—C7—H7A119.9O2—C16—C15120.5 (2)
C7—C8—C9121.1 (3)C17—C16—C15118.0 (3)
C7—C8—H8A119.4C16—C17—C12121.9 (2)
C9—C8—H8A119.4C16—C17—C1127.4 (2)
C10—C9—C8121.7 (2)C12—C17—C1110.7 (2)
O1—C1—C2—C31.4 (4)C3—C2—C11—C12178.2 (2)
C17—C1—C2—C3178.4 (2)C1—C2—C11—C120.1 (2)
O1—C1—C2—C11179.3 (2)C10—C11—C12—C130.7 (4)
C17—C1—C2—C110.5 (2)C2—C11—C12—C13179.2 (2)
C11—C2—C3—C41.0 (3)C10—C11—C12—C17179.0 (2)
C1—C2—C3—C4178.6 (2)C2—C11—C12—C170.5 (2)
C2—C3—C4—C5179.0 (2)C17—C12—C13—C141.7 (3)
C2—C3—C4—C90.7 (3)C11—C12—C13—C14178.0 (2)
C3—C4—C5—C6179.5 (2)C12—C13—C14—C150.6 (4)
C9—C4—C5—C60.1 (3)C13—C14—C15—C161.0 (4)
C4—C5—C6—C70.3 (4)C14—C15—C16—O2178.8 (2)
C5—C6—C7—C80.7 (4)C14—C15—C16—C171.5 (4)
C6—C7—C8—C90.7 (4)O2—C16—C17—C12179.8 (2)
C7—C8—C9—C10179.3 (2)C15—C16—C17—C120.5 (3)
C7—C8—C9—C40.3 (4)O2—C16—C17—C12.8 (4)
C3—C4—C9—C100.0 (3)C15—C16—C17—C1176.9 (2)
C5—C4—C9—C10179.7 (2)C13—C12—C17—C161.2 (3)
C3—C4—C9—C8179.6 (2)C11—C12—C17—C16178.5 (2)
C5—C4—C9—C80.1 (3)C13—C12—C17—C1178.9 (2)
C8—C9—C10—C11179.1 (2)C11—C12—C17—C10.8 (2)
C4—C9—C10—C110.4 (3)O1—C1—C17—C161.4 (4)
C9—C10—C11—C20.2 (3)C2—C1—C17—C16178.4 (2)
C9—C10—C11—C12178.5 (2)O1—C1—C17—C12179.0 (2)
C3—C2—C11—C100.6 (3)C2—C1—C17—C120.8 (2)
C1—C2—C11—C10178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.11 (4)1.90 (4)2.877 (3)145 (3)
C3—H3A···O1i0.932.523.369 (3)151
Symmetry code: (i) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC17H10O2
Mr246.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)12.474 (2), 6.4401 (12), 15.601 (3)
β (°) 109.188 (3)
V3)1183.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6331, 2310, 1322
Rint0.087
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.153, 1.03
No. of reflections2310
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O11.11 (4)1.90 (4)2.877 (3)145 (3)
C3—H3A···O1i0.932.523.369 (3)151
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

References

First citationAquino, A. J. A., Lischka, H. & Hättig, C. (2005). J. Phys. Chem. A, 109, 3201–3208.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, K.-Y., Fang, T.-C. & Chang, M.-J. (2011a). Acta Cryst. E67, o992.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, W.-H. & Pang, Y. (2009). Tetrahedron Lett. 50, 6680–6683.  Web of Science CrossRef CAS Google Scholar
First citationChen, W.-H. & Pang, Y. (2010). Tetrahedron Lett. 51, 1914–1918.  Web of Science CrossRef CAS Google Scholar
First citationChen, K.-Y., Wen, Y.-S., Fang, T.-C., Chang, Y.-J. & Chang, M.-J. (2011b). Acta Cryst. E67, o927.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChuang, W.-T., Hsieh, C.-C., Lai, C.-H., Lai, C.-H., Shih, C.-W., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Org. Chem. 76, 8189–8202.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, D. Y., Kim, J. M., Kim, J., Jung, H. S., Lee, Y. H., Zhang, J. F. & Kim, J. S. (2010). Tetrahedron Lett. 51, 1947–1951.  Web of Science CSD CrossRef CAS Google Scholar
First citationIto, Y., Amimoto, K. & Kawato, T. (2011). Dyes Pigments, 89, 319–323.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, H. Y., Kim, H. J., Vicens, J. & Kim, J. S. (2009). Tetrahedron Lett. 50, 983–987.  Web of Science CrossRef CAS Google Scholar
First citationLi, Z., Xu, J.-H., Rosli, M. M. & Fun, H.-K. (2007). Acta Cryst. E63, o3435.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLim, C.-K., Seo, J., Kim, S., Kwon, I. C., Ahn, C.-H. & Park, S. Y. (2011). Dyes Pigments, 90, 284–289.  Web of Science CrossRef CAS Google Scholar
First citationSaeed, A. & Bolte, M. (2007). Acta Cryst. E63, o2757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, K.-C., Chang, M.-J., Lin, T.-Y., Pan, H.-A., Fang, T.-C., Chen, K.-Y., Hung, W.-Y., Hsu, Y.-H. & Chou, P.-T. (2011). J. Am. Chem. Soc. 133, 17738–17745.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds