metal-organic compounds
Poly[(2,2′-bipyridine-κ2N,N′)(μ3-2,4,6-trimethylisophthalato-κ5O1,O1′:O1:O3,O3′)cadmium]
aCollege of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: aymeifangjin@163.com
In the 11H10O4)(C10H8N2)]n, the CdII cation is chelated by one 2,2-bipyridine ligand and two carboxyl groups from two trimethylisophthalate (TMIPA) anions, and is further coordinated by one carboxylate O atom from a third TMIPA anion, forming a distorted pentagonal–bipyramidal geometry. Each TMIPA anion bridges three CdII cations, forming polymeric complex sheets parallel to (001). Weak C—H⋯O hydrogen bonding occurs between adjacent sheets.
of the polymeric title complex, [Cd(CRelated literature
For applications of functional metal-organic frameworks, see: Evans & Lin (2002); Chen et al. (2010); Leong & Vittal (2011); Sun et al. (2011). For related structures, see: Ma et al. (2008); Zhang et al. (2008); Zhou et al. (2003); Zhang et al. (2003); He et al. (2010); Liu et al. (2008). For our previous work, see: Dai et al. (2008, 2009); Zhao et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536811054183/xu5394sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811054183/xu5394Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811054183/xu5394Isup3.mol
A mixture of Cd(NO3)2.6H2O (30 mg, 0.12 mmol), 2,4,6,-trimethylisophthalic acid (H2TMIPA) (20 mg, 0.12 mmol) and bipyridine (10 mg, 0.06 mmol) was suspended in 15 mL mixed solvents of N,N'-dimethylformamide, ethanol and H2O (v/v = 1:1:1), and heated in a Teflon-lined steel bomb at 373 K for 4 days. After cooling to room temperature, colorless crystals were collected, washed with ethanol several times, and dried in the air (yield: 47%, based on H2TMIPA).
H atoms were generated geometrically and were allowed to ride on their parent atoms in the riding model approximations with C—H = 0.93 (aromatic) and 0.96 Å (methyl), Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd(C11H10O4)(C10H8N2)] | F(000) = 1904 |
Mr = 474.77 | Dx = 1.687 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 5089 reflections |
a = 13.1985 (8) Å | θ = 2.2–27.8° |
b = 15.5714 (9) Å | µ = 1.20 mm−1 |
c = 18.1926 (11) Å | T = 298 K |
V = 3738.9 (4) Å3 | Block, colorless |
Z = 8 | 0.15 × 0.10 × 0.10 mm |
Bruker SMART APEXII CCD diffractometer | 4299 independent reflections |
Radiation source: fine-focus sealed tube | 2454 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ω and ϕ scans | θmax = 27.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −17→11 |
Tmin = 0.841, Tmax = 0.890 | k = −17→20 |
14349 measured reflections | l = −15→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0375P)2] where P = (Fo2 + 2Fc2)/3 |
4299 reflections | (Δ/σ)max = 0.001 |
253 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.63 e Å−3 |
[Cd(C11H10O4)(C10H8N2)] | V = 3738.9 (4) Å3 |
Mr = 474.77 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 13.1985 (8) Å | µ = 1.20 mm−1 |
b = 15.5714 (9) Å | T = 298 K |
c = 18.1926 (11) Å | 0.15 × 0.10 × 0.10 mm |
Bruker SMART APEXII CCD diffractometer | 4299 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2454 reflections with I > 2σ(I) |
Tmin = 0.841, Tmax = 0.890 | Rint = 0.054 |
14349 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.098 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.51 e Å−3 |
4299 reflections | Δρmin = −0.63 e Å−3 |
253 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.50573 (2) | 0.584163 (18) | 0.575068 (16) | 0.03177 (11) | |
C1 | 0.3060 (4) | 0.7000 (3) | 0.6257 (3) | 0.0496 (14) | |
H1A | 0.3218 | 0.7291 | 0.5826 | 0.060* | |
C2 | 0.2259 (4) | 0.7293 (3) | 0.6667 (3) | 0.0569 (15) | |
H2A | 0.1873 | 0.7758 | 0.6512 | 0.068* | |
C3 | 0.2046 (4) | 0.6877 (3) | 0.7314 (3) | 0.0634 (16) | |
H3A | 0.1518 | 0.7064 | 0.7613 | 0.076* | |
C4 | 0.2620 (4) | 0.6187 (3) | 0.7511 (3) | 0.0586 (15) | |
H4A | 0.2489 | 0.5903 | 0.7951 | 0.070* | |
C5 | 0.3391 (3) | 0.5909 (3) | 0.7063 (2) | 0.0385 (11) | |
C6 | 0.4024 (4) | 0.5140 (3) | 0.7238 (2) | 0.0396 (11) | |
C7 | 0.3857 (4) | 0.4630 (3) | 0.7852 (3) | 0.0471 (13) | |
H7A | 0.3346 | 0.4768 | 0.8183 | 0.057* | |
C8 | 0.4453 (4) | 0.3916 (3) | 0.7965 (3) | 0.0541 (15) | |
H8A | 0.4352 | 0.3573 | 0.8377 | 0.065* | |
C9 | 0.5189 (4) | 0.3718 (3) | 0.7472 (3) | 0.0622 (16) | |
H9A | 0.5590 | 0.3232 | 0.7533 | 0.075* | |
C10 | 0.5323 (5) | 0.4249 (4) | 0.6888 (3) | 0.082 (2) | |
H10A | 0.5835 | 0.4116 | 0.6555 | 0.098* | |
C11 | 0.6847 (3) | 0.4899 (3) | 0.5399 (2) | 0.0311 (10) | |
C12 | 0.7761 (3) | 0.4466 (3) | 0.5081 (2) | 0.0335 (11) | |
C13 | 0.8065 (3) | 0.3639 (3) | 0.5314 (2) | 0.0344 (11) | |
C14 | 0.8932 (3) | 0.3269 (3) | 0.5012 (3) | 0.0387 (12) | |
C15 | 0.9490 (4) | 0.3712 (3) | 0.4471 (3) | 0.0581 (16) | |
C16 | 0.9164 (4) | 0.4521 (3) | 0.4247 (3) | 0.0699 (18) | |
H16A | 0.9529 | 0.4813 | 0.3888 | 0.084* | |
C17 | 0.8299 (4) | 0.4907 (3) | 0.4549 (3) | 0.0543 (15) | |
C18 | 0.7974 (5) | 0.5776 (3) | 0.4262 (3) | 0.078 (2) | |
H18A | 0.7381 | 0.5964 | 0.4522 | 0.117* | |
H18B | 0.7823 | 0.5733 | 0.3747 | 0.117* | |
H18C | 0.8511 | 0.6183 | 0.4334 | 0.117* | |
C19 | 0.7417 (4) | 0.3160 (3) | 0.5853 (3) | 0.0456 (13) | |
H19A | 0.7717 | 0.2611 | 0.5955 | 0.068* | |
H19B | 0.6753 | 0.3078 | 0.5648 | 0.068* | |
H19C | 0.7365 | 0.3483 | 0.6301 | 0.068* | |
C20 | 0.9284 (3) | 0.2395 (3) | 0.5264 (3) | 0.0417 (12) | |
C21 | 1.0421 (5) | 0.3344 (4) | 0.4112 (4) | 0.097 (3) | |
H21A | 1.0683 | 0.3748 | 0.3761 | 0.146* | |
H21B | 1.0249 | 0.2819 | 0.3866 | 0.146* | |
H21C | 1.0926 | 0.3232 | 0.4479 | 0.146* | |
N1 | 0.3624 (3) | 0.6324 (2) | 0.64418 (19) | 0.0367 (9) | |
N2 | 0.4764 (3) | 0.4950 (3) | 0.6760 (2) | 0.0532 (12) | |
O1 | 0.6951 (3) | 0.5405 (2) | 0.59115 (17) | 0.0536 (9) | |
O2 | 0.5988 (2) | 0.47532 (18) | 0.51372 (16) | 0.0412 (8) | |
O3 | 0.9433 (3) | 0.2269 (2) | 0.5937 (2) | 0.0580 (10) | |
O4 | 0.9409 (3) | 0.18136 (19) | 0.48063 (19) | 0.0618 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0381 (2) | 0.02748 (17) | 0.02972 (17) | −0.00141 (17) | 0.00347 (18) | −0.00099 (13) |
C1 | 0.059 (4) | 0.047 (3) | 0.043 (3) | 0.003 (3) | 0.007 (3) | 0.009 (2) |
C2 | 0.056 (4) | 0.048 (3) | 0.067 (4) | 0.008 (3) | 0.011 (3) | 0.005 (3) |
C3 | 0.061 (4) | 0.063 (4) | 0.066 (4) | 0.016 (3) | 0.021 (3) | 0.002 (3) |
C4 | 0.063 (4) | 0.059 (3) | 0.054 (3) | 0.017 (3) | 0.019 (3) | 0.017 (3) |
C5 | 0.040 (3) | 0.041 (3) | 0.035 (3) | −0.001 (3) | 0.006 (2) | −0.001 (2) |
C6 | 0.044 (3) | 0.038 (3) | 0.038 (3) | −0.001 (2) | 0.002 (2) | 0.002 (2) |
C7 | 0.051 (3) | 0.047 (3) | 0.044 (3) | 0.004 (3) | 0.015 (3) | 0.011 (2) |
C8 | 0.060 (4) | 0.047 (3) | 0.054 (4) | −0.011 (3) | 0.002 (3) | 0.021 (3) |
C9 | 0.068 (4) | 0.048 (3) | 0.070 (4) | 0.019 (3) | 0.009 (3) | 0.022 (3) |
C10 | 0.098 (5) | 0.065 (4) | 0.082 (5) | 0.040 (4) | 0.044 (4) | 0.033 (3) |
C11 | 0.029 (3) | 0.026 (2) | 0.038 (3) | 0.004 (2) | 0.002 (2) | 0.007 (2) |
C12 | 0.033 (3) | 0.027 (2) | 0.040 (3) | 0.000 (2) | −0.003 (2) | 0.005 (2) |
C13 | 0.025 (3) | 0.031 (2) | 0.047 (3) | −0.004 (2) | −0.006 (2) | 0.001 (2) |
C14 | 0.026 (3) | 0.030 (2) | 0.061 (3) | 0.003 (2) | 0.003 (2) | 0.001 (2) |
C15 | 0.041 (3) | 0.044 (3) | 0.089 (4) | 0.010 (3) | 0.021 (3) | 0.010 (3) |
C16 | 0.055 (4) | 0.048 (3) | 0.106 (5) | 0.014 (3) | 0.040 (4) | 0.034 (3) |
C17 | 0.045 (3) | 0.039 (3) | 0.079 (4) | 0.014 (3) | 0.015 (3) | 0.009 (3) |
C18 | 0.084 (5) | 0.049 (3) | 0.102 (5) | 0.020 (3) | 0.036 (4) | 0.029 (3) |
C19 | 0.035 (3) | 0.038 (3) | 0.064 (3) | 0.000 (2) | 0.000 (3) | 0.008 (2) |
C20 | 0.034 (3) | 0.027 (3) | 0.064 (4) | 0.002 (2) | −0.002 (3) | 0.004 (3) |
C21 | 0.069 (4) | 0.071 (4) | 0.152 (7) | 0.034 (4) | 0.063 (5) | 0.032 (4) |
N1 | 0.044 (3) | 0.030 (2) | 0.036 (2) | −0.002 (2) | 0.0083 (19) | 0.0022 (17) |
N2 | 0.065 (3) | 0.046 (2) | 0.048 (3) | 0.019 (2) | 0.022 (2) | 0.016 (2) |
O1 | 0.049 (2) | 0.061 (2) | 0.051 (2) | 0.0074 (19) | −0.0078 (18) | −0.0182 (18) |
O2 | 0.0239 (18) | 0.0478 (19) | 0.052 (2) | 0.0033 (16) | −0.0045 (16) | −0.0085 (15) |
O3 | 0.072 (3) | 0.038 (2) | 0.064 (3) | 0.0192 (19) | −0.023 (2) | −0.0055 (17) |
O4 | 0.092 (3) | 0.0328 (19) | 0.061 (2) | 0.017 (2) | 0.010 (2) | −0.0006 (17) |
Cd1—N1 | 2.393 (4) | C11—O2 | 1.250 (5) |
Cd1—N2 | 2.334 (4) | C11—C12 | 1.499 (6) |
Cd1—O1 | 2.607 (3) | C12—C17 | 1.382 (6) |
Cd1—O2i | 2.317 (3) | C12—C13 | 1.414 (5) |
Cd1—O2 | 2.372 (3) | C13—C14 | 1.394 (6) |
Cd1—O3ii | 2.347 (3) | C13—C19 | 1.500 (6) |
Cd1—O4ii | 2.396 (3) | C14—C15 | 1.409 (6) |
C1—N1 | 1.333 (5) | C14—C20 | 1.510 (6) |
C1—C2 | 1.371 (6) | C15—C16 | 1.392 (7) |
C1—H1A | 0.9300 | C15—C21 | 1.505 (7) |
C2—C3 | 1.372 (6) | C16—C17 | 1.402 (7) |
C2—H2A | 0.9300 | C16—H16A | 0.9300 |
C3—C4 | 1.363 (7) | C17—C18 | 1.514 (6) |
C3—H3A | 0.9300 | C18—H18A | 0.9600 |
C4—C5 | 1.374 (6) | C18—H18B | 0.9600 |
C4—H4A | 0.9300 | C18—H18C | 0.9600 |
C5—N1 | 1.338 (5) | C19—H19A | 0.9600 |
C5—C6 | 1.494 (6) | C19—H19B | 0.9600 |
C6—N2 | 1.341 (5) | C19—H19C | 0.9600 |
C6—C7 | 1.388 (6) | C20—O4 | 1.241 (5) |
C7—C8 | 1.377 (6) | C20—O3 | 1.255 (5) |
C7—H7A | 0.9300 | C20—Cd1iii | 2.718 (4) |
C8—C9 | 1.357 (7) | C21—H21A | 0.9600 |
C8—H8A | 0.9300 | C21—H21B | 0.9600 |
C9—C10 | 1.359 (7) | C21—H21C | 0.9600 |
C9—H9A | 0.9300 | O2—Cd1i | 2.317 (3) |
C10—N2 | 1.339 (6) | O3—Cd1iii | 2.347 (3) |
C10—H10A | 0.9300 | O4—Cd1iii | 2.396 (3) |
C11—O1 | 1.228 (5) | ||
O2i—Cd1—N2 | 102.23 (14) | O1—C11—O2 | 120.5 (4) |
O2i—Cd1—O3ii | 130.54 (12) | O1—C11—C12 | 119.5 (4) |
N2—Cd1—O3ii | 119.81 (14) | O2—C11—C12 | 120.0 (4) |
O2i—Cd1—O2 | 72.22 (12) | C17—C12—C13 | 121.1 (4) |
N2—Cd1—O2 | 91.79 (12) | C17—C12—C11 | 117.4 (4) |
O3ii—Cd1—O2 | 126.60 (12) | C13—C12—C11 | 121.5 (4) |
O2i—Cd1—N1 | 91.21 (11) | C14—C13—C12 | 119.4 (4) |
N2—Cd1—N1 | 69.02 (13) | C14—C13—C19 | 121.4 (4) |
O3ii—Cd1—N1 | 81.58 (12) | C12—C13—C19 | 119.1 (4) |
O2—Cd1—N1 | 151.76 (11) | C13—C14—C15 | 120.2 (4) |
O2i—Cd1—O4ii | 85.85 (11) | C13—C14—C20 | 120.3 (4) |
N2—Cd1—O4ii | 171.39 (14) | C15—C14—C20 | 119.5 (4) |
O3ii—Cd1—O4ii | 54.62 (11) | C16—C15—C14 | 119.0 (5) |
O2—Cd1—O4ii | 87.81 (12) | C16—C15—C21 | 118.0 (5) |
N1—Cd1—O4ii | 114.27 (12) | C14—C15—C21 | 123.0 (5) |
O2i—Cd1—O1 | 123.00 (10) | C15—C16—C17 | 121.6 (5) |
N2—Cd1—O1 | 85.17 (13) | C15—C16—H16A | 119.2 |
O3ii—Cd1—O1 | 87.47 (12) | C17—C16—H16A | 119.2 |
O2—Cd1—O1 | 50.95 (10) | C12—C17—C16 | 118.7 (4) |
N1—Cd1—O1 | 141.36 (11) | C12—C17—C18 | 122.7 (4) |
O4ii—Cd1—O1 | 87.91 (12) | C16—C17—C18 | 118.6 (5) |
O2i—Cd1—C20ii | 108.60 (14) | C17—C18—H18A | 109.5 |
N2—Cd1—C20ii | 146.97 (16) | C17—C18—H18B | 109.5 |
O3ii—Cd1—C20ii | 27.47 (12) | H18A—C18—H18B | 109.5 |
O2—Cd1—C20ii | 108.48 (13) | C17—C18—H18C | 109.5 |
N1—Cd1—C20ii | 98.32 (13) | H18A—C18—H18C | 109.5 |
O4ii—Cd1—C20ii | 27.16 (12) | H18B—C18—H18C | 109.5 |
O1—Cd1—C20ii | 87.82 (12) | C13—C19—H19A | 109.5 |
N1—C1—C2 | 123.8 (4) | C13—C19—H19B | 109.5 |
N1—C1—H1A | 118.1 | H19A—C19—H19B | 109.5 |
C2—C1—H1A | 118.1 | C13—C19—H19C | 109.5 |
C1—C2—C3 | 117.9 (5) | H19A—C19—H19C | 109.5 |
C1—C2—H2A | 121.1 | H19B—C19—H19C | 109.5 |
C3—C2—H2A | 121.1 | O4—C20—O3 | 121.3 (4) |
C4—C3—C2 | 118.9 (5) | O4—C20—C14 | 119.6 (5) |
C4—C3—H3A | 120.5 | O3—C20—C14 | 119.0 (4) |
C2—C3—H3A | 120.5 | O4—C20—Cd1iii | 61.8 (2) |
C3—C4—C5 | 120.3 (5) | O3—C20—Cd1iii | 59.6 (2) |
C3—C4—H4A | 119.9 | C14—C20—Cd1iii | 178.4 (4) |
C5—C4—H4A | 119.9 | C15—C21—H21A | 109.5 |
N1—C5—C4 | 121.2 (4) | C15—C21—H21B | 109.5 |
N1—C5—C6 | 116.1 (4) | H21A—C21—H21B | 109.5 |
C4—C5—C6 | 122.7 (4) | C15—C21—H21C | 109.5 |
N2—C6—C7 | 120.8 (4) | H21A—C21—H21C | 109.5 |
N2—C6—C5 | 116.4 (4) | H21B—C21—H21C | 109.5 |
C7—C6—C5 | 122.8 (4) | C1—N1—C5 | 117.8 (4) |
C8—C7—C6 | 119.4 (5) | C1—N1—Cd1 | 123.9 (3) |
C8—C7—H7A | 120.3 | C5—N1—Cd1 | 118.3 (3) |
C6—C7—H7A | 120.3 | C10—N2—C6 | 117.9 (4) |
C9—C8—C7 | 119.6 (5) | C10—N2—Cd1 | 122.0 (3) |
C9—C8—H8A | 120.2 | C6—N2—Cd1 | 120.0 (3) |
C7—C8—H8A | 120.2 | C11—O1—Cd1 | 88.5 (3) |
C10—C9—C8 | 118.1 (5) | C11—O2—Cd1i | 151.4 (3) |
C10—C9—H9A | 120.9 | C11—O2—Cd1 | 99.2 (3) |
C8—C9—H9A | 120.9 | Cd1i—O2—Cd1 | 107.78 (12) |
N2—C10—C9 | 124.1 (5) | C20—O3—Cd1iii | 93.0 (3) |
N2—C10—H10A | 118.0 | C20—O4—Cd1iii | 91.1 (3) |
C9—C10—H10A | 118.0 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y+1/2, z; (iii) −x+3/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1iv | 0.93 | 2.32 | 3.240 (6) | 169 |
C8—H8A···O3iv | 0.93 | 2.39 | 3.251 (6) | 155 |
Symmetry code: (iv) x−1/2, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C11H10O4)(C10H8N2)] |
Mr | 474.77 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 298 |
a, b, c (Å) | 13.1985 (8), 15.5714 (9), 18.1926 (11) |
V (Å3) | 3738.9 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 1.20 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.841, 0.890 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14349, 4299, 2454 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.098, 0.99 |
No. of reflections | 4299 |
No. of parameters | 253 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.63 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008), publCIF (Westrip, 2010).
Cd1—N1 | 2.393 (4) | Cd1—O2 | 2.372 (3) |
Cd1—N2 | 2.334 (4) | Cd1—O3ii | 2.347 (3) |
Cd1—O1 | 2.607 (3) | Cd1—O4ii | 2.396 (3) |
Cd1—O2i | 2.317 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O1iii | 0.93 | 2.32 | 3.240 (6) | 169 |
C8—H8A···O3iii | 0.93 | 2.39 | 3.251 (6) | 155 |
Symmetry code: (iii) x−1/2, y, −z+3/2. |
Acknowledgements
This work was supported financially by Anyang Institute of Technology, China.
References
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, B., Xiang, S. & Qian, G. (2010). Acc. Chem. Res 43, 1115–1124. Web of Science CrossRef CAS PubMed Google Scholar
Dai, F., He, H. & Sun, D. (2008). J. Am. Chem. Soc. 130, 14064–14065 Web of Science CrossRef PubMed CAS Google Scholar
Dai, F., He, H. & Sun, D. (2009). Inorg. Chem. 48, 4613–4615. Web of Science CSD CrossRef PubMed CAS Google Scholar
Evans, O. R. & Lin, W. (2002). Acc. Chem. Res. 35, 511–522. Web of Science CrossRef PubMed CAS Google Scholar
He, H.-Y., David, C., Fangna Dai, F. N., Zhao, X.-L., Zhang, G.-Q., Ma, H.-Q. & Sun, D.-F. (2010). Cryst. Growth Des. 10, 895–902. Web of Science CrossRef CAS Google Scholar
Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764. Web of Science CrossRef CAS PubMed Google Scholar
Liu, X., Liu, K., Yang, Y. & Li, B. (2008). Inorg. Chem. Commun. 11, 1273–1275. Web of Science CSD CrossRef Google Scholar
Ma, L., Lee, J. Y., Li, J. & Lin, W. (2008). Inorg. Chem. 47, 3955–3957. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, J., Dai, F., Yuan, W., Bi, W., Zhao, X., Sun, W. & Sun, D. (2011). Angew. Chem., Int. Ed. 50, 7061–7064 Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, J.-Y., Cheng, A.-L., Yue, Q., Sun, W.-W. & Gao, E.-Q. (2008). Chem. Commun. pp. 847–849. Web of Science CSD CrossRef Google Scholar
Zhang, L.-Y., Liu, G.-F., Zheng, S.-L., Ye, B.-H., Zhang, X.-M. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 2965–2971 CrossRef Google Scholar
Zhao, X., He, H., Hu, T., Dai, F. & Sun, D. (2009). Inorg. Chem. 48, 8057–8059. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhou, Y.-F., Zhao, Y.-J., Sun, D.-F., Weng, J.-B., Cao, R. & Hong, M.-C. (2003). Polyhedron, 22, 1231–1235. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The rational design and synthesis of functional metal-organic frameworks (MOFs) is a more and more fascinating field in recent years due to their interesting topologies and potential applications in gas adsorption, nonlinear optics, magnetism, molecular recognition, etc (Evans & Lin, 2002; Chen, et al., 2010; Leong & Vittal, 2011; Sun et al., 2011). As we know, the construction of MOFs mainly depends on the coordination geometry of metal ions and the nature of ligands. Besides, some secondary interactions, such as aromatic π···π interactions, classical hydrogen bonds (such as O-H···O and N-H···O hydrogen bonds), and non-classical hydrogen bonds (such as C-H···O hydrogen bond) often influence the packing of molecules from discrete subunits or low-dimentional entities to high-dimentional supramolecular frameworks. One of the most effective strategies to assemble MOFs is to use carboxylates as linkers because of their diverse conformations and coordination modes observed in the coordination process (Ma et al., 2008; Zhang et al., 2008). In spite of isophthalate-based MOFs (Zhou et al., 2003; Zhang et al., 2003) have been widely reported, to the best of our knowledge, only one MOF based on 2,4,6,-trimethylisophthalic acid (H2TMIPA) has been documented until now (He et al., 2010). Based on our previous work (Dai et al., 2008; Dai et al., 2009; Zhao et al., 2009) and consideration the steric hindrance effects of additional three methyl groups on isophthalate, herein, we choose the H2TMIPA as a bridging ligand to construct a novel CdII coordination polymer (I), which is a 2D (4,4) net incorporating [Cd2(COO)4N2] SBUs.
The asymmetric unit of (I) contains one crystallographically independent CdII center, one TMIPA ligand and one bpy ligand. The CdII ion is in a slightly distorted pentagonal bipyramidal geometry, completed by five O atoms from three different TMIPA ligands and two N atoms from the same bpy ligand (Fig. 1). The equatorial plane of pentagonal bipyramid is defined by O2i, O3ii, O4ii, N2 atoms, while the axial positions are occupied N1, O1 atoms. [symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+3/2, y+1/2, z]. Two carboxyl groups on TMIPA ligand adopt two different coordination patterns, µ1-η1: η1 chelating and µ2-η2: η1 bridging, respectively. The Cd-N bond lengths are 2.393 (4) and 2.334 (4) Å, while the Cd-O bond lengths vary from 2.317 (3) to 2.607 (3) Å (Table). The average Cd-N and Cd-O distances in (I) are comparable with those reported for Cd-based MOFs (Liu et al., 2008). Two crystallographically equivalent CdII anions are bridged by two tridentate bridging carboxyl groups to form a binuclear SBU with a Cd···Cd contact of 3.7886 (6) Å. Because of the steric hindrance between the methyl and the carboxyl groups, the two carboxyl groups of H2TMIPA are not coplanar with the central benzene ring, generating two dihedral angles of 55.1 (2) and 85.3 (2)o, respectively. The [Cd2(COO)4N2] SBUs are joined by TMIPA ligands to form an infinite 1D zigzag chain. Furthermore, TMIPA ligands connect the zigzag chain to a 2D layer (Fig. 2) which is consolidated by the intrasheet weak face-to-face π···π interaction between bpy and TMIPA with Cg1···Cg2i separation of 3.725 (3) Å (Cg1 and Cg2 are the centroids of the N1/C1–C5 and C12–C17 rings, respectively; symmetry code: (i) -x+1, -y+1, -z+1). The bpy ligand acts as a terminal group to occupy the remaining coordinate sites, which prevents the structure from higher dimensionalities. The adjacent 2D layers are further extended to a 3D supramolecular framework by virtue of non-classical C-H···O hydrogen bonds (Table 2).