organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzene-1,3,5-tricarb­­oxy­lic acid–5-(4-pyrid­yl)pyrimidine (1/1)

aResearch Center of Medical Chemistry & Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, People's Republic of China, and bCollege of Pharmacy, Binzhou Medical University, Yantai 264003, People's Republic of China
*Correspondence e-mail: guigehou@163.com

(Received 24 November 2011; accepted 28 November 2011; online 3 December 2011)

In the pyrimidine mol­ecule of the title compound, C9H7N3·C9H6O6, the pyridine ring is oriented at 33.26 (11)° with respect to the pyrimidine ring. In the benzene-1,3,5-tricarb­oxy­lic acid mol­ecule, the three carb­oxy groups are twisted by 7.92 (9), 8.68 (10) and 17.07 (10)° relative to the benzene ring. Classical O—H⋯N and O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯N hydrogen bonds occur in the crystal structure.

Related literature

For hydrogen bonding in pyrimidine derivatives, see: Hou et al. (2011[Hou, G.-G., Ma, L.-Y. & Dai, X.-P. (2011). Acta Cryst. C67, m321-m323.]); Horikoshi et al. (2004[Horikoshi, R., Nambu, C. & Mochida, T. (2004). New J. Chem. 28, 26-33.]); Georgiev et al. (2004[Georgiev, I., Bosch, E., Barnes, C. L. & Draganjac, M. (2004). Cryst. Growth Des. 4, 235-239.]); Santoni et al. (2008[Santoni, M.-P. C., Yu, S. H., Hanan, G. S., Proust, A. & Hasenknopf, B. (2008). Acta Cryst. E64, o584.]); Huang & Parquette (2000[Huang, B. & Parquette, J. R. (2000). Org. Lett. 2, 239-242.]). For co-crystals of organic acids and pyrimidine, see: Bhogala & Nangia(2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]); Du et al. (2005[Du, M., Zhang, Z.-H. & Zhao, X.-J. (2005). Cryst. Growth Des. 2, 1247-1254.]); Hou et al. (2008[Hou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997.]).

[Scheme 1]

Experimental

Crystal data
  • C9H7N3·C9H6O6

  • Mr = 367.31

  • Monoclinic, P 21 /c

  • a = 8.3532 (19) Å

  • b = 14.865 (3) Å

  • c = 13.066 (3) Å

  • β = 98.325 (4)°

  • V = 1605.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.32 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • 8278 measured reflections

  • 2967 independent reflections

  • 2142 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.130

  • S = 1.04

  • 2967 reflections

  • 256 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.95 (3) 1.70 (3) 2.652 (2) 173 (3)
O3—H3A⋯O2ii 0.92 (3) 1.84 (3) 2.720 (2) 161 (3)
O5—H5A⋯N1 0.95 (3) 1.68 (3) 2.626 (2) 177 (3)
C3—H3⋯O3ii 0.93 2.48 3.367 (3) 159
C14—H14⋯N2iii 0.93 2.59 3.335 (3) 137
Symmetry codes: (i) x+1, y, z-1; (ii) -x+2, -y+1, -z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some pyrimidine derivatives, such as such as 5, 5'-dipyrimidine, 1,2-bis(5'-pyrimidyl)ethyne, 5-(3-pyridyl)pyrimidine (L), 5-phenyl-2-(4-pyrid-yl)pyrimidine, and 4-(pyridin-2-yl)pyrimidine-2-sulfonate, could form strong hydrogen-bond interaction and play an essential role in synthesis of supra-molecular structure (Hou et al., 2011; Horikoshi et al., 2004; Georgiev et al., 2004; Santoni et al., 2008; Huang et al., 2000). The co-crystal sates of acid···pyridine and acid···pyrimidine systems have been reported (Bhogala et al., 2003; Du et al., 2005; Hou et al., 2008). Here we report the co-crystal states of L1 and L2.

The title molecular structure is shown in Fig. 1. The asymmetric unit contains 5-(4-pyridyl)pyrimidine molecule (L1) and a benzene-1,3,5-tricarboxylic acid molecule (L2). In the crystal, L1 and L2 arrange in an alternate disposition along the crystallographic c-axis. A H-bonding driven double chain was generated from O—H···N and O—H···O hydrogen bonds between these molecules (Fig. 2). The asymmetric hydrogen bonds influence the intramolecular coplanar of L2 and different dihedral angles of 7.92 (9), 8.68 (10) and 17.07 (10)° are formed between benzene ring and the carboxyl groups. Pyridine ring is twisted to pyrimidine ring at a dihedral angle of 33.26 (11)°, but nearly coplanar with benzene ring of L2 (the dihedral angle, 12.0 (8)°).

Related literature top

For hydrogen bonding in pyrimidine derivatives, see: Hou et al. (2011); Horikoshi et al. (2004); Georgiev et al. (2004); Santoni et al. (2008); Huang & Parquette (2000). For co-crystals of organic acid and pyrimidine, see: Bhogala & Nangia(2003); Du et al. (2005); Hou et al. (2008).

Experimental top

A CH2Cl2 and CH3CN solution (15 mL, 1:1, v/v) of 5-(4-pyridyl)pyrimidine molecule and benzene-1,3,5-tricarboxylic acid (21.0 mg, 0.1 mmol) was kept at room temperature. Upon slow evaporation of the solvent about 5 days, colorless crystals were obtained.

Refinement top

The carboxyl-H atoms were located in a difference Fourier map and refined isotropically. Aromatic H atoms were placed in idealized positions and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the hydrogen-bonded double-chain observed in the crystal structure of (1).
Benzene-1,3,5-tricarboxylic acid–5-(4-pyridyl)pyrimidine (1/1) top
Crystal data top
C9H7N3·C9H6O6F(000) = 760
Mr = 367.31Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1381 reflections
a = 8.3532 (19) Åθ = 2.5–22.7°
b = 14.865 (3) ŵ = 0.12 mm1
c = 13.066 (3) ÅT = 298 K
β = 98.325 (4)°Block, colourless
V = 1605.4 (6) Å30.32 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2142 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 25.5°, θmin = 2.1°
ϕ and ω scansh = 1010
8278 measured reflectionsk = 1817
2967 independent reflectionsl = 915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.0652P]
where P = (Fo2 + 2Fc2)/3
2967 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C9H7N3·C9H6O6V = 1605.4 (6) Å3
Mr = 367.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3532 (19) ŵ = 0.12 mm1
b = 14.865 (3) ÅT = 298 K
c = 13.066 (3) Å0.32 × 0.12 × 0.10 mm
β = 98.325 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2142 reflections with I > 2σ(I)
8278 measured reflectionsRint = 0.042
2967 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.130H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2967 reflectionsΔρmin = 0.21 e Å3
256 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0045 (3)0.23487 (15)0.04299 (17)0.0307 (5)
C20.9253 (3)0.28752 (14)0.11876 (16)0.0298 (5)
C30.9233 (3)0.38061 (15)0.11112 (17)0.0328 (6)
H30.97170.40860.05980.039*
C40.8495 (3)0.43246 (14)0.17958 (16)0.0314 (6)
C50.7764 (3)0.38975 (15)0.25547 (16)0.0323 (6)
H50.72540.42390.30090.039*
C60.7787 (3)0.29718 (15)0.26421 (16)0.0314 (5)
C70.8537 (3)0.24592 (15)0.19591 (16)0.0315 (6)
H70.85590.18360.20180.038*
C80.6958 (3)0.24978 (16)0.34319 (17)0.0327 (6)
C90.8432 (3)0.53210 (16)0.17124 (18)0.0402 (6)
C100.4491 (3)0.13542 (17)0.52900 (19)0.0462 (7)
H100.47820.10490.47230.055*
C110.3919 (3)0.08600 (16)0.60484 (18)0.0405 (7)
H110.38040.02390.59850.049*
C120.3513 (3)0.13035 (15)0.69125 (16)0.0302 (5)
C130.3600 (3)0.22316 (15)0.69197 (17)0.0319 (6)
H130.32740.25560.74620.038*
C140.4171 (3)0.26728 (16)0.61198 (17)0.0361 (6)
H140.42240.32980.61370.043*
C150.3122 (3)0.07958 (14)0.78172 (16)0.0284 (5)
C160.2130 (3)0.11360 (15)0.84858 (17)0.0354 (6)
H160.16280.16890.83370.043*
C170.2625 (3)0.00820 (15)0.95212 (18)0.0423 (7)
H170.24490.03861.01170.051*
C180.3827 (3)0.00268 (15)0.80969 (18)0.0402 (6)
H180.44960.02830.76660.048*
N10.4653 (2)0.22434 (14)0.53205 (15)0.0398 (5)
N20.3604 (3)0.04710 (13)0.89448 (16)0.0470 (6)
N30.1871 (2)0.06964 (12)0.93362 (14)0.0380 (5)
O11.0171 (2)0.14904 (10)0.06445 (13)0.0432 (5)
H11.071 (4)0.1197 (19)0.014 (2)0.082 (10)*
O21.0535 (2)0.26844 (10)0.03140 (12)0.0392 (5)
O30.9472 (3)0.56310 (13)0.11264 (15)0.0621 (7)
H3A0.930 (4)0.622 (2)0.095 (2)0.088 (11)*
O40.7531 (2)0.57872 (11)0.21148 (14)0.0605 (6)
O50.6348 (2)0.30593 (11)0.40541 (13)0.0446 (5)
H5A0.572 (4)0.276 (2)0.449 (2)0.093 (11)*
O60.6847 (2)0.16917 (11)0.34744 (13)0.0482 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0310 (14)0.0294 (13)0.0331 (13)0.0002 (10)0.0093 (11)0.0013 (10)
C20.0296 (14)0.0323 (13)0.0289 (12)0.0002 (10)0.0087 (10)0.0011 (9)
C30.0368 (15)0.0331 (13)0.0315 (13)0.0010 (10)0.0153 (11)0.0037 (9)
C40.0343 (15)0.0328 (13)0.0285 (13)0.0029 (10)0.0096 (11)0.0016 (9)
C50.0340 (14)0.0378 (14)0.0270 (12)0.0016 (11)0.0108 (11)0.0009 (10)
C60.0283 (14)0.0376 (13)0.0293 (13)0.0006 (10)0.0079 (11)0.0004 (10)
C70.0337 (14)0.0290 (12)0.0330 (13)0.0006 (10)0.0092 (11)0.0006 (9)
C80.0343 (15)0.0370 (14)0.0280 (13)0.0007 (11)0.0081 (11)0.0006 (10)
C90.0546 (18)0.0356 (14)0.0332 (13)0.0027 (12)0.0161 (13)0.0019 (11)
C100.0549 (19)0.0501 (17)0.0381 (15)0.0041 (13)0.0222 (14)0.0040 (12)
C110.0529 (18)0.0337 (14)0.0379 (14)0.0006 (12)0.0168 (13)0.0050 (10)
C120.0283 (14)0.0316 (13)0.0318 (13)0.0003 (10)0.0079 (10)0.0017 (9)
C130.0343 (15)0.0319 (13)0.0311 (13)0.0005 (10)0.0107 (11)0.0001 (10)
C140.0379 (15)0.0329 (13)0.0391 (14)0.0021 (11)0.0110 (12)0.0022 (10)
C150.0292 (14)0.0245 (12)0.0326 (13)0.0041 (10)0.0085 (11)0.0022 (9)
C160.0399 (16)0.0287 (12)0.0404 (14)0.0026 (10)0.0149 (12)0.0027 (10)
C170.0608 (19)0.0314 (13)0.0384 (14)0.0028 (12)0.0197 (13)0.0047 (11)
C180.0528 (18)0.0288 (13)0.0435 (15)0.0004 (12)0.0224 (13)0.0029 (11)
N10.0390 (13)0.0460 (13)0.0369 (12)0.0002 (10)0.0142 (10)0.0045 (9)
N20.0670 (17)0.0312 (11)0.0483 (13)0.0081 (10)0.0269 (12)0.0056 (9)
N30.0478 (14)0.0334 (11)0.0365 (12)0.0016 (10)0.0192 (10)0.0021 (9)
O10.0601 (13)0.0291 (9)0.0477 (11)0.0043 (8)0.0320 (10)0.0012 (7)
O20.0541 (12)0.0323 (9)0.0365 (10)0.0032 (8)0.0249 (9)0.0041 (7)
O30.0953 (17)0.0323 (11)0.0711 (14)0.0013 (10)0.0537 (13)0.0090 (9)
O40.0866 (16)0.0362 (10)0.0679 (14)0.0151 (10)0.0422 (12)0.0003 (9)
O50.0600 (13)0.0422 (10)0.0386 (10)0.0023 (9)0.0306 (10)0.0002 (8)
O60.0666 (14)0.0344 (10)0.0498 (11)0.0034 (9)0.0288 (10)0.0039 (8)
Geometric parameters (Å, º) top
C1—O21.215 (2)C11—C121.391 (3)
C1—O11.307 (3)C11—H110.9300
C1—C21.490 (3)C12—C131.381 (3)
C2—C31.387 (3)C12—C151.478 (3)
C2—C71.390 (3)C13—C141.377 (3)
C3—C41.390 (3)C13—H130.9300
C3—H30.9300C14—N11.335 (3)
C4—C51.391 (3)C14—H140.9300
C4—C91.485 (3)C15—C181.383 (3)
C5—C61.381 (3)C15—C161.384 (3)
C5—H50.9300C16—N31.333 (3)
C6—C71.389 (3)C16—H160.9300
C6—C81.499 (3)C17—N21.322 (3)
C7—H70.9300C17—N31.323 (3)
C8—O61.204 (3)C17—H170.9300
C8—O51.318 (3)C18—N21.326 (3)
C9—O41.199 (3)C18—H180.9300
C9—O31.321 (3)O1—H10.95 (3)
C10—N11.329 (3)O3—H3A0.92 (3)
C10—C111.374 (3)O5—H5A0.95 (3)
C10—H100.9300
O2—C1—O1123.10 (19)C10—C11—C12118.9 (2)
O2—C1—C2123.3 (2)C10—C11—H11120.6
O1—C1—C2113.59 (18)C12—C11—H11120.6
C3—C2—C7119.60 (19)C13—C12—C11117.41 (19)
C3—C2—C1118.57 (18)C13—C12—C15121.45 (18)
C7—C2—C1121.8 (2)C11—C12—C15121.0 (2)
C2—C3—C4120.57 (19)C14—C13—C12119.6 (2)
C2—C3—H3119.7C14—C13—H13120.2
C4—C3—H3119.7C12—C13—H13120.2
C3—C4—C5119.1 (2)N1—C14—C13122.9 (2)
C3—C4—C9121.33 (19)N1—C14—H14118.5
C5—C4—C9119.52 (19)C13—C14—H14118.5
C6—C5—C4120.8 (2)C18—C15—C16115.3 (2)
C6—C5—H5119.6C18—C15—C12121.86 (19)
C4—C5—H5119.6C16—C15—C12122.7 (2)
C5—C6—C7119.71 (19)N3—C16—C15122.1 (2)
C5—C6—C8121.53 (19)N3—C16—H16119.0
C7—C6—C8118.7 (2)C15—C16—H16119.0
C6—C7—C2120.2 (2)N2—C17—N3126.6 (2)
C6—C7—H7119.9N2—C17—H17116.7
C2—C7—H7119.9N3—C17—H17116.7
O6—C8—O5124.2 (2)N2—C18—C15123.7 (2)
O6—C8—C6123.10 (19)N2—C18—H18118.1
O5—C8—C6112.7 (2)C15—C18—H18118.1
O4—C9—O3124.0 (2)C10—N1—C14117.28 (19)
O4—C9—C4124.2 (2)C17—N2—C18115.6 (2)
O3—C9—C4111.8 (2)C17—N3—C16116.78 (19)
N1—C10—C11123.7 (2)C1—O1—H1109.3 (17)
N1—C10—H10118.1C9—O3—H3A113.0 (19)
C11—C10—H10118.1C8—O5—H5A111.9 (18)
O2—C1—C2—C37.5 (3)C3—C4—C9—O316.2 (3)
O1—C1—C2—C3172.1 (2)C5—C4—C9—O3165.7 (2)
O2—C1—C2—C7172.3 (2)N1—C10—C11—C121.5 (4)
O1—C1—C2—C78.1 (3)C10—C11—C12—C134.7 (4)
C7—C2—C3—C40.3 (4)C10—C11—C12—C15171.0 (2)
C1—C2—C3—C4179.4 (2)C11—C12—C13—C144.1 (3)
C2—C3—C4—C50.5 (3)C15—C12—C13—C14171.5 (2)
C2—C3—C4—C9178.7 (2)C12—C13—C14—N10.1 (4)
C3—C4—C5—C61.0 (3)C13—C12—C15—C18144.0 (2)
C9—C4—C5—C6179.2 (2)C11—C12—C15—C1831.5 (3)
C4—C5—C6—C70.6 (3)C13—C12—C15—C1631.0 (3)
C4—C5—C6—C8177.9 (2)C11—C12—C15—C16153.5 (2)
C5—C6—C7—C20.3 (3)C18—C15—C16—N30.3 (4)
C8—C6—C7—C2177.1 (2)C12—C15—C16—N3175.5 (2)
C3—C2—C7—C60.8 (3)C16—C15—C18—N20.6 (4)
C1—C2—C7—C6179.0 (2)C12—C15—C18—N2174.7 (2)
C5—C6—C8—O6173.9 (2)C11—C10—N1—C142.5 (4)
C7—C6—C8—O63.5 (4)C13—C14—N1—C103.2 (4)
C5—C6—C8—O54.9 (3)N3—C17—N2—C180.4 (4)
C7—C6—C8—O5177.7 (2)C15—C18—N2—C170.9 (4)
C3—C4—C9—O4162.8 (3)N2—C17—N3—C160.4 (4)
C5—C4—C9—O415.4 (4)C15—C16—N3—C170.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.95 (3)1.70 (3)2.652 (2)173 (3)
O3—H3A···O2ii0.92 (3)1.84 (3)2.720 (2)161 (3)
O5—H5A···N10.95 (3)1.68 (3)2.626 (2)177 (3)
C3—H3···O3ii0.932.483.367 (3)159
C14—H14···N2iii0.932.593.335 (3)137
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y+1, z; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H7N3·C9H6O6
Mr367.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.3532 (19), 14.865 (3), 13.066 (3)
β (°) 98.325 (4)
V3)1605.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.32 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8278, 2967, 2142
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.130, 1.04
No. of reflections2967
No. of parameters256
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.95 (3)1.70 (3)2.652 (2)173 (3)
O3—H3A···O2ii0.92 (3)1.84 (3)2.720 (2)161 (3)
O5—H5A···N10.95 (3)1.68 (3)2.626 (2)177 (3)
C3—H3···O3ii0.932.483.367 (3)159
C14—H14···N2iii0.932.593.335 (3)137
Symmetry codes: (i) x+1, y, z1; (ii) x+2, y+1, z; (iii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Scientific Research Project of Chongqing Education Committee, China (KJ100720 and KJTD201020) and Chongqing Technology and Business University, China (2010-56-07) for supporting this work.

References

First citationBhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, M., Zhang, Z.-H. & Zhao, X.-J. (2005). Cryst. Growth Des. 2, 1247–1254.  Web of Science CSD CrossRef Google Scholar
First citationGeorgiev, I., Bosch, E., Barnes, C. L. & Draganjac, M. (2004). Cryst. Growth Des. 4, 235–239.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorikoshi, R., Nambu, C. & Mochida, T. (2004). New J. Chem. 28, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHou, G.-G., Ma, L.-Y. & Dai, X.-P. (2011). Acta Cryst. C67, m321–m323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, B. & Parquette, J. R. (2000). Org. Lett. 2, 239–242.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSantoni, M.-P. C., Yu, S. H., Hanan, G. S., Proust, A. & Hasenknopf, B. (2008). Acta Cryst. E64, o584.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds