organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-(furan-2-yl)ethanol

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 30 November 2011; accepted 1 December 2011; online 10 December 2011)

In the title compound, C12H11N3O2, the benzotriazole ring system is approximately planar [maximum deviation = 0.008 (1) Å] and its mean plane is oriented at a dihedral angle of 24.05 (4)° with respect to the furan ring. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into chains along the ac diagonal. ππ stacking between the furan rings, between the triazole and benzene rings, and between the benzene rings [centroid–centroid distances = 3.724 (1), 3.786 (1) and 3.8623 (9) Å] are also observed.

Related literature

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. & Med. Chem. Lett. 8, 1973-1978.]); Yu et al. (2003[Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141-2144.]); Kopanska et al. (2004[Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617-2624.]). For related structures, see: Caira et al. (2004[Caira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601-611.]); Katritzky et al. (2001[Katritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807-2809.]); Özel Güven et al. (2008[Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.], 2010[Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.], 2011[Özel Güven, Ö., Çapanlar, S., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o2510.]); Nanjunda Swamy et al. (2006[Nanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999-1004.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N3O2

  • Mr = 229.24

  • Monoclinic, P 21 /c

  • a = 11.3606 (4) Å

  • b = 11.1034 (4) Å

  • c = 8.7860 (2) Å

  • β = 96.938 (2)°

  • V = 1100.16 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.50 × 0.50 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.981

  • 12372 measured reflections

  • 2531 independent reflections

  • 2166 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.139

  • S = 1.11

  • 2531 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3i 0.82 2.26 2.7968 (18) 123
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azole compounds have important biological activities. Benzotriazol derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Kopanska et al., 2004; Yu et al., 2003; Hirokawa et al., 1998). Crystal structures of similar compounds like 1-phenyl-2-(1H-1,2,4-triazol-1-yl)ethanol (Özel Güven et al., 2008), 2-(1H-benzotriazol-1-yl)-1-phenylethanol (Özel Güven et al., 2010), 2-(1H-benzotriazol-1-yl)-3-(2,6-dichlorophenyl)-1-phenylpropan-1-ol (Özel Güven et al., 2011), fluconazole (Caira et al., 2004), and other benzotriazole ring possesing compounds (Katritzky et al., 2001; Nanjunda Swamy et al., 2006) have been reported before. Now, we report herein the crystal structure of the title alcohol, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzotriazole ring [B (N1-N3/C7-C12)] is oriented with respect to the furan [A (O2/C2-C5)] ring at a dihedral angle of A/B = 24.05 (4)°. Atom C6 is 0.043 (2) Å away from the plane of the benzotriazole ring and atoms C1 and O1 are 0.010 (2) and 0.043 (1) Å away from the plane of the furan ring, respectively.

In the crystal, O—H···N hydrogen bonds (table 1) link the molecules into chains (Fig. 2). There also exist π···π contacts between the furan rings, between the triazole and benzene rings and between the benzene rings, Cg1—Cg1i, Cg2—Cg3ii and Cg3—Cg3ii, may further stabilize the structure [centroid-centroid distances = 3.724 (1), 3.786 (1) and 3.8623 (9) Å; symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, 1 - z; Cg1, Cg2 and Cg3 are the centroids of the rings A (O2/C2-C5), C (N1-N3/C7/C12) and D (C7-C12), respectively].

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Caira et al. (2004); Katritzky et al. (2001); Özel Güven et al. (2008, 2010, 2011); Nanjunda Swamy et al. (2006).

Experimental top

The title compound, (I), was synthesized by reduction of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanone with sodiumborohydrate. A mixture of 2-(1H-benzotriazol-1-yl)-1-(furan-2-yl)ethanone (1010 mg, 4.44 mmol) and sodium borohydrate (561 mg, 8.89 mmol) in ethanol (50 ml) was refluxed for 4 h. After evaporation of the solvent, the mixture was neutralized with dilute HCl, and then refluxed for 30 min. After the mixture was cooled, the solution was alkalinized with dilute NaOH and the resulting precipitate was filtered. The filtrate was extracted with chloroform, then the organic phase was dried and evaporated. The residue was crystallized from 2-propanol to obtain colorless crystals suitable for X-ray analysis (yield; 634 mg, 62%).

Refinement top

H atoms were positioned geometrically with O—H = 0.82 Å (for OH group), C—H = 0.98, 0.93 and 0.97 Å for methine, aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C,O), where k = 1.5 for OH H-atom and k = 1.2 for all other H-atoms.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1H-Benzotriazol-1-yl)-1-(furan-2-yl)ethanol top
Crystal data top
C12H11N3O2F(000) = 480
Mr = 229.24Dx = 1.384 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6399 reflections
a = 11.3606 (4) Åθ = 2.9–27.5°
b = 11.1034 (4) ŵ = 0.10 mm1
c = 8.7860 (2) ÅT = 120 K
β = 96.938 (2)°Block, colorless
V = 1100.16 (6) Å30.50 × 0.50 × 0.20 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2531 independent reflections
Radiation source: fine-focus sealed tube2166 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1414
Tmin = 0.953, Tmax = 0.981k = 1414
12372 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0748P)2 + 0.4779P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2531 reflectionsΔρmax = 0.58 e Å3
155 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.144 (12)
Crystal data top
C12H11N3O2V = 1100.16 (6) Å3
Mr = 229.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3606 (4) ŵ = 0.10 mm1
b = 11.1034 (4) ÅT = 120 K
c = 8.7860 (2) Å0.50 × 0.50 × 0.20 mm
β = 96.938 (2)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2531 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2166 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.981Rint = 0.037
12372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.11Δρmax = 0.58 e Å3
2531 reflectionsΔρmin = 0.55 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20677 (10)0.98199 (10)0.08354 (12)0.0223 (3)
H10.15590.93460.10480.033*
O20.50236 (10)1.06715 (11)0.24705 (13)0.0247 (3)
N10.18510 (11)0.91870 (12)0.39959 (14)0.0196 (3)
N20.22565 (12)0.82297 (13)0.48488 (16)0.0249 (3)
N30.13604 (12)0.75376 (13)0.50674 (16)0.0248 (3)
C10.30653 (14)0.97510 (14)0.19621 (17)0.0193 (3)
H1A0.33920.89330.19890.023*
C20.39723 (13)1.06237 (14)0.15318 (17)0.0194 (3)
C30.57056 (15)1.15175 (15)0.18424 (19)0.0257 (4)
H30.64711.17320.22470.031*
C40.51146 (15)1.19920 (15)0.05628 (19)0.0252 (4)
H40.53851.25810.00620.030*
C50.39773 (14)1.14020 (15)0.03582 (18)0.0238 (4)
H50.33671.15330.04290.029*
C60.26911 (14)1.00691 (14)0.35398 (17)0.0214 (3)
H6A0.33861.00910.42980.026*
H6B0.23301.08620.34960.026*
C70.06500 (13)0.91156 (13)0.36343 (16)0.0178 (3)
C80.01985 (14)0.98551 (14)0.27982 (17)0.0202 (3)
H80.00101.05600.23260.024*
C90.13571 (14)0.94734 (15)0.27193 (17)0.0226 (4)
H90.19490.99390.21820.027*
C100.16792 (14)0.83958 (15)0.34283 (17)0.0232 (4)
H100.24740.81740.33390.028*
C110.08469 (14)0.76679 (14)0.42472 (18)0.0222 (4)
H110.10590.69620.47130.027*
C120.03398 (13)0.80499 (13)0.43403 (17)0.0191 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (6)0.0231 (6)0.0226 (6)0.0047 (4)0.0004 (4)0.0002 (4)
O20.0204 (6)0.0259 (6)0.0271 (6)0.0032 (4)0.0001 (4)0.0002 (4)
N10.0181 (6)0.0205 (6)0.0205 (6)0.0001 (5)0.0030 (5)0.0020 (5)
N20.0224 (7)0.0249 (7)0.0272 (7)0.0045 (5)0.0023 (5)0.0044 (5)
N30.0231 (7)0.0221 (7)0.0293 (7)0.0043 (5)0.0038 (5)0.0059 (6)
C10.0204 (7)0.0172 (7)0.0203 (7)0.0007 (6)0.0028 (6)0.0012 (5)
C20.0168 (7)0.0204 (7)0.0213 (7)0.0006 (6)0.0031 (6)0.0038 (6)
C30.0203 (8)0.0251 (8)0.0322 (8)0.0052 (6)0.0054 (6)0.0052 (6)
C40.0246 (8)0.0237 (8)0.0285 (8)0.0047 (6)0.0087 (6)0.0016 (6)
C50.0223 (8)0.0264 (8)0.0228 (7)0.0012 (6)0.0029 (6)0.0007 (6)
C60.0201 (7)0.0221 (8)0.0223 (7)0.0039 (6)0.0041 (6)0.0025 (6)
C70.0185 (7)0.0178 (7)0.0173 (7)0.0002 (6)0.0034 (5)0.0017 (5)
C80.0248 (8)0.0178 (7)0.0184 (7)0.0020 (6)0.0040 (6)0.0030 (5)
C90.0213 (8)0.0274 (8)0.0185 (7)0.0056 (6)0.0002 (6)0.0009 (6)
C100.0190 (7)0.0286 (8)0.0224 (7)0.0031 (6)0.0043 (6)0.0042 (6)
C110.0243 (8)0.0191 (8)0.0244 (8)0.0022 (6)0.0074 (6)0.0004 (6)
C120.0212 (8)0.0169 (7)0.0195 (7)0.0022 (6)0.0041 (6)0.0004 (5)
Geometric parameters (Å, º) top
O1—C11.4139 (18)C4—H40.9300
O1—H10.8200C5—C41.440 (2)
O2—C21.3681 (19)C5—H50.9300
O2—C31.375 (2)C6—H6A0.9700
N1—N21.3492 (18)C6—H6B0.9700
N1—C61.4571 (19)C7—C121.401 (2)
N1—C71.365 (2)C8—C71.404 (2)
N3—N21.308 (2)C8—C91.376 (2)
N3—C121.377 (2)C8—H80.9300
C1—C61.539 (2)C9—H90.9300
C1—H1A0.9800C10—C91.417 (2)
C2—C11.496 (2)C10—H100.9300
C2—C51.346 (2)C11—C101.379 (2)
C3—C41.345 (2)C11—C121.406 (2)
C3—H30.9300C11—H110.9300
C1—O1—H1109.5N1—C6—C1110.77 (12)
C2—O2—C3106.13 (12)N1—C6—H6A109.5
N2—N1—C7110.36 (12)N1—C6—H6B109.5
N2—N1—C6119.43 (12)C1—C6—H6A109.5
C7—N1—C6130.13 (13)C1—C6—H6B109.5
N3—N2—N1108.96 (13)H6A—C6—H6B108.1
N2—N3—C12108.40 (13)N1—C7—C8133.73 (14)
O1—C1—C2107.84 (12)N1—C7—C12104.11 (13)
O1—C1—C6109.45 (12)C12—C7—C8122.15 (14)
O1—C1—H1A109.6C7—C8—H8122.0
C2—C1—C6110.64 (12)C9—C8—C7115.98 (14)
C2—C1—H1A109.6C9—C8—H8122.0
C6—C1—H1A109.6C8—C9—C10122.27 (15)
O2—C2—C1116.78 (13)C8—C9—H9118.9
C5—C2—O2110.66 (14)C10—C9—H9118.9
C5—C2—C1132.56 (14)C9—C10—H10119.1
O2—C3—H3124.6C11—C10—C9121.81 (15)
C4—C3—O2110.75 (14)C11—C10—H10119.1
C4—C3—H3124.6C10—C11—C12116.47 (14)
C3—C4—C5106.01 (14)C10—C11—H11121.8
C3—C4—H4127.0C12—C11—H11121.8
C5—C4—H4127.0N3—C12—C7108.16 (13)
C2—C5—C4106.45 (14)N3—C12—C11130.53 (15)
C2—C5—H5126.8C7—C12—C11121.31 (14)
C4—C5—H5126.8
C6—N1—N2—N3177.41 (13)C5—C2—C1—O10.9 (2)
C7—N1—N2—N30.44 (17)C5—C2—C1—C6118.73 (19)
N2—N1—C6—C192.27 (16)O2—C2—C5—C40.09 (18)
C7—N1—C6—C184.02 (19)C1—C2—C5—C4179.58 (15)
N2—N1—C7—C8179.68 (16)O2—C3—C4—C50.27 (18)
N2—N1—C7—C120.62 (16)C2—C5—C4—C30.21 (18)
C6—N1—C7—C83.8 (3)N1—C7—C12—N30.58 (16)
C6—N1—C7—C12177.17 (14)N1—C7—C12—C11179.06 (14)
C12—N3—N2—N10.05 (17)C8—C7—C12—N3179.77 (13)
N2—N3—C12—C70.34 (17)C8—C7—C12—C110.1 (2)
N2—N3—C12—C11179.25 (15)C9—C8—C7—N1178.60 (15)
C3—O2—C2—C1179.51 (13)C9—C8—C7—C120.3 (2)
C3—O2—C2—C50.07 (17)C7—C8—C9—C100.4 (2)
C2—O2—C3—C40.22 (18)C11—C10—C9—C80.3 (2)
O1—C1—C6—N164.08 (16)C10—C11—C12—N3179.57 (15)
C2—C1—C6—N1177.23 (12)C10—C11—C12—C70.0 (2)
O2—C2—C1—O1178.53 (12)C12—C11—C10—C90.1 (2)
O2—C2—C1—C661.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.822.262.7968 (18)123
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H11N3O2
Mr229.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)11.3606 (4), 11.1034 (4), 8.7860 (2)
β (°) 96.938 (2)
V3)1100.16 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.50 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.953, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
12372, 2531, 2166
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.139, 1.11
No. of reflections2531
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.55

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N3i0.822.262.7968 (18)123
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2010-13-02-05).

References

First citationCaira, M. R., Alkhamis, K. A. & Obaidat, R. M. (2004). J. Pharm. Sci. 93, 601–611.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. & Med. Chem. Lett. 8, 1973–1978.  Web of Science CrossRef CAS Google Scholar
First citationKatritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807–2809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNanjunda Swamy, S., Basappa, Sarala, G., Priya, B. S., Gaonkar, S. L., Shashidhara Prasad, J. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010). Acta Cryst. E66, o959.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Çapanlar, S., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008). Acta Cryst. E64, o1254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds